void DigestSimulation::digest(SimTypes::FeatureMapSim& feature_map) { LOG_INFO << "Digest Simulation ... started" << std::endl; if ((String)param_.getValue("enzyme") == String("none")) { //peptides = proteins; // convert all proteins into peptides // for each protein_hit in the FeatureMap for (std::vector<ProteinHit>::iterator protein_hit = feature_map.getProteinIdentifications()[0].getHits().begin(); protein_hit != feature_map.getProteinIdentifications()[0].getHits().end(); ++protein_hit) { // generate a PeptideHit hit with the correct link to the protein PeptideHit pep_hit(1.0, 1, 0, AASequence::fromString(protein_hit->getSequence())); PeptideEvidence pe; pe.setProteinAccession(protein_hit->getAccession()); pep_hit.addPeptideEvidence(pe); // add the PeptideHit to the PeptideIdentification PeptideIdentification pep_id; pep_id.insertHit(pep_hit); // generate Feature with correct Intensity and corresponding PeptideIdentification Feature f; f.getPeptideIdentifications().push_back(pep_id); f.setIntensity(protein_hit->getMetaValue("intensity")); // copy intensity meta-values and additional annotations from Protein to Feature StringList keys; protein_hit->getKeys(keys); for (StringList::const_iterator it_key = keys.begin(); it_key != keys.end(); ++it_key) { f.setMetaValue(*it_key, protein_hit->getMetaValue(*it_key)); } // add Feature to SimTypes::FeatureMapSim feature_map.push_back(f); } return; } UInt min_peptide_length = param_.getValue("min_peptide_length"); bool use_log_model = param_.getValue("model") == "trained" ? true : false; UInt missed_cleavages = param_.getValue("model_naive:missed_cleavages"); double cleave_threshold = param_.getValue("model_trained:threshold"); EnzymaticDigestion digestion; digestion.setEnzyme(digestion.getEnzymeByName((String)param_.getValue("enzyme"))); digestion.setLogModelEnabled(use_log_model); digestion.setLogThreshold(cleave_threshold); std::vector<AASequence> digestion_products; // keep track of generated features std::map<AASequence, Feature> generated_features; // Iterate through ProteinHits in the FeatureMap and digest them for (std::vector<ProteinHit>::iterator protein_hit = feature_map.getProteinIdentifications()[0].getHits().begin(); protein_hit != feature_map.getProteinIdentifications()[0].getHits().end(); ++protein_hit) { // determine abundance of each digestion product (this is quite long now...) // we assume that each digestion product will have the same abundance // note: missed cleavages reduce overall abundance as they combine two (or more) single peptides // how many "atomic"(i.e. non-cleavable) peptides are created? digestion.setMissedCleavages(0); Size complete_digest_count = digestion.peptideCount(AASequence::fromString(protein_hit->getSequence())); // compute average number of "atomic" peptides summed from all digestion products Size number_atomic_whole = 0; Size number_of_digestion_products = 0; for (Size i = 0; (i <= missed_cleavages) && (i < complete_digest_count); ++i) { number_atomic_whole += (complete_digest_count - i) * (i + 1); number_of_digestion_products += (complete_digest_count - i); } // mean number of "atomic" peptides per digestion product is now: number_atomic_whole / number_of_digestion_products // -> thus abundance of a digestion product is: #proteins / avg#of"atomic"peptides // i.e.: protein->second / (number_atomic_whole / number_of_digestion_products) Map<String, SimTypes::SimIntensityType> intensities; StringList keys; protein_hit->getKeys(keys); for (StringList::const_iterator it_key = keys.begin(); it_key != keys.end(); ++it_key) { if (!it_key->hasPrefix("intensity")) continue; intensities[*it_key] = std::max(SimTypes::SimIntensityType(1), SimTypes::SimIntensityType(protein_hit->getMetaValue(*it_key)) * SimTypes::SimIntensityType(number_of_digestion_products) / SimTypes::SimIntensityType(number_atomic_whole)); // order