int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend) { // Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360. // The azimuth index may then be calculated from this positive value. if (azimuth < 0) azimuth += 360.0; HRTFDatabase* database = HRTFDatabaseLoader::defaultHRTFDatabase(); ASSERT(database); int numberOfAzimuths = database->numberOfAzimuths(); const double angleBetweenAzimuths = 360.0 / numberOfAzimuths; // Calculate the azimuth index and the blend (0 -> 1) for interpolation. double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths; int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat); azimuthBlend = desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex); // We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at. // This minimizes the clicks and graininess for moving sources which occur otherwise. desiredAzimuthIndex = max(0, desiredAzimuthIndex); desiredAzimuthIndex = min(numberOfAzimuths - 1, desiredAzimuthIndex); return desiredAzimuthIndex; }
void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioBus* inputBus, AudioBus* outputBus, size_t framesToProcess) { unsigned numInputChannels = inputBus ? inputBus->numberOfChannels() : 0; bool isInputGood = inputBus && numInputChannels >= 1 && numInputChannels <= 2; ASSERT(isInputGood); bool isOutputGood = outputBus && outputBus->numberOfChannels() == 2 && framesToProcess <= outputBus->length(); ASSERT(isOutputGood); if (!isInputGood || !isOutputGood) { if (outputBus) outputBus->zero(); return; } // This code only runs as long as the context is alive and after database has been loaded. HRTFDatabase* database = HRTFDatabaseLoader::defaultHRTFDatabase(); ASSERT(database); if (!database) { outputBus->zero(); return; } // IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth. double azimuth = -desiredAzimuth; bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0; ASSERT(isAzimuthGood); if (!isAzimuthGood) { outputBus->zero(); return; } // Normally, we'll just be dealing with mono sources. // If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF. const AudioChannel* inputChannelL = inputBus->channelByType(AudioBus::ChannelLeft); const AudioChannel* inputChannelR = numInputChannels > 1 ? inputBus->channelByType(AudioBus::ChannelRight) : 0; // Get source and destination pointers. const float* sourceL = inputChannelL->data(); const float* sourceR = numInputChannels > 1 ? inputChannelR->data() : sourceL; float* destinationL = outputBus->channelByType(AudioBus::ChannelLeft)->mutableData(); float* destinationR = outputBus->channelByType(AudioBus::ChannelRight)->mutableData(); double azimuthBlend; int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend); // This algorithm currently requires that we process in power-of-two size chunks at least 128. ASSERT(1UL << static_cast<int>(log2(framesToProcess)) == framesToProcess); ASSERT(framesToProcess >= 128); const unsigned framesPerSegment = 128; const unsigned numberOfSegments = framesToProcess / framesPerSegment; for (unsigned segment = 0; segment < numberOfSegments; ++segment) { if (m_isFirstRender) { // Snap exactly to desired position (first time and after reset()). m_azimuthIndex = desiredAzimuthIndex; m_isFirstRender = false; } else { // Each segment renders with an azimuth index closer by one to the desired azimuth index. // Because inter-aural time delay is mostly a factor of azimuth and the delay is where the clicks and graininess come from, // we don't bother smoothing the elevations. int numberOfAzimuths = database->numberOfAzimuths(); bool wrap = wrapDistance(m_azimuthIndex, desiredAzimuthIndex, numberOfAzimuths); if (wrap) { if (m_azimuthIndex < desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex - 1 + numberOfAzimuths) % numberOfAzimuths; else if (m_azimuthIndex > desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex + 1) % numberOfAzimuths; } else { if (m_azimuthIndex < desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex + 1) % numberOfAzimuths; else if (m_azimuthIndex > desiredAzimuthIndex) m_azimuthIndex = (m_azimuthIndex - 1 + numberOfAzimuths) % numberOfAzimuths; } } // Get the HRTFKernels and interpolated delays. HRTFKernel* kernelL; HRTFKernel* kernelR; double frameDelayL; double frameDelayR; database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex, elevation, kernelL, kernelR, frameDelayL, frameDelayR); ASSERT(kernelL && kernelR); if (!kernelL || !kernelR) { outputBus->zero(); return; } ASSERT(frameDelayL / sampleRate() < MaxDelayTimeSeconds && frameDelayR / sampleRate() < MaxDelayTimeSeconds); // Calculate the source and destination pointers for the current segment. unsigned offset = segment * framesPerSegment; const float* segmentSourceL = sourceL + offset; const float* segmentSourceR = sourceR + offset; float* segmentDestinationL = destinationL + offset; float* segmentDestinationR = destinationR + offset; // First run through delay lines for inter-aural time difference. m_delayLineL.setDelayFrames(frameDelayL); m_delayLineR.setDelayFrames(frameDelayR); m_delayLineL.process(segmentSourceL, segmentDestinationL, framesPerSegment); m_delayLineR.process(segmentSourceR, segmentDestinationR, framesPerSegment); // Now do the convolutions in-place. m_convolverL.process(kernelL->fftFrame(), segmentDestinationL, segmentDestinationL, framesPerSegment); m_convolverR.process(kernelR->fftFrame(), segmentDestinationR, segmentDestinationR, framesPerSegment); } }