bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
  if (!WidenLoads)
    return false;

  if ((I.getPointerAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS ||
       I.getPointerAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT) &&
      canWidenScalarExtLoad(I)) {
    IRBuilder<> Builder(&I);
    Builder.SetCurrentDebugLocation(I.getDebugLoc());

    Type *I32Ty = Builder.getInt32Ty();
    Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
    Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
    LoadInst *WidenLoad = Builder.CreateLoad(BitCast);
    WidenLoad->copyMetadata(I);

    // If we have range metadata, we need to convert the type, and not make
    // assumptions about the high bits.
    if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
      ConstantInt *Lower =
        mdconst::extract<ConstantInt>(Range->getOperand(0));

      if (Lower->getValue().isNullValue()) {
        WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
      } else {
        Metadata *LowAndHigh[] = {
          ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
          // Don't make assumptions about the high bits.
          ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
        };

        WidenLoad->setMetadata(LLVMContext::MD_range,
                               MDNode::get(Mod->getContext(), LowAndHigh));
      }
    }

    int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
    Type *IntNTy = Builder.getIntNTy(TySize);
    Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
    Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
    I.replaceAllUsesWith(ValOrig);
    I.eraseFromParent();
    return true;
  }

  return false;
}
void SanitizerCoverageModule::InjectCoverageAtBlock(Function &F,
                                                    BasicBlock &BB) {
  BasicBlock::iterator IP = BB.getFirstInsertionPt(), BE = BB.end();
  // Skip static allocas at the top of the entry block so they don't become
  // dynamic when we split the block.  If we used our optimized stack layout,
  // then there will only be one alloca and it will come first.
  for (; IP != BE; ++IP) {
    AllocaInst *AI = dyn_cast<AllocaInst>(IP);
    if (!AI || !AI->isStaticAlloca())
      break;
  }

  bool IsEntryBB = &BB == &F.getEntryBlock();
  DebugLoc EntryLoc =
      IsEntryBB ? IP->getDebugLoc().getFnDebugLoc(*C) : IP->getDebugLoc();
  IRBuilder<> IRB(IP);
  IRB.SetCurrentDebugLocation(EntryLoc);
  SmallVector<Value *, 1> Indices;
  Value *GuardP = IRB.CreateAdd(
      IRB.CreatePointerCast(GuardArray, IntptrTy),
      ConstantInt::get(IntptrTy, (1 + SanCovFunction->getNumUses()) * 4));
  Type *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
  GuardP = IRB.CreateIntToPtr(GuardP, Int32PtrTy);
  LoadInst *Load = IRB.CreateLoad(GuardP);
  Load->setAtomic(Monotonic);
  Load->setAlignment(4);
  Load->setMetadata(F.getParent()->getMDKindID("nosanitize"),
                    MDNode::get(*C, None));
  Value *Cmp = IRB.CreateICmpSGE(Constant::getNullValue(Load->getType()), Load);
  Instruction *Ins = SplitBlockAndInsertIfThen(
      Cmp, IP, false, MDBuilder(*C).createBranchWeights(1, 100000));
  IRB.SetInsertPoint(Ins);
  IRB.SetCurrentDebugLocation(EntryLoc);
  // __sanitizer_cov gets the PC of the instruction using GET_CALLER_PC.
  IRB.CreateCall(SanCovFunction, GuardP);
  IRB.CreateCall(EmptyAsm);  // Avoids callback merge.

  if (ClExperimentalTracing) {
    // Experimental support for tracing.
    // Insert a callback with the same guard variable as used for coverage.
    IRB.SetInsertPoint(IP);
    IRB.CreateCall(IsEntryBB ? SanCovTraceEnter : SanCovTraceBB, GuardP);
  }
}
/// \brief Helper to combine a load to a new type.
///
/// This just does the work of combining a load to a new type. It handles
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
/// loaded *value* type. This will convert it to a pointer, cast the operand to
/// that pointer type, load it, etc.
///
/// Note that this will create all of the instructions with whatever insert
/// point the \c InstCombiner currently is using.
static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy) {
  Value *Ptr = LI.getPointerOperand();
  unsigned AS = LI.getPointerAddressSpace();
  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
  LI.getAllMetadata(MD);

  LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
      IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
      LI.getAlignment(), LI.getName());
  for (const auto &MDPair : MD) {
    unsigned ID = MDPair.first;
    MDNode *N = MDPair.second;
    // Note, essentially every kind of metadata should be preserved here! This
    // routine is supposed to clone a load instruction changing *only its type*.
    // The only metadata it makes sense to drop is metadata which is invalidated
    // when the pointer type changes. This should essentially never be the case
    // in LLVM, but we explicitly switch over only known metadata to be
    // conservatively correct. If you are adding metadata to LLVM which pertains
    // to loads, you almost certainly want to add it here.
    switch (ID) {
    case LLVMContext::MD_dbg:
    case LLVMContext::MD_tbaa:
    case LLVMContext::MD_prof:
    case LLVMContext::MD_fpmath:
    case LLVMContext::MD_tbaa_struct:
    case LLVMContext::MD_invariant_load:
    case LLVMContext::MD_alias_scope:
    case LLVMContext::MD_noalias:
    case LLVMContext::MD_nontemporal:
    case LLVMContext::MD_mem_parallel_loop_access:
    case LLVMContext::MD_nonnull:
      // All of these directly apply.
      NewLoad->setMetadata(ID, N);
      break;

    case LLVMContext::MD_range:
      // FIXME: It would be nice to propagate this in some way, but the type
      // conversions make it hard.
      break;
    }
  }
  return NewLoad;
}
示例#4
0
void Closure::unpack_struct(Scope<Value *> &dst,
                            Value *src,
                            IRBuilder<> *builder) {
    // src should be a pointer to a struct of the type returned by build_type
    int idx = 0;
    LLVMContext &context = builder->getContext();
    vector<string> nm = names();
    for (size_t i = 0; i < nm.size(); i++) {
        Value *ptr = builder->CreateConstInBoundsGEP2_32(src, 0, idx++);
        LoadInst *load = builder->CreateLoad(ptr);
        if (load->getType()->isPointerTy()) {
            // Give it a unique type so that tbaa tells llvm that this can't alias anything
            load->setMetadata("tbaa", MDNode::get(context,
                                                  vec<Value *>(MDString::get(context, nm[i]))));
        }
        dst.push(nm[i], load);
        load->setName(nm[i]);
    }
}
示例#5
0
std::pair<Value *, Value *>
AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
  if (!IsAMDHSA) {
    Function *LocalSizeYFn
      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
    Function *LocalSizeZFn
      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);

    CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
    CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});

    LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
    LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);

    return std::make_pair(LocalSizeY, LocalSizeZ);
  }

  // We must read the size out of the dispatch pointer.
  assert(IsAMDGCN);

  // We are indexing into this struct, and want to extract the workgroup_size_*
  // fields.
  //
  //   typedef struct hsa_kernel_dispatch_packet_s {
  //     uint16_t header;
  //     uint16_t setup;
  //     uint16_t workgroup_size_x ;
  //     uint16_t workgroup_size_y;
  //     uint16_t workgroup_size_z;
  //     uint16_t reserved0;
  //     uint32_t grid_size_x ;
  //     uint32_t grid_size_y ;
  //     uint32_t grid_size_z;
  //
  //     uint32_t private_segment_size;
  //     uint32_t group_segment_size;
  //     uint64_t kernel_object;
  //
  // #ifdef HSA_LARGE_MODEL
  //     void *kernarg_address;
  // #elif defined HSA_LITTLE_ENDIAN
  //     void *kernarg_address;
  //     uint32_t reserved1;
  // #else
  //     uint32_t reserved1;
  //     void *kernarg_address;
  // #endif
  //     uint64_t reserved2;
  //     hsa_signal_t completion_signal; // uint64_t wrapper
  //   } hsa_kernel_dispatch_packet_t
  //
  Function *DispatchPtrFn
    = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);

  CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
  DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias);
  DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);

  // Size of the dispatch packet struct.
  DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64);

  Type *I32Ty = Type::getInt32Ty(Mod->getContext());
  Value *CastDispatchPtr = Builder.CreateBitCast(
    DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));

  // We could do a single 64-bit load here, but it's likely that the basic
  // 32-bit and extract sequence is already present, and it is probably easier
  // to CSE this. The loads should be mergable later anyway.
  Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
  LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);

  Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
  LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);

  MDNode *MD = llvm::MDNode::get(Mod->getContext(), None);
  LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
  LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
  LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);

  // Extract y component. Upper half of LoadZU should be zero already.
  Value *Y = Builder.CreateLShr(LoadXY, 16);

  return std::make_pair(Y, LoadZU);
}
示例#6
0
/// \brief Helper to combine a load to a new type.
///
/// This just does the work of combining a load to a new type. It handles
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
/// loaded *value* type. This will convert it to a pointer, cast the operand to
/// that pointer type, load it, etc.
///
/// Note that this will create all of the instructions with whatever insert
/// point the \c InstCombiner currently is using.
static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
                                      const Twine &Suffix = "") {
  Value *Ptr = LI.getPointerOperand();
  unsigned AS = LI.getPointerAddressSpace();
  SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
  LI.getAllMetadata(MD);

  LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
      IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
      LI.getAlignment(), LI.getName() + Suffix);
  MDBuilder MDB(NewLoad->getContext());
  for (const auto &MDPair : MD) {
    unsigned ID = MDPair.first;
    MDNode *N = MDPair.second;
    // Note, essentially every kind of metadata should be preserved here! This
    // routine is supposed to clone a load instruction changing *only its type*.
    // The only metadata it makes sense to drop is metadata which is invalidated
    // when the pointer type changes. This should essentially never be the case
    // in LLVM, but we explicitly switch over only known metadata to be
    // conservatively correct. If you are adding metadata to LLVM which pertains
    // to loads, you almost certainly want to add it here.
    switch (ID) {
    case LLVMContext::MD_dbg:
    case LLVMContext::MD_tbaa:
    case LLVMContext::MD_prof:
    case LLVMContext::MD_fpmath:
    case LLVMContext::MD_tbaa_struct:
    case LLVMContext::MD_invariant_load:
    case LLVMContext::MD_alias_scope:
    case LLVMContext::MD_noalias:
    case LLVMContext::MD_nontemporal:
    case LLVMContext::MD_mem_parallel_loop_access:
      // All of these directly apply.
      NewLoad->setMetadata(ID, N);
      break;

    case LLVMContext::MD_nonnull:
      // This only directly applies if the new type is also a pointer.
      if (NewTy->isPointerTy()) {
        NewLoad->setMetadata(ID, N);
        break;
      }
      // If it's integral now, translate it to !range metadata.
      if (NewTy->isIntegerTy()) {
        auto *ITy = cast<IntegerType>(NewTy);
        auto *NullInt = ConstantExpr::getPtrToInt(
            ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
        auto *NonNullInt =
            ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
        NewLoad->setMetadata(LLVMContext::MD_range,
                             MDB.createRange(NonNullInt, NullInt));
      }
      break;
    case LLVMContext::MD_align:
    case LLVMContext::MD_dereferenceable:
    case LLVMContext::MD_dereferenceable_or_null:
      // These only directly apply if the new type is also a pointer.
      if (NewTy->isPointerTy())
        NewLoad->setMetadata(ID, N);
      break;
    case LLVMContext::MD_range:
      // FIXME: It would be nice to propagate this in some way, but the type
      // conversions make it hard. If the new type is a pointer, we could
      // translate it to !nonnull metadata.
      break;
    }
  }
  return NewLoad;
}
示例#7
0
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function.  At this point, we know that it's
/// safe to do so.
CallGraphNode *ArgPromotion::DoPromotion(Function *F,
                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has modified arguments.
  const FunctionType *FTy = F->getFunctionType();
  std::vector<const Type*> Params;

  typedef std::set<IndicesVector> ScalarizeTable;