changed for numeric stability } // do real digest digestion.setMissedCleavages(missed_cleavages); digestion.digest(AASequence::fromString(protein_hit->getSequence()), digestion_products); for (std::vector<AASequence>::const_iterator dp_it = digestion_products.begin(); dp_it != digestion_products.end(); ++dp_it) { if (dp_it->size() < min_peptide_length) continue; // sum equal peptide's intensities // *dp_it -> peptide // If we see this Peptide the first time -> generate corresponding feature if (generated_features.count(*dp_it) == 0) { PeptideHit pep_hit(1.0, 1, 0, *dp_it); PeptideIdentification pep_id; pep_id.insertHit(pep_hit); // create feature Feature f; f.getPeptideIdentifications().push_back(pep_id); // set intensity to 0 to avoid problems when summing up f.setIntensity(0.0); // copy all non-intensity meta values StringList lkeys; protein_hit->getKeys(lkeys); for (StringList::iterator key = lkeys.begin(); key != lkeys.end(); ++key) { if (!key->hasPrefix("intensity")) { f.setMetaValue(*key, protein_hit->getMetaValue(*key)); } } // insert into map generated_features.insert(std::make_pair(*dp_it, f)); } // sum up intensity values generated_features[*dp_it].setIntensity(generated_features[*dp_it].getIntensity() + intensities["intensity"]); // ... same for other intensities (iTRAQ...) for (Map<String, SimTypes::SimIntensityType>::const_iterator it_other = intensities.begin(); it_other != intensities.end(); ++it_other) { if (!generated_features[*dp_it].metaValueExists(it_other->first)) { generated_features[*dp_it].setMetaValue(it_other->first, it_other->second); } else { generated_features[*dp_it].setMetaValue(it_other->first, SimTypes::SimIntensityType(generated_features[*dp_it].getMetaValue(it_other->first)) + it_other->second); } } // add current protein accession // existing proteins accessions ... std::set<String> protein_accessions = generated_features[*dp_it].getPeptideIdentifications()[0].getHits()[0].extractProteinAccessions(); // ... add accession of current protein protein_accessions.insert(protein_hit->getAccession()); std::vector<PeptideIdentification> pep_idents = generated_features[*dp_it].getPeptideIdentifications(); std::vector<PeptideHit> pep_hits = pep_idents[0].getHits(); for (std::set<String>::const_iterator s_it = protein_accessions.begin(); s_it != protein_accessions.end(); ++s_it) { PeptideEvidence pe; pe.setProteinAccession(*s_it); pep_hits[0].addPeptideEvidence(pe); } pep_idents[0].setHits(pep_hits); generated_features[*dp_it].setPeptideIdentifications(pep_idents); } } // add generated_features to FeatureMap for (std::map<AASequence, Feature>::iterator it_gf = generated_features.begin(); it_gf != generated_features.end(); ++it_gf) { // round up intensity (it_gf->second).setIntensity(ceil((it_gf->second).getIntensity())); feature_map.push_back(it_gf->second); } }
START_SECTION((DoubleReal getLogThreshold() const)) EnzymaticDigestion ed; ed.setLogThreshold(1.234); TEST_EQUAL(ed.getLogThreshold(), 1.234); END_SECTION START_SECTION((void setLogThreshold(DoubleReal threshold))) // TESTED ABOVE NOT_TESTABLE END_SECTION START_SECTION((Size peptideCount(const AASequence &protein))) EnzymaticDigestion ed; Size tmp = ed.peptideCount(AASequence("ACDE")); TEST_EQUAL(tmp,1) tmp = ed.peptideCount(AASequence("ACKDE")); TEST_EQUAL(tmp,2) tmp = ed.peptideCount(AASequence("ACRDE")); TEST_EQUAL(tmp,2) tmp = ed.peptideCount(AASequence("ACKPDE")); TEST_EQUAL(tmp,1) tmp = ed.peptideCount(AASequence("ACRPDE")); TEST_EQUAL(tmp,1) tmp = ed.peptideCount(AASequence("ARCRDRE")); TEST_EQUAL(tmp,4) tmp = ed.peptideCount(AASequence("RKR")); TEST_EQUAL(tmp,3) ed.setMissedCleavages(1); TEST_EQUAL(ed.peptideCount(AASequence("ACDE")),1)