// on a segment
void featureMapping(MixtureServer & ms, FeatureServer & fs,Seg * seg,Config &config) {
  unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); // Idx of the first frame of the current file in the feature server
  fs.seekFeature(begin);
  Feature f;
  for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){                          // for all the features of the segment
    fs.readFeature(f,0); 		
    featureMapping(ms,f,config);
    fs.writeFeature(f);
  }
}
// ----------------------------------------------------------------------------------------------------------
// Feature Warping giving a source(tab of histo, one by coeff) and a target distribution 
// for a segment and cluster (segment is the minimum time unit to perform this)
void computeWarp(Histo *histoT,Histo &destH,FeatureServer & fs,unsigned long begin, unsigned long length,Config &config) {  
  unsigned long vectsize=fs.getVectSize();                                       // Get the vect size (number of coeff)
  Feature f;
  fs.seekFeature(begin);
  for (unsigned long idxFrame=0;idxFrame<length;idxFrame++){                     // for all the features of the segment
    fs.readFeature(f,0);  
    // Get the feature;
    for (unsigned int i = 0; i < vectsize; i++){    // For each coeff
      f[i]=warping(f[i],histoT[i],destH);           // Apply the warping function
    }
    fs.writeFeature(f);
  }
}
// ----------------------------------------------------------------------------------------------------------
// Feature Mean subtraction and Cov reduction for a segment and cluster (segment is considerred to be the minimum time unit to perform this).
void computeZeroOne(const DoubleVector &featureMean,const DoubleVector &featureStd,FeatureServer & fs,unsigned long begin, unsigned long length,Config &config) {
  unsigned long vectsize=fs.getVectSize();                                       // Get the vect size (number of coeff)
  Feature f;
  fs.seekFeature(begin);
  for (unsigned long idxFrame=0;idxFrame<length;idxFrame++){                     // for all the features of the segment
    fs.readFeature(f,0);  
    // Get the feature;
    for (unsigned int i = 0; i < vectsize; i++)       {                  // For each coeff
      f[i]=(f[i]-featureMean[i])/featureStd[i];    // Apply the 0 mean 1 cov normalisation
    }
    fs.writeFeature(f);
  }
}
// Can use this function to get likelihood with a topgauss
double TopGauss::get(MixtureGD & UBM,FeatureServer &fs,String & featureFilename,Config & config){
	StatServer ss(config);
	String labelSelectedFrames =config.getParam("labelSelectedFrames");
	unsigned long begin=fs.getFirstFeatureIndexOfASource(featureFilename);
	fs.seekFeature(begin);
	SegServer segmentsServer;
	LabelServer labelServer;
	initializeClusters(featureFilename,segmentsServer,labelServer,config);
	//	__android_log_print(ANDROID_LOG_DEBUG, "TopGauss::get", " Feature file  %s  \n", featureFilename.c_str());

	verifyClusterFile(segmentsServer,fs,config);
	unsigned long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);	
	SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame);  
	MixtureGDStat &acc=ss.createAndStoreMixtureStat(UBM);
	
