bool mitk::WiiMoteInteractor::FixedRotationAndTranslation(const mitk::WiiMoteAllDataEvent* wiiMoteEvent) { Geometry3D* geometry = this->TransformCurrentDataInGeometry3D(); m_OrientationX = wiiMoteEvent->GetOrientationX(); m_OrientationY = wiiMoteEvent->GetOrientationY(); m_OrientationZ = wiiMoteEvent->GetOrientationZ(); ScalarType pitchSpeed = wiiMoteEvent->GetPitchSpeed(); ScalarType rollSpeed = wiiMoteEvent->GetRollSpeed(); ScalarType yawSpeed = wiiMoteEvent->GetYawSpeed(); // angle x if(std::abs(pitchSpeed) < 200) pitchSpeed = 0; m_xAngle += (pitchSpeed / 1500); // angle y if(std::abs(rollSpeed) < 200) rollSpeed = 0; m_yAngle += (rollSpeed / 1500); // angle z if(std::abs(yawSpeed) < 200) yawSpeed = 0; m_zAngle += (yawSpeed / 1500); if( std::abs(pitchSpeed) > 200 || std::abs(rollSpeed) > 200 || std::abs(yawSpeed) > 200) { m_InRotation = true; //// depending on a combination of the //// orientation the angleX wil be altered //// because the range from roll is limited //// range: -90° to 90° by the wiimote //if(wiiMoteEvent->GetOrientationZ() < 0) //{ // // value is positive // if(wiiMoteEvent->GetOrientationX() > 0) // { // // the degree measured decreases after it reaches // // in the "real" world the 90 degree angle // // (rotation to the right side) // // therefore it needs to artificially increased // // measured value drops -> computated angle increases // angleX = 90 - angleX; // // now add the "new" angle to 90 degree threshold // angleX += 90; // } // // value is negative // else if(wiiMoteEvent->GetOrientationX() < 0) // { // // the degree measured increases after it reaches // // in the "real" world -90 degree // // (rotation to the left side) // // therefore it needs to be artificially decreased // // (example -90 -> -70, but -110 is needed) // // measured value increases -> computated angle decreases // angleX = 90 + angleX; // // invert the algebraic sign, because it is the "negative" // // side of the rotation // angleX = -angleX; // // now add the negative value to the -90 degree threshold // // to decrease the value further // angleX -= 90; // } // else if(wiiMoteEvent->GetOrientationX() == 0) // { // // i.e. wiimote is flipped upside down // angleX = 180; // } //} //rotation vtkTransform *vtkTransform = vtkTransform::New(); //copy m_vtkMatrix to m_VtkIndexToWorldTransform geometry->TransferItkToVtkTransform(); //////m_VtkIndexToWorldTransform as vtkLinearTransform* vtkTransform->SetMatrix(geometry->GetVtkTransform()->GetMatrix()); // rotation from center is different // from rotation while translated // hence one needs the center of the object Point3D center = geometry->GetOrigin(); vtkTransform->PostMultiply(); vtkTransform->Translate(-center[0], -center[1], -center[2]); //vtkTransform->RotateWXYZ(angle, rotationVector[0], rotationVector[1], rotationVector[2]); vtkTransform->RotateX(m_xAngle); vtkTransform->RotateY(m_zAngle); vtkTransform->RotateZ(m_yAngle); vtkTransform->Translate(center[0], center[1], center[2]); vtkTransform->PreMultiply(); geometry->SetIndexToWorldTransformByVtkMatrix(vtkTransform->GetMatrix()); geometry->Modified(); // indicate modification of data tree node m_DataNode->Modified(); vtkTransform->Delete(); //update rendering mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return true; } else if(!m_InRotation) { float xValue = wiiMoteEvent->GetXAcceleration(); float yValue = wiiMoteEvent->GetYAcceleration(); float zValue = wiiMoteEvent->GetZAcceleration(); float pitch = wiiMoteEvent->GetPitch(); float roll = wiiMoteEvent->GetRoll(); // substracts the proportionate force // applied by gravity depending on the // orientation float sinP = sin(pitch/180.0 * M_PI); float cosP = cos(pitch/180.0 * M_PI); float sinR = sin(roll/180.0 * M_PI); float cosR = cos(roll/180.0 * M_PI); // x acceleration if(m_OrientationZ >= 0) xValue = xValue - sinR * cosP; else xValue = xValue + sinR * cosP; // against drift if(std::abs(xValue) < 0.2) xValue = 0; // y acceleration yValue = yValue + sinP; // against drift if(std::abs(yValue) < 0.2) yValue = 0; // z acceleration zValue = zValue - cosP * cosR; // against drift