void Project(Mat_<float>& dest, const Mat_<float>& mesh, Size size, double fx, double fy, double cx, double cy)
{
	dest = Mat_<float>(mesh.rows,2, 0.0);

	int NbPoints = mesh.rows;

	register float X, Y, Z;


	Mat_<float>::const_iterator mData = mesh.begin();
	Mat_<float>::iterator projected = dest.begin();

	for(int i = 0;i < NbPoints; i++)
	{
		// Get the points
		X = *(mData++);
		Y = *(mData++);
		Z = *(mData++);
			
		float x;
		float y;

		// if depth is 0 the projection is different
		if(Z != 0)
		{
			x = (float)((X * fx / Z) + cx);
			y = (float)((Y * fy / Z) + cy);
		}
		else
		{
			x = X;
			y = Y;
		}

		// Clamping to image size
		if( x < 0 )	
		{
			x = 0.0;
		}
		else if (x > size.width - 1)
		{
			x = size.width - 1.0f;
		}
		if( y < 0 )
		{
			y = 0.0;
		}
		else if( y > size.height - 1) 
		{
			y = size.height - 1.0f;
		}

		// Project and store in dest matrix
		(*projected++) = x;
		(*projected++) = y;
	}

}
void output_HOG_frame(std::ofstream* hog_file, bool good_frame, const Mat_<double>& hog_descriptor, int num_rows, int num_cols)
{

	// Using FHOGs, hence