void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioBus* inputBus, AudioBus* outputBus, size_t framesToProcess, AudioBus::ChannelInterpretation channelInterpretation) { unsigned numInputChannels = inputBus ? inputBus->numberOfChannels() : 0; bool isInputGood = inputBus && numInputChannels >= 1 && numInputChannels <= 2; ASSERT(isInputGood); bool isOutputGood = outputBus && outputBus->numberOfChannels() == 2 && framesToProcess <= outputBus->length(); ASSERT(isOutputGood); if (!isInputGood || !isOutputGood) { if (outputBus) outputBus->zero(); return; } HRTFDatabase* database = m_databaseLoader->database(); if (!database) { outputBus->copyFrom(*inputBus, channelInterpretation); return; } // IRCAM HRTF azimuths values from the loaded database is reversed from the // panner's notion of azimuth. double azimuth = -desiredAzimuth; bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0; ASSERT(isAzimuthGood); if (!isAzimuthGood) { outputBus->zero(); return; } // Normally, we'll just be dealing with mono sources. // If we have a stereo input, implement stereo panning with left source // processed by left HRTF, and right source by right HRTF. const AudioChannel* inputChannelL = inputBus->channelByType(AudioBus::ChannelLeft); const AudioChannel* inputChannelR = numInputChannels > 1 ? inputBus->channelByType(AudioBus::ChannelRight) : nullptr; // Get source and destination pointers. const float* sourceL = inputChannelL->data(); const float* sourceR = numInputChannels > 1 ? inputChannelR->data() : sourceL; float* destinationL = outputBus->channelByType(AudioBus::ChannelLeft)->mutableData(); float* destinationR = outputBus->channelByType(AudioBus::ChannelRight)->mutableData(); double azimuthBlend; int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend); // Initially snap azimuth and elevation values to first values encountered. if (m_azimuthIndex1 == UninitializedAzimuth) { m_azimuthIndex1 = desiredAzimuthIndex; m_elevation1 = elevation; } if (m_azimuthIndex2 == UninitializedAzimuth) { m_azimuthIndex2 = desiredAzimuthIndex; m_elevation2 = elevation; } // Cross-fade / transition over a period of around 45 milliseconds. // This is an empirical value tuned to be a reasonable trade-off between // smoothness and speed. const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096; // Check for azimuth and elevation changes, initiating a cross-fade if needed. if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) { if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) { // Cross-fade from 1 -> 2 m_crossfadeIncr = 1 / fadeFrames; m_azimuthIndex2 = desiredAzimuthIndex; m_elevation2 = elevation; } } if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) { if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) { // Cross-fade from 2 -> 1 m_crossfadeIncr = -1 / fadeFrames; m_azimuthIndex1 = desiredAzimuthIndex; m_elevation1 = elevation; } } // This algorithm currently requires that we process in power-of-two size // chunks at least AudioUtilities::kRenderQuantumFrames. ASSERT(1UL << static_cast<int>(log2(framesToProcess)) == framesToProcess); DCHECK_GE(framesToProcess, AudioUtilities::kRenderQuantumFrames); const unsigned framesPerSegment = AudioUtilities::kRenderQuantumFrames; const unsigned numberOfSegments = framesToProcess / framesPerSegment; for (unsigned segment = 0; segment < numberOfSegments; ++segment) { // Get the HRTFKernels and interpolated delays. HRTFKernel* kernelL1; HRTFKernel* kernelR1; HRTFKernel* kernelL2; HRTFKernel* kernelR2; double frameDelayL1; double frameDelayR1; double frameDelayL2; double frameDelayR2; database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1); database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2); bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2; ASSERT(areKernelsGood); if (!areKernelsGood) { outputBus->zero(); return; } ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds); ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds); // Crossfade inter-aural delays based on transitions. double frameDelayL = (1 - m_crossfadeX) * frameDelayL1 + m_crossfadeX * frameDelayL2; double frameDelayR = (1 - m_crossfadeX) * frameDelayR1 + m_crossfadeX * frameDelayR2; // Calculate the source and destination pointers for the