  // ScalarizedElements - If we are promoting a pointer that has elements
  // accessed out of it, keep track of which elements are accessed so that we
  // can add one argument for each.
  //
  // Arguments that are directly loaded will have a zero element value here, to
  // handle cases where there are both a direct load and GEP accesses.
  //
  std::map<Argument*, ScalarizeTable> ScalarizedElements;

  // OriginalLoads - Keep track of a representative load instruction from the
  // original function so that we can tell the alias analysis implementation
  // what the new GEP/Load instructions we are inserting look like.
  std::map<IndicesVector, LoadInst*> OriginalLoads;

  // Attributes - Keep track of the parameter attributes for the arguments
  // that we are *not* promoting. For the ones that we do promote, the parameter
  // attributes are lost
  SmallVector<AttributeWithIndex, 8> AttributesVec;
  const AttrListPtr &PAL = F->getAttributes();

  // Add any return attributes.
  if (Attributes attrs = PAL.getRetAttributes())
    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));

  // First, determine the new argument list
  unsigned ArgIndex = 1;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
       ++I, ++ArgIndex) {
    if (ByValArgsToTransform.count(I)) {
      // Simple byval argument? Just add all the struct element types.
      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      const StructType *STy = cast<StructType>(AgTy);
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        Params.push_back(STy->getElementType(i));
      ++NumByValArgsPromoted;
    } else if (!ArgsToPromote.count(I)) {
      // Unchanged argument
      Params.push_back(I->getType());
      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
    } else if (I->use_empty()) {
      // Dead argument (which are always marked as promotable)
      ++NumArgumentsDead;
    } else {
      // Okay, this is being promoted. This means that the only uses are loads
      // or GEPs which are only used by loads

      // In this table, we will track which indices are loaded from the argument
      // (where direct loads are tracked as no indices).
      ScalarizeTable &ArgIndices = ScalarizedElements[I];
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
           ++UI) {
        Instruction *User = cast<Instruction>(*UI);
        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
        IndicesVector Indices;
        Indices.reserve(User->getNumOperands() - 1);
        // Since loads will only have a single operand, and GEPs only a single
        // non-index operand, this will record direct loads without any indices,
        // and gep+loads with the GEP indices.
        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
             II != IE; ++II)
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
        // GEPs with a single 0 index can be merged with direct loads
        if (Indices.size() == 1 && Indices.front() == 0)
          Indices.clear();
        ArgIndices.insert(Indices);
        LoadInst *OrigLoad;
        if (LoadInst *L = dyn_cast<LoadInst>(User))
          OrigLoad = L;
        else
          // Take any load, we will use it only to update Alias Analysis
          OrigLoad = cast<LoadInst>(User->use_back());
        OriginalLoads[Indices] = OrigLoad;
      }

      // Add a parameter to the function for each element passed in.
      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
             E = ArgIndices.end(); SI != E; ++SI) {
        // not allowed to dereference ->begin() if size() is 0
        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
                                                           SI->begin(),
                                                           SI->end()));
        assert(Params.back());
      }

      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
        ++NumArgumentsPromoted;
      else
        ++NumAggregatesPromoted;
    }
  }

  // Add any function attributes.
  if (Attributes attrs = PAL.getFnAttributes())
    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));

  const Type *RetTy = FTy->getReturnType();

  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
  // have zero fixed arguments.
  bool ExtraArgHack = false;
  if (Params.empty() && FTy->isVarArg()) {
    ExtraArgHack = true;
    Params.push_back(Type::getInt32Ty(F->getContext()));
  }

  // Construct the new function type using the new arguments.
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());

  // Create the new function body and insert it into the module.
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
  NF->copyAttributesFrom(F);

  
  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
        << "From: " << *F);
  
  // Recompute the parameter attributes list based on the new arguments for
  // the function.
  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
                                     AttributesVec.end()));
  AttributesVec.clear();

  F->getParent()->getFunctionList().insert(F, NF);
  NF->takeName(F);

