示例#1
0
int main() {
    DoublyLinkedList<int> d;
    d.append(7);
    d.append(8);
    d.append(9);
    d.append(10);
    d.insert(1,0);
    d.insert(12,d.size());
    d.insert(3,3);
    d.print();
    cout<<"Size = "<<d.size()<<"\n";
    return 0;
}
int main() 
{
    // Grab current cout flags, used for when the stream is altered and the user wants
    //   to reset it to the default values: 
    ios::fmtflags f( cout.flags() );

    // Test 1:
    {
      SinglyLinkedList<char>* list = new SinglyLinkedList<char>();

      char var = 'A';

      for (int i = 1; i <= 10; i++) 
        {
        list->pushBack(var);
        var++;
      }

      cout << endl << "Test 1 - Char list:" << endl << "\t";
      list->print();
        cout << endl;
    }

    // Reset cout stream flags:
    cout.flags(f);

    // Test 2:
    {
        DoublyLinkedList<myType>* list = new DoublyLinkedList<myType>();

        myType var = 1;

        for (int i = 1; i <= 10; i++) 
        {
            list->pushBack(var);
            var++;
        }

        cout << endl << "Test 2 - Int list:" << endl << "\t";
        list->print();
        cout << endl;
    }

    // Reset cout stream flags:
    cout.flags(f);

    // Test 3:
    {
        BinaryTree<int>* bt = new BinaryTree<int>();

        // Insert a bunch of stuff:
        bt->insert(11);
        bt->insert(6);
        bt->insert(8);
        bt->insert(19);
        bt->insert(4);
        bt->insert(10);
        bt->insert(5);
        bt->insert(17);
        bt->insert(43);
        bt->insert(49);
        bt->insert(31);

        // Print tree preOrderTraversal:
        cout << endl << "Binary Tree PreOrderTravesal:" << endl << "\t";
        bt->preOrderTraversal();
        cout << endl;

        // Print tree inOrderTraversal:
        cout << endl << "Binary Tree InOrderTravesal:" << endl << "\t";
        bt->inOrderTraversal();
        cout << endl;

        // Print tree postOrderTraversal:
        cout << endl << "Binary Tree PostOrderTravesal:" << endl << "\t";
        bt->postOrderTraversal();
        cout << endl;
    }

    cout << endl;

    return 0;
}
int main()
{
	DoublyLinkedList *ls = new DoublyLinkedList();
	ls->push_back(*(new ListNode("100")));
	ListNode *n1 = new ListNode("5");
	ls->push_front(*n1);
	ls->push_front(*(new ListNode("1")));
	ls->push_front(*(new ListNode("3")));
	ls->push_front(*(new ListNode("4")));
	ls->push_front(*(new ListNode("0")));
	ls->push_back(*(new ListNode("1sdsd")));
	ls->print();
	cout << "\n";
	ls->print_bkw();
	cout << "\nLink list size is equal to " << ls->size() << endl;
	cout << "\n";
	cout << "Lets delete first and last nodes from list\n";
	ls->pop_back();
	ls->pop_front();
	ls->print();
	cout << "\nNow lets erase 4, 1 and 100: \n";
	ls->erase("4");
	ls->erase("1");
	ls->erase("100");
	ls->print();
	cout << "\nLets insert '6' after '3' and '7' after '5': \n";
	ls->insert_after("3", *(new ListNode("6")));
	ls->insert_after("5", *(new ListNode("7")));
	ls->print();
	cout << "\nLets clear linked list (check this with 'isEmpty' method): \n";
	ls->clear();
	if (ls->isEmpty())
		cout << "Our list is empty! \n";
	cout << "\nLets get new list: \n";
	ls->push_front(*(new ListNode("6")));
	ls->push_front(*(new ListNode("31")));
	ls->push_front(*(new ListNode("55")));
	ls->push_front(*(new ListNode("4")));
	ls->push_front(*(new ListNode("1")));
	ls->push_front(*(new ListNode("3")));
	ls->push_front(*(new ListNode("4")));
	ls->push_front(*(new ListNode("8"))); 
	ls->push_front(*(new ListNode("5")));
	ls->push_front(*(new ListNode("0")));
	ls->print();
	cout << "\nOur new sorted list: \n";
	ls->sort();
	ls->print();
	cout << "\nLets delete unique elements: \n";
	ls->unique();
	ls->print();
	cout << "\nLets insert '0', '2', '7' and '9' preserving list ordering: \n";
	ls->insert_ord(*(new ListNode("0")));
	ls->insert_ord(*(new ListNode("2")));
	ls->insert_ord(*(new ListNode("7")));
	ls->insert_ord(*(new ListNode("9")));
	ls->print();

	cout << "\nLets get new list 'temp_ls': \n";
	DoublyLinkedList *temp_ls = new DoublyLinkedList();
	temp_ls->push_front(*(new ListNode("b")));
	temp_ls->push_front(*(new ListNode("v")));
	temp_ls->push_front(*(new ListNode("a")));
	temp_ls->push_front(*(new ListNode("d")));
	temp_ls->print();
	cout << "\nLets 'merge' our lists (temp_ls in ls): \n";
	ls->merge(*temp_ls);
	ls->print();
	if (temp_ls->isEmpty())
		cout << "Our 'temp_ls' list is empty! \n";
	cout << "\nLets get new lists: \n";
	ls->clear();
	ls->push_front(*(new ListNode("6")));
	ls->push_front(*(new ListNode("3")));
	ls->push_front(*(new ListNode("5")));
	ls->push_front(*(new ListNode("4")));
	ls->push_front(*(new ListNode("1")));
	cout << "New 'ls': ";
	ls->print();
	temp_ls->push_front(*(new ListNode("b")));
	temp_ls->push_front(*(new ListNode("v")));
	temp_ls->push_front(*(new ListNode("a")));
	temp_ls->push_front(*(new ListNode("d")));
	cout << "New 'temp_ls': ";
	temp_ls->print();
	cout << "\nLets assign 'ls' to 'temp_ls' from 1 to 3: \n";
	ls->assign(*temp_ls, 1, 3);
	cout << "New 'ls': ";
	ls->print();
	cout << "New 'temp_ls': ";
	temp_ls->print();
	cout << "\nLets splice 'temp_ls' in 'ls' from index 3 with all list:\n ";
	ls->splice(3, *temp_ls);
	ls->print();
	ls->clear();
	temp_ls->clear();
	ls->push_front(*(new ListNode("6")));
	ls->push_front(*(new ListNode("3")));
	ls->push_front(*(new ListNode("5")));
	ls->push_front(*(new ListNode("4")));
	ls->push_front(*(new ListNode("1")));
	cout << "\nlets get new lists: \nNew 'ls': ";
	ls->print();
	temp_ls->push_front(*(new ListNode("b")));
	temp_ls->push_front(*(new ListNode("v")));
	temp_ls->push_front(*(new ListNode("b")));
	temp_ls->push_front(*(new ListNode("d")));
	cout << "New 'temp_ls': ";
	temp_ls->print();
	cout << "\nLets splice 'temp_ls' in 'ls' from index 2 from 1 to 2: ";
	ls->splice(2, *temp_ls, 1, 2);
	ls->print();
	
	return 0;
}