current segment. unsigned offset = segment * framesPerSegment; const float* segmentSourceL = sourceL + offset; const float* segmentSourceR = sourceR + offset; float* segmentDestinationL = destinationL + offset; float* segmentDestinationR = destinationR + offset; // First run through delay lines for inter-aural time difference. m_delayLineL.setDelayFrames(frameDelayL); m_delayLineR.setDelayFrames(frameDelayR); m_delayLineL.process(segmentSourceL, segmentDestinationL, framesPerSegment); m_delayLineR.process(segmentSourceR, segmentDestinationR, framesPerSegment); bool needsCrossfading = m_crossfadeIncr; // Have the convolvers render directly to the final destination if we're not // cross-fading. float* convolutionDestinationL1 = needsCrossfading ? m_tempL1.data() : segmentDestinationL; float* convolutionDestinationR1 = needsCrossfading ? m_tempR1.data() : segmentDestinationR; float* convolutionDestinationL2 = needsCrossfading ? m_tempL2.data() : segmentDestinationL; float* convolutionDestinationR2 = needsCrossfading ? m_tempR2.data() : segmentDestinationR; // Now do the convolutions. // Note that we avoid doing convolutions on both sets of convolvers if we're // not currently cross-fading. if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) { m_convolverL1.process(kernelL1->fftFrame(), segmentDestinationL, convolutionDestinationL1, framesPerSegment); m_convolverR1.process(kernelR1->fftFrame(), segmentDestinationR, convolutionDestinationR1, framesPerSegment); } if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) { m_convolverL2.process(kernelL2->fftFrame(), segmentDestinationL, convolutionDestinationL2, framesPerSegment); m_convolverR2.process(kernelR2->fftFrame(), segmentDestinationR, convolutionDestinationR2, framesPerSegment); } if (needsCrossfading) { // Apply linear cross-fade. float x = m_crossfadeX; float incr = m_crossfadeIncr; for (unsigned i = 0; i < framesPerSegment; ++i) { segmentDestinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i]; segmentDestinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i]; x += incr; } // Update cross-fade value from local. m_crossfadeX = x; if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) { // We've fully made the crossfade transition from 1 -> 2. m_crossfadeSelection = CrossfadeSelection2; m_crossfadeX = 1; m_crossfadeIncr = 0; } else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) { // We've fully made the crossfade transition from 2 -> 1. m_crossfadeSelection = CrossfadeSelection1; m_crossfadeX = 0; m_crossfadeIncr = 0; } } } }
void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioBus* inputBus, AudioBus* outputBus, size_t framesToProcess) { unsigned numInputChannels = inputBus ? inputBus->numberOfChannels() : 0; bool isInputGood = inputBus && numInputChannels >= 1 && numInputChannels <= 2; ASSERT(isInputGood); bool isOutputGood = outputBus && outputBus->numberOfChannels() == 2 && framesToProcess <= outputBus->length(); ASSERT(isOutputGood); if (!isInputGood || !isOutputGood) { if (outputBus) outputBus->zero(); return; } // This code only runs as long as the context is alive and after database has been loaded. HRTFDatabase* database = HRTFDatabaseLoader::defaultHRTFDatabase(); ASSERT(database); if (!database) { outputBus->zero(); return; } // IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth. double azimuth = -desiredAzimuth; bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0; ASSERT(isAzimuthGood); if (!isAzimuthGood) { outputBus->zero(); return; } // Normally, we'll just be dealing with mono sources. // If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF. const AudioChannel* inputChannelL = inputBus->channelByType(AudioBus::ChannelLeft); const AudioChannel* inputChannelR = numInputChannels > 1 ? inputBus->channelByType(AudioBus::ChannelRight) : 0; // Get source and destination pointers. const float* sourceL = inputChannelL->data(); const float* sourceR = numInputChannels > 1 ? inputChannelR->data() : sourceL; float* destinationL = outputBus->channelByType(AudioBus::ChannelLeft)->mutableData(); float* destinationR = outputBus->channelByType(AudioBus::ChannelRight)->mutableData(); double azimuthBlend; int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend); // This algorithm