if(std::abs(zValue) < 0.3) zValue = 0; // simple integration over time // resulting in velocity switch(m_TranslationMode) { case 1: m_xVelocity -= xValue; m_yVelocity -= yValue; m_zVelocity += zValue; // 1 = movement to the right // initially starts with negative acceleration // 2 = movement to the left // initially starts with positive acceleration if( m_xVelocity > 0 && xValue > 0 // 1 || m_xVelocity < 0 && xValue < 0) // 2 { m_xVelocity += xValue; } else if( m_xVelocity > 0 && xValue < 0 // 1 || m_xVelocity < 0 && xValue > 0) // 2 { m_xVelocity -= xValue; } break; case 3: m_yVelocity -= yValue; break; case 4: // 1 = movement up // initially starts with positive acceleration // 2 = movement down // initially starts with negative acceleration if( m_zVelocity > 0 && zValue < 0 // 1 || m_zVelocity < 0 && zValue > 0) // 2 { m_zVelocity -= zValue; } else if(m_zVelocity > 0 && zValue > 0 // 1 || m_zVelocity < 0 && zValue < 0) // 2 { m_zVelocity += zValue; } break; } // sets the mode of the translation // depending on the initial velocity if( std::abs(m_xVelocity) > std::abs(m_yVelocity) && std::abs(m_xVelocity) > std::abs(m_zVelocity) ) { m_TranslationMode = 2; m_yVelocity = 0; m_zVelocity = 0; } else if( std::abs(m_yVelocity) > std::abs(m_xVelocity) && std::abs(m_yVelocity) > std::abs(m_zVelocity) ) { m_TranslationMode = 3; m_xVelocity = 0; m_zVelocity = 0; } else if(std::abs(m_zVelocity) > std::abs(m_xVelocity) && std::abs(m_zVelocity) > std::abs(m_yVelocity) ) { m_TranslationMode = 4; m_xVelocity = 0; m_yVelocity = 0; } // translation mitk::Vector3D movementVector; movementVector.SetElement(0,m_xVelocity); movementVector.SetElement(1,m_yVelocity); movementVector.SetElement(2,m_zVelocity); geometry->Translate(movementVector); // indicate modification of data tree node m_DataNode->Modified(); // update rendering mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return true; } return false; }
std::string mitk::TestDICOMLoading::DumpImageInformation( const Image* image ) { std::stringstream result; if (image == NULL) return result.str(); SetDefaultLocale(); // basic image data DumpLine( "Pixeltype", TypeIDToString( (image->GetPixelType().GetTypeId()) )); DumpLine( "BitsPerPixel", image->GetPixelType().GetBpe() ); DumpLine( "Dimension", image->GetDimension() ); result << "Dimensions: "; for (unsigned int dim = 0; dim < image->GetDimension(); ++dim) result << image->GetDimension(dim) << " "; result << "\n"; // geometry data result << "Geometry: \n"; Geometry3D* geometry = image->GetGeometry(); if (geometry) { AffineTransform3D* transform = geometry->GetIndexToWorldTransform(); if (transform) { result << " " << "Matrix: "; const AffineTransform3D::MatrixType& matrix = transform->GetMatrix(); for (unsigned int i = 0; i < 3; ++i) for (unsigned int j = 0; j < 3; ++j) result << matrix[i][j] << " "; result << "\n"; result << " " << "Offset: "; const AffineTransform3D::OutputVectorType& offset = transform->GetOffset(); for (unsigned int i = 0; i < 3; ++i) result << offset[i] << " "; result << "\n"; result << " " << "Center: "; const AffineTransform3D::InputPointType& center = transform->GetCenter(); for (unsigned int i = 0; i < 3; ++i) result << center[i] << " "; result << "\n"; result << " " << "Translation: "; const AffineTransform3D::OutputVectorType& translation = transform->GetTranslation(); for (unsigned int i = 0; i < 3; ++i) result << translation[i] << " "; result << "\n"; result << " " << "Scale: "; const double* scale = transform->GetScale(); for (unsigned int i = 0; i < 3; ++i) result << scale[i] << " "; result << "\n"; result << " " << "Origin: "; const Point3D& origin = geometry->GetOrigin(); for (unsigned int i = 0; i < 3; ++i) result << origin[i] << " "; result << "\n"; result << " " << "Spacing: "; const Vector3D& spacing = geometry->GetSpacing(); for (unsigned int i = 0; i < 3; ++i) result << spacing[i] << " "; result << "\n"; result << " " << "TimeBounds: "; const TimeBounds timeBounds = geometry->GetTimeBounds(); for (unsigned int i = 0; i < 2; ++i) result << timeBounds[i] << " "; result << "\n"; } } ResetUserLocale(); return result.str(); }