  // Get the alias analysis information that we need to update to reflect our
  // changes.
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();

  // Get the callgraph information that we need to update to reflect our
  // changes.
  CallGraph &CG = getAnalysis<CallGraph>();
  
  // Get a new callgraph node for NF.
  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in the loaded pointers.
  //
  SmallVector<Value*, 16> Args;
  while (!F->use_empty()) {
    CallSite CS(F->use_back());
    assert(CS.getCalledFunction() == F);
    Instruction *Call = CS.getInstruction();
    const AttrListPtr &CallPAL = CS.getAttributes();

    // Add any return attributes.
    if (Attributes attrs = CallPAL.getRetAttributes())
      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));

    // Loop over the operands, inserting GEP and loads in the caller as
    // appropriate.
    CallSite::arg_iterator AI = CS.arg_begin();
    ArgIndex = 1;
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I, ++AI, ++ArgIndex)
      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
        Args.push_back(*AI);          // Unmodified argument

        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));

      } else if (ByValArgsToTransform.count(I)) {
        // Emit a GEP and load for each element of the struct.
        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
        const StructType *STy = cast<StructType>(AgTy);
        Value *Idxs[2] = {
              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
                                                 (*AI)->getName()+"."+utostr(i),
                                                 Call);
          // TODO: Tell AA about the new values?
          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
        }
      } else if (!I->use_empty()) {
        // Non-dead argument: insert GEPs and loads as appropriate.
        ScalarizeTable &ArgIndices = ScalarizedElements[I];
        // Store the Value* version of the indices in here, but declare it now
        // for reuse.
        std::vector<Value*> Ops;
        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
               E = ArgIndices.end(); SI != E; ++SI) {
          Value *V = *AI;
          LoadInst *OrigLoad = OriginalLoads[*SI];
          if (!SI->empty()) {
            Ops.reserve(SI->size());
            const Type *ElTy = V->getType();
            for (IndicesVector::const_iterator II = SI->begin(),
                 IE = SI->end(); II != IE; ++II) {
              // Use i32 to index structs, and i64 for others (pointers/arrays).
              // This satisfies GEP constraints.
              const Type *IdxTy = (ElTy->isStructTy() ?
                    Type::getInt32Ty(F->getContext()) : 
                    Type::getInt64Ty(F->getContext()));
              Ops.push_back(ConstantInt::get(IdxTy, *II));
              // Keep track of the type we're currently indexing.
              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
            }
            // And create a GEP to extract those indices.
            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
                                          V->getName()+".idx", Call);
            Ops.clear();
            AA.copyValue(OrigLoad->getOperand(0), V);
          }
          // Since we're replacing a load make sure we take the alignment
          // of the previous load.
          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
          newLoad->setAlignment(OrigLoad->getAlignment());
          // Transfer the TBAA info too.
          newLoad->setMetadata(LLVMContext::MD_tbaa,
                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
          Args.push_back(newLoad);
          AA.copyValue(OrigLoad, Args.back());
        }
      }

    if (ExtraArgHack)
      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));

    // Push any varargs arguments on the list.
    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
      Args.push_back(*AI);
      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    }

    // Add any function attributes.
    if (Attributes attrs = CallPAL.getFnAttributes())
      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                               Args.begin(), Args.end(), "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
                                                          AttributesVec.end()));
    } else {
      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
                                                        AttributesVec.end()));
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    Args.clear();
    AttributesVec.clear();

    // Update the alias analysis implementation to know that we are replacing
    // the old call with a new one.
    AA.replaceWithNewValue(Call, New);

    // Update the callgraph to know that the callsite has been transformed.
    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    CalleeNode->replaceCallEdge(Call, New, NF_CGN);

    if (!Call->use_empty()) {
      Call->replaceAllUsesWith(New);
      New->takeName(Call);
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  //
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
       I2 = NF->arg_begin(); I != E; ++I) {
    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
      // If this is an unmodified argument, move the name and users over to the
      // new version.
      I->replaceAllUsesWith(I2);
      I2->takeName(I);
      AA.replaceWithNewValue(I, I2);
      ++I2;
      continue;
    }

    if (ByValArgsToTransform.count(I)) {
      // In the callee, we create an alloca, and store each of the new incoming
      // arguments into the alloca.
      Instruction *InsertPt = NF->begin()->begin();