	Seg *seg;          // current selected segment
	selectedSegments.rewind();		
	unsigned long t=0; //cnt frames
	acc.resetLLK();
	unsigned long idxBegin=0;
	while((seg=selectedSegments.getSeg())!=NULL){  
		unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); 
		fs.seekFeature(begin);
		Feature f;
		idxBegin=this->frameToIdx(t);
		for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){
			fs.readFeature(f); 
			//unsigned long idx=this->frameToIdx(t);
			unsigned long nbg=_nbg[t];	
			ULongVector index;
			double sumNonSelectedWeights=_snsw[t];
			double sumNonSelectedLLK=_snsl[t];
			for (unsigned long i=0;i<nbg;i++) {
				index.addValue(_idx[idxBegin+i]);
			}		
			char c[100];
			sprintf(c,"%d",(int)index.size());
			config.setParam("topDistribsCount",c); // this should be high enough	
			if (t==0) {acc.computeAndAccumulateLLK(f,1.0,DETERMINE_TOP_DISTRIBS);acc.resetLLK();} // to remove in ALIZE, this is to init the LKvector
			ss.setTopDistribIndexVector(index, sumNonSelectedWeights, sumNonSelectedLLK);
			acc.computeAndAccumulateLLK(f,1.0,USE_TOP_DISTRIBS);
			idxBegin+=nbg;
			t++;
		}	
	}	
	//ss.deleteMixtureStat(acc);
	if (t!=_nt || idxBegin !=_nbgcnt) cout << "W: t("<<t<<") != _nt(" <<_nt<<")"<<"W: idxBegin("<<idxBegin<<") != _nbgcnt(" <<_nbgcnt<<")"<<endl;
return acc.getMeanLLK();
}
示例#5
0
void FactorAnalysisStat::computeAndAccumulateGeneralFAStats(SegCluster &selectedSegments,FeatureServer &fs,Config & config){
	if (verbose) cout <<"(FactorAnalysisStat) Compute General FA Stats (Complete)" << endl;
	double *N_h, *N, *S_X_h, *S_X,*ff;	
	_matN_h.setAllValues(0.0);
	_matN.setAllValues(0.0);
	_matS_X_h.setAllValues(0.0);
	_matS_X.setAllValues(0.0);
	N_h=_matN_h.getArray(); N=_matN.getArray(); S_X_h=_matS_X_h.getArray();S_X=_matS_X.getArray();
	
	MixtureGD & UBM=_ms.getMixtureGD((unsigned long) 1);
	MixtureGDStat &acc=_ss.createAndStoreMixtureStat(UBM);

	// Compute Occupations and Statistics
	acc.resetOcc();
	Seg *seg; 
	selectedSegments.rewind();
	String currentSource="";unsigned long loc=0;unsigned long sent=0;
	while((seg=selectedSegments.getSeg())!=NULL){	
		unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); 				// Idx of the first frame of the current file in the feature server
		if (currentSource!=seg->sourceName()) {
		currentSource=seg->sourceName();
		loc=_ndxTable.locNb(currentSource);
		sent=_ndxTable.sessionNb(currentSource);	
		if (verbose)cout << "Processing speaker["<<currentSource<<"]"<< endl;	
		}