currently requires that we process in power-of-two size chunks at least 128. ASSERT(1UL << static_cast<int>(log2(framesToProcess)) == framesToProcess); ASSERT(framesToProcess >= 128); const unsigned framesPerSegment = 128; const unsigned numberOfSegments = framesToProcess / framesPerSegment; for (unsigned segment = 0; segment < numberOfSegments; ++segment) { if (m_isFirstRender) { // Snap exactly to desired position (first time and after reset()). m_azimuthIndex = desiredAzimuthIndex; m_isFirstRender = false; } else { // Each segment renders with an azimuth index closer by one to the desired azimuth index. // Because inter-aural time delay is mostly a factor of azimuth and the delay is where the clicks and graininess come from, // we don't bother smoothing the elevations. int numberOfAzimuths = database->numberOfAzimuths(); bool wrap = wrapDistance(m_azimuthIndex, desiredAzimuthIndex, numberOfAzimuths); if (wrap) { if (m_azimuthIndex < desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex - 1 + numberOfAzimuths) % numberOfAzimuths; else if (m_azimuthIndex > desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex + 1) % numberOfAzimuths; } else { if (m_azimuthIndex < desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex + 1) % numberOfAzimuths; else if (m_azimuthIndex > desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex - 1 + numberOfAzimuths) % numberOfAzimuths; } } // Get the HRTFKernels and interpolated delays. HRTFKernel* kernelL; HRTFKernel* kernelR; double frameDelayL; double frameDelayR; database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex, elevation, kernelL, kernelR, frameDelayL, frameDelayR); ASSERT(kernelL && kernelR); if (!kernelL || !kernelR) { outputBus->zero(); return; } ASSERT(frameDelayL / sampleRate() < MaxDelayTimeSeconds && frameDelayR / sampleRate() < MaxDelayTimeSeconds); // Calculate the source and destination pointers for the current segment. unsigned offset = segment * framesPerSegment; const float* segmentSourceL = sourceL + offset; const float* segmentSourceR = sourceR + offset; float* segmentDestinationL = destinationL + offset; float* segmentDestinationR = destinationR + offset; // First run through delay lines for inter-aural time difference. m_delayLineL.setDelayFrames(frameDelayL); m_delayLineR.setDelayFrames(frameDelayR); m_delayLineL.process(segmentSourceL, segmentDestinationL, framesPerSegment); m_delayLineR.process(segmentSourceR, segmentDestinationR, framesPerSegment); // Now do the convolutions in-place. m_convolverL.process(kernelL->fftFrame(), segmentDestinationL, segmentDestinationL, framesPerSegment); m_convolverR.process(kernelR->fftFrame(), segmentDestinationR, segmentDestinationR, framesPerSegment); } }
void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioChunk* inputBus, AudioChunk* outputBus) { unsigned numInputChannels = inputBus->IsNull() ? 0 : inputBus->mChannelData.Length(); MOZ_ASSERT(numInputChannels <= 2); MOZ_ASSERT(inputBus->mDuration == WEBAUDIO_BLOCK_SIZE); bool isOutputGood = outputBus && outputBus->mChannelData.Length() == 2 && outputBus->mDuration == WEBAUDIO_BLOCK_SIZE; MOZ_ASSERT(isOutputGood); if (!isOutputGood) { if (outputBus) outputBus->SetNull(outputBus->mDuration); return; } HRTFDatabase* database = m_databaseLoader->database(); if (!database) { // not yet loaded outputBus->SetNull(outputBus->mDuration); return; } // IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth. double azimuth = -desiredAzimuth; bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0; MOZ_ASSERT(isAzimuthGood); if (!isAzimuthGood) { outputBus->SetNull(outputBus->mDuration); return; } // Normally, we'll just be dealing with mono sources. // If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF. // Get destination pointers. float* destinationL = static_cast<float*>(const_cast<void*>(outputBus->mChannelData[0])); float* destinationR = static_cast<float*>(const_cast<void*>(outputBus->mChannelData[1])); double azimuthBlend; int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend); // Initially snap azimuth and elevation values to first values encountered. if (m_azimuthIndex1 == UninitializedAzimuth) { m_azimuthIndex1 = desiredAzimuthIndex; m_elevation1 = elevation; } if (m_azimuthIndex2 == UninitializedAzimuth) { m_azimuthIndex2 = desiredAzimuthIndex; m_elevation2 = elevation; } // Cross-fade / transition over a period of around 45 milliseconds. // This is an empirical value tuned to be a reasonable trade-off between // smoothness and speed. const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096; // Check for azimuth and elevation changes, initiating a cross-fade if needed. if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) { if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) { // Cross-fade from 1 -> 2 m_crossfadeIncr = 1 / fadeFrames; m_azimuthIndex2 = desiredAzimuthIndex; m_elevation2 = elevation; } } if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) { if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) { // Cross-fade from 2 -> 1 m_crossfadeIncr = -1 / fadeFrames; m_azimuthIndex1 = desiredAzimuthIndex; m_elevation1 = elevation; } } // Get the HRTFKernels and interpolated delays. HRTFKernel* kernelL1; HRTFKernel* kernelR1; HRTFKernel* kernelL2; HRTFKernel* kernelR2; double frameDelayL1; double frameDelayR1; double frameDelayL2; double frameDelayR2; database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1); database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2); bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2; MOZ_ASSERT(areKernelsGood); if (!areKernelsGood) { outputBus->SetNull(outputBus->mDuration); return; } MOZ_ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds); MOZ_ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds); // Crossfade inter-aural delays based on transitions. double frameDelaysL[WEBAUDIO_BLOCK_SIZE]; double frameDelaysR[WEBAUDIO_BLOCK_SIZE]; { float x = m_crossfadeX; float incr = m_crossfadeIncr; for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) { frameDelaysL[i] = (1 - x) * frameDelayL1 + x * frameDelayL2; frameDelaysR[i] = (1 - x) * frameDelayR1 + x * frameDelayR2; x += incr; } } // First run through delay lines for inter-aural time difference. m_delayLine.Write(*inputBus); // "Speakers" means a mono input is read into both outputs (with possibly // different delays). m_delayLine.ReadChannel(frameDelaysL, outputBus, 0, ChannelInterpretation::Speakers); m_delayLine.ReadChannel(frameDelaysR, outputBus, 1, ChannelInterpretation::Speakers); m_delayLine.NextBlock(); bool needsCrossfading = m_crossfadeIncr; // Have the convolvers render directly to the final destination if we're not cross-fading. float* convolutionDestinationL1 = needsCrossfading ? m_tempL1.Elements() : destinationL; float* convolutionDestinationR1 = needsCrossfading ? m_tempR1.Elements() : destinationR; float* convolutionDestinationL2 = needsCrossfading ? m_tempL2.Elements() : destinationL; float* convolutionDestinationR2 = needsCrossfading ? m_tempR2.Elements() : destinationR; // Now do the convolutions. // Note that we avoid doing convolutions on both sets of convolvers if we're not currently cross-fading. if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) { m_convolverL1.process(kernelL1->fftFrame(), destinationL, convolutionDestinationL1, WEBAUDIO_BLOCK_SIZE); m_convolverR1.process(kernelR1->fftFrame(), destinationR, convolutionDestinationR1, WEBAUDIO_BLOCK_SIZE); } if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) { m_convolverL2.process(kernelL2->fftFrame(), destinationL, convolutionDestinationL2, WEBAUDIO_BLOCK_SIZE); m_convolverR2.process(kernelR2->fftFrame(), destinationR, convolutionDestinationR2, WEBAUDIO_BLOCK_SIZE); } if (needsCrossfading) { // Apply linear cross-fade. float x = m_crossfadeX; float incr = m_crossfadeIncr; for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) { destinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i]; destinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i]; x += incr; } // Update cross-fade value from local. m_crossfadeX = x; if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) { // We've fully made the crossfade transition from 1 -> 2. m_crossfadeSelection = CrossfadeSelection2; m_crossfadeX = 1; m_crossfadeIncr = 0; } else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) { // We've fully made the crossfade transition from 2 -> 1. m_crossfadeSelection = CrossfadeSelection1; m_crossfadeX = 0; m_crossfadeIncr = 0; } } }