      // Just add all the struct element types.
      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
      const StructType *STy = cast<StructType>(AgTy);
      Value *Idxs[2] = {
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };

      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
        Value *Idx = 
          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
                                    TheAlloca->getName()+"."+Twine(i), 
                                    InsertPt);
        I2->setName(I->getName()+"."+Twine(i));
        new StoreInst(I2++, Idx, InsertPt);
      }

      // Anything that used the arg should now use the alloca.
      I->replaceAllUsesWith(TheAlloca);
      TheAlloca->takeName(I);
      AA.replaceWithNewValue(I, TheAlloca);
      continue;
    }

    if (I->use_empty()) {
      AA.deleteValue(I);
      continue;
    }

    // Otherwise, if we promoted this argument, then all users are load
    // instructions (or GEPs with only load users), and all loads should be
    // using the new argument that we added.
    ScalarizeTable &ArgIndices = ScalarizedElements[I];

    while (!I->use_empty()) {
      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
        assert(ArgIndices.begin()->empty() &&
               "Load element should sort to front!");
        I2->setName(I->getName()+".val");
        LI->replaceAllUsesWith(I2);
        AA.replaceWithNewValue(LI, I2);
        LI->eraseFromParent();
        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
              << "' in function '" << F->getName() << "'\n");
      } else {
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
        IndicesVector Operands;
        Operands.reserve(GEP->getNumIndices());
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
             II != IE; ++II)
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());

        // GEPs with a single 0 index can be merged with direct loads
        if (Operands.size() == 1 && Operands.front() == 0)
          Operands.clear();

        Function::arg_iterator TheArg = I2;
        for (ScalarizeTable::iterator It = ArgIndices.begin();
             *It != Operands; ++It, ++TheArg) {
          assert(It != ArgIndices.end() && "GEP not handled??");
        }

        std::string NewName = I->getName();
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
            NewName += "." + utostr(Operands[i]);
        }
        NewName += ".val";
        TheArg->setName(NewName);

        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
              << "' of function '" << NF->getName() << "'\n");

        // All of the uses must be load instructions.  Replace them all with
        // the argument specified by ArgNo.
        while (!GEP->use_empty()) {
          LoadInst *L = cast<LoadInst>(GEP->use_back());
          L->replaceAllUsesWith(TheArg);
          AA.replaceWithNewValue(L, TheArg);
          L->eraseFromParent();
        }
        AA.deleteValue(GEP);
        GEP->eraseFromParent();
      }
    }

    // Increment I2 past all of the arguments added for this promoted pointer.
    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
      ++I2;
  }

  // Notify the alias analysis implementation that we inserted a new argument.
  if (ExtraArgHack)
    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())), 
                 NF->arg_begin());


  // Tell the alias analysis that the old function is about to disappear.
  AA.replaceWithNewValue(F, NF);

  
  NF_CGN->stealCalledFunctionsFrom(CG[F]);
  
  // Now that the old function is dead, delete it.  If there is a dangling
  // reference to the CallgraphNode, just leave the dead function around for
  // someone else to nuke.
  CallGraphNode *CGN = CG[F];
  if (CGN->getNumReferences() == 0)
    delete CG.removeFunctionFromModule(CGN);
  else
    F->setLinkage(Function::ExternalLinkage);
  
  return NF_CGN;
}
bool AMDGPULowerKernelArguments::runOnFunction(Function &F) {
  CallingConv::ID CC = F.getCallingConv();
  if (CC != CallingConv::AMDGPU_KERNEL || F.arg_empty())
    return false;

  auto &TPC = getAnalysis<TargetPassConfig>();