		fs.seekFeature(begin);
		Feature f;
		if (!_topGauss) {
			for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){
				fs.readFeature(f);
				acc.computeAndAccumulateOcc(f);
				RealVector <double> aPost=acc.getOccVect();
				ff=f.getDataVector();
				for(unsigned long k=0;k<_mixsize;k++) {
					N_h[sent*_mixsize+k]+=aPost[k];
					N[loc*_mixsize+k]   +=aPost[k];
					for (unsigned long i=0;i<_vsize;i++) {
						S_X_h[sent*_supervsize+(k*_vsize+i)]+=aPost[k]*ff[i];
						S_X[loc*_supervsize+(k*_vsize+i)]   +=aPost[k]*ff[i];
						}
				}	
			}
		} 
		else throw Exception("ComputeGeneralStats TopGauss not done at this level",__FILE__,__LINE__);
	}					
};
示例#6
0
/// Normalize features with a smooth mixture transformation o't=ot-sum(P(c|ot)Uc.x)
void FactorAnalysisStat::normalizeFeatures(SegCluster &selectedSegments,FeatureServer &fs,Config & config){
	if (verbose) cout << "(FactorAnalysisStat) Normalize Features" << endl;	
	MixtureGD & clientMixture=_ms.getMixtureGD(1); // copy the UBM mixture		
	unsigned long nt=0;	
	RealVector <double> m_xh_1; m_xh_1.setSize(_supervsize); 	
	double *_m_xh_1=m_xh_1.getArray();
	Seg *seg;          // current selectd segment
	selectedSegments.rewind();
	String currentSource="";
	while((seg=selectedSegments.getSeg())!=NULL){                	
		unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); 
		if (currentSource!=seg->sourceName()) {
			currentSource=seg->sourceName();
			this->getUX(m_xh_1,currentSource);
			this->getSpeakerModel(clientMixture,currentSource);			
			if (verbose)cout << "Processing speaker["<<currentSource<<"]"<< endl;	
		}		
		fs.seekFeature(begin);
		Feature f;
		if (!_topGauss) {
			for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){
				fs.readFeature(f,0);
				double *ff=f.getDataVector();				
				double sum=0.0;
				RealVector <double> P;
				P.setSize(_mixsize);
				double *Prob=P.getArray();
				for(unsigned long k=0;k<_mixsize;k++) {
					Prob[k]=clientMixture.weight(k)*clientMixture.getDistrib(k).computeLK(f);
					sum+=Prob[k];
					}
				for(unsigned long k=0;k<_mixsize;k++) 
					Prob[k]/=sum; 
				for(unsigned long k=0;k<_mixsize;k++) {
					for (unsigned long i=0;i<_vsize;i++) 
						ff[i]-= Prob[k]*_m_xh_1[k*_vsize+i];
					}
				fs.writeFeature(f);
				nt++;		
			}	
		}
		else {
			throw Exception("no topgauss yet",__FILE__,__LINE__);
		}
	}
};	
示例#7
0
/// Compute Log Likelihood of the Factor Analysis model
double FactorAnalysisStat::getLLK(SegCluster &selectedSegments,MixtureGD &model,FeatureServer&fs,Config & config){
	if (verbose) cout << "(FactorAnalysisStat) Compute Likelihood" << endl;		
	double llk=0.0;
	MixtureGDStat &acc=_ss.createAndStoreMixtureStat(model);		
	Seg *seg;        
	selectedSegments.rewind(); 	
	while((seg=selectedSegments.getSeg())!=NULL){                           	
		unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); 
		fs.seekFeature(begin);
		Feature f;
		for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){
			fs.readFeature(f); 
			acc.computeAndAccumulateLLK(f,1.0,TOP_DISTRIBS_NO_ACTION);
		}		
	}				
	llk= acc.getMeanLLK();
	_ss.deleteMixtureStat(acc);		
return llk;
};
double computeEnergyThreshold(FeatureServer & fs,double pSelect,unsigned long nbBins=100)
{
  Histo histo(nbBins);                                             // Create an histo accumulator with 100 bins
  Feature f;                                                     // reset the reader at the begin of the input stream
  fs.reset();                                                     // feature server reset 
for (unsigned long ind=0;fs.readFeature(f); ind++) // feature loop
    histo.accumulateValue(f[0]);                               // Accumulate the energy in the histo Accumulator
  histo.computeHisto();                                           // Compute the histo
  long i=nbBins-1;  
  real_t count=0;
while((i>=0) && (count<=pSelect)){                               // Find the bin corresponding to the percentage of data wanted
    count+=histo.count(i)*(histo.higherBound(i)-histo.lowerBound(i));
    i--;
 }
  double threshold;
  if (i>=0) threshold=histo.higherBound(i);                        // Set the threshold to the higherBound of the next bin
  else threshold=histo.lowerBound(0);                              // if 100% of data should be selected
  if (verbose)  cout << "Percentage wanted["<<(int) (pSelect*100.0) <<"]Energy threshold["<<threshold<<"]"<<endl;
  return threshold;	
}
// Build the segments with the energized frames
unsigned long selectFrames(FeatureServer &fs,SegServer & segServer,double threshold,SegCluster &selectedSeg,SegCluster &outputSeg,String labelOutput,String fileName)
{
  unsigned long countFrames=0;
  fs.reset();                                                       // feature server reset
  unsigned long ind=0;
  unsigned long begin=0;
  bool in=false;
  Seg *seg;                                                         // current selectd segment
  selectedSeg.rewind();                                             // reset the reader at the begin of the input stream
  while((seg=selectedSeg.getSeg())!=NULL){                          // For each input segments
    for (unsigned long idx=seg->begin();idx<seg->begin()+seg->length();idx++){ // for each frame
      Feature f;
      fs.seekFeature(idx);
      fs.readFeature(f);
      if (f[0]>threshold){                                         // the frame is selected
	countFrames++;
	if (in==false){                                             // Begin of a new segment         
	  in=true;                                                  
	  begin=ind;
	}
      }
      else if (in){                                                // End of a segment
	in=false;
	Seg & segFake=segServer.createSeg(begin,ind-begin,0,       // Create a segment - Take care : length=end-begin+1 but ind =end+1 !!
					  labelOutput,fileName);
	outputSeg.add(segFake);                                  // Add a segment 	
      }
      ind++;                                                       // Increment the frame index
    }                                                              // end of one input segment
    if (in){                                                       // deal with the last energized segmeent inside the current input segment
      in=false;
      Seg & segFake=segServer.createSeg(begin,ind-begin+1,0,       // Create a segment 
					labelOutput,fileName);
      outputSeg.add(segFake);                                    // Add a segment  - Take care : length=end-begin+1 and ind=end in this case !!
    }                 
  }                                                              // end feature loop                   
  
  return countFrames;
}
// Feature writing in an output stream w - could be used for multiple segmen,ts from multiple files to one file
void outputFeatureFile(Config &config, FeatureServer &fs, Feature & f, FeatureFileWriter &w) { 
  fs.readFeature(f);
  w.writeFeature(f); 
}
// Main init function
double TopGauss::compute(MixtureGD & UBM,FeatureServer &fs,String & featureFilename,Config & config){
	StatServer ss(config);
	MixtureGDStat &acc=ss.createAndStoreMixtureStat(UBM);	
	unsigned long _mixsize=UBM.getDistribCount();
	String labelSelectedFrames =config.getParam("labelSelectedFrames");
	unsigned long begin=fs.getFirstFeatureIndexOfASource(featureFilename);
	fs.seekFeature(begin);
	SegServer segmentsServer;
	LabelServer labelServer;
	initializeClusters(featureFilename,segmentsServer,labelServer,config);
	//	__android_log_print(ANDROID_LOG_DEBUG, "TopGauss::compute", " Feature file  %s  \n", featureFilename.c_str());

	verifyClusterFile(segmentsServer,fs,config);
	unsigned long codeSelectedFrame=labelServer.getLabelIndexByString(labelSelectedFrames);	
	SegCluster& selectedSegments=segmentsServer.getCluster(codeSelectedFrame);  
	acc.resetLLK();
	double topD=config.getParam("topGauss").toDouble();
	if (verbose) {if(topD<1.0) cout << "LLK %="<< topD << "% ";else cout << "Top-"<<topD<<" ";}
	
	// Class values
	_nt=totalFrame(selectedSegments);	
	_nbg.setSize(_nt); _idx.setSize(0);_snsw.setSize(0); _snsl.setSize(0);
	_nbg.setAllValues(0); _idx.setAllValues(0);_snsw.setAllValues(0.0);_snsl.setAllValues(0.0);
	_nbgcnt=0;
	Seg *seg;          // current selected segment
	selectedSegments.rewind();		
	unsigned long t=0; //cnt frames
	while((seg=selectedSegments.getSeg())!=NULL){                       	
		unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); 
		fs.seekFeature(begin);
		Feature f;
		for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){
			fs.readFeature(f); 
			double llk=acc.computeAndAccumulateLLK(f,1.0,DETERMINE_TOP_DISTRIBS);
			const LKVector &topV=ss.getTopDistribIndexVector();
			double lk_tot=exp(llk);
			
			double val=0.0;
			if (topD<1.0) {
				for(unsigned long j=0;j<_mixsize;j++){
					if (val > topD*lk_tot) break;
					val+=(topV[j].lk);
					_nbg[t]++;
				}
			} else _nbg[t]=(unsigned long)topD;
			_nbgcnt+=_nbg[t];
			 
			double snsw=1.0;
			double snsl=lk_tot;					
			for(unsigned long j=0;j<_nbg[t];j++) {
				_idx.addValue(topV[j].idx);    		
				snsw -=UBM.weight(topV[j].idx);
				snsl -=topV[j].lk;
			}

			_snsw.addValue(snsw);
			if (snsl < EPS_LK)
				_snsl.addValue(EPS_LK);
			else _snsl.addValue(snsl);
			t++;
		}		
	}
	if (t!=_nt) cout << "W: t("<<t<<") != _nt(" <<_nt<<")"<<endl;
return acc.getMeanLLK();
}