  const TargetMachine &TM = TPC.getTM<TargetMachine>();
  const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
  LLVMContext &Ctx = F.getParent()->getContext();
  const DataLayout &DL = F.getParent()->getDataLayout();
  BasicBlock &EntryBlock = *F.begin();
  IRBuilder<> Builder(&*EntryBlock.begin());

  const unsigned KernArgBaseAlign = 16; // FIXME: Increase if necessary
  const uint64_t BaseOffset = ST.getExplicitKernelArgOffset(F);

  unsigned MaxAlign;
  // FIXME: Alignment is broken broken with explicit arg offset.;
  const uint64_t TotalKernArgSize = ST.getKernArgSegmentSize(F, MaxAlign);
  if (TotalKernArgSize == 0)
    return false;

  CallInst *KernArgSegment =
      Builder.CreateIntrinsic(Intrinsic::amdgcn_kernarg_segment_ptr, {}, {},
                              nullptr, F.getName() + ".kernarg.segment");

  KernArgSegment->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
  KernArgSegment->addAttribute(AttributeList::ReturnIndex,
    Attribute::getWithDereferenceableBytes(Ctx, TotalKernArgSize));

  unsigned AS = KernArgSegment->getType()->getPointerAddressSpace();
  uint64_t ExplicitArgOffset = 0;

  for (Argument &Arg : F.args()) {
    Type *ArgTy = Arg.getType();
    unsigned Align = DL.getABITypeAlignment(ArgTy);
    unsigned Size = DL.getTypeSizeInBits(ArgTy);
    unsigned AllocSize = DL.getTypeAllocSize(ArgTy);

    uint64_t EltOffset = alignTo(ExplicitArgOffset, Align) + BaseOffset;
    ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize;

    if (Arg.use_empty())
      continue;

    if (PointerType *PT = dyn_cast<PointerType>(ArgTy)) {
      // FIXME: Hack. We rely on AssertZext to be able to fold DS addressing
      // modes on SI to know the high bits are 0 so pointer adds don't wrap. We
      // can't represent this with range metadata because it's only allowed for
      // integer types.
      if ((PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
           PT->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) &&
          ST.getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS)
        continue;

      // FIXME: We can replace this with equivalent alias.scope/noalias
      // metadata, but this appears to be a lot of work.
      if (Arg.hasNoAliasAttr())
        continue;
    }

    VectorType *VT = dyn_cast<VectorType>(ArgTy);
    bool IsV3 = VT && VT->getNumElements() == 3;
    bool DoShiftOpt = Size < 32 && !ArgTy->isAggregateType();

    VectorType *V4Ty = nullptr;

    int64_t AlignDownOffset = alignDown(EltOffset, 4);
    int64_t OffsetDiff = EltOffset - AlignDownOffset;
    unsigned AdjustedAlign = MinAlign(DoShiftOpt ? AlignDownOffset : EltOffset,
                                      KernArgBaseAlign);

    Value *ArgPtr;
    Type *AdjustedArgTy;
    if (DoShiftOpt) { // FIXME: Handle aggregate types
      // Since we don't have sub-dword scalar loads, avoid doing an extload by
      // loading earlier than the argument address, and extracting the relevant
      // bits.
      //
      // Additionally widen any sub-dword load to i32 even if suitably aligned,
      // so that CSE between different argument loads works easily.
      ArgPtr = Builder.CreateConstInBoundsGEP1_64(
          Builder.getInt8Ty(), KernArgSegment, AlignDownOffset,
          Arg.getName() + ".kernarg.offset.align.down");
      AdjustedArgTy = Builder.getInt32Ty();
    } else {
      ArgPtr = Builder.CreateConstInBoundsGEP1_64(
          Builder.getInt8Ty(), KernArgSegment, EltOffset,
          Arg.getName() + ".kernarg.offset");
      AdjustedArgTy = ArgTy;
    }

    if (IsV3 && Size >= 32) {
      V4Ty = VectorType::get(VT->getVectorElementType(), 4);
      // Use the hack that clang uses to avoid SelectionDAG ruining v3 loads
      AdjustedArgTy = V4Ty;
    }

    ArgPtr = Builder.CreateBitCast(ArgPtr, AdjustedArgTy->getPointerTo(AS),
                                   ArgPtr->getName() + ".cast");
    LoadInst *Load =
        Builder.CreateAlignedLoad(AdjustedArgTy, ArgPtr, AdjustedAlign);
    Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(Ctx, {}));

    MDBuilder MDB(Ctx);

    if (isa<PointerType>(ArgTy)) {
      if (Arg.hasNonNullAttr())
        Load->setMetadata(LLVMContext::MD_nonnull, MDNode::get(Ctx, {}));

      uint64_t DerefBytes = Arg.getDereferenceableBytes();
      if (DerefBytes != 0) {
        Load->setMetadata(
          LLVMContext::MD_dereferenceable,
          MDNode::get(Ctx,
                      MDB.createConstant(
                        ConstantInt::get(Builder.getInt64Ty(), DerefBytes))));
      }

      uint64_t DerefOrNullBytes = Arg.getDereferenceableOrNullBytes();
      if (DerefOrNullBytes != 0) {
        Load->setMetadata(
          LLVMContext::MD_dereferenceable_or_null,
          MDNode::get(Ctx,
                      MDB.createConstant(ConstantInt::get(Builder.getInt64Ty(),
                                                          DerefOrNullBytes))));
      }

      unsigned ParamAlign = Arg.getParamAlignment();
      if (ParamAlign != 0) {
        Load->setMetadata(
          LLVMContext::MD_align,
          MDNode::get(Ctx,
                      MDB.createConstant(ConstantInt::get(Builder.getInt64Ty(),
                                                          ParamAlign))));
      }
    }

    // TODO: Convert noalias arg to !noalias

    if (DoShiftOpt) {
      Value *ExtractBits = OffsetDiff == 0 ?
        Load : Builder.CreateLShr(Load, OffsetDiff * 8);

      IntegerType *ArgIntTy = Builder.getIntNTy(Size);
      Value *Trunc = Builder.CreateTrunc(ExtractBits, ArgIntTy);
      Value *NewVal = Builder.CreateBitCast(Trunc, ArgTy,
                                            Arg.getName() + ".load");
      Arg.replaceAllUsesWith(NewVal);
    } else if (IsV3) {
      Value *Shuf = Builder.CreateShuffleVector(Load, UndefValue::get(V4Ty),
                                                {0, 1, 2},
                                                Arg.getName() + ".load");
      Arg.replaceAllUsesWith(Shuf);
    } else {
      Load->setName(Arg.getName() + ".load");
      Arg.replaceAllUsesWith(Load);
    }
  }

  KernArgSegment->addAttribute(
    AttributeList::ReturnIndex,
    Attribute::getWithAlignment(Ctx, std::max(KernArgBaseAlign, MaxAlign)));

  return true;
}
示例#9
-1
void Closure::unpack_struct(Scope<Value *> &dst,
                            llvm::Type *
#if LLVM_VERSION >= 37
                            type
#endif
                            ,
                            Value *src,
                            IRBuilder<> *builder) {
    // type, type of src should be a pointer to a struct of the type returned by build_type
    int idx = 0;
    LLVMContext &context = builder->getContext();
    vector<string> nm = names();
    for (size_t i = 0; i < nm.size(); i++) {
#if LLVM_VERSION >= 37
        Value *ptr = builder->CreateConstInBoundsGEP2_32(type, src, 0, idx++);
#else
        Value *ptr = builder->CreateConstInBoundsGEP2_32(src, 0, idx++);
#endif
        LoadInst *load = builder->CreateLoad(ptr);
        if (load->getType()->isPointerTy()) {
            // Give it a unique type so that tbaa tells llvm that this can't alias anything
            LLVMMDNodeArgumentType md_args[] = {MDString::get(context, nm[i])};
            load->setMetadata("tbaa", MDNode::get(context, md_args));
        }
        dst.push(nm[i], load);
        load->setName(nm[i]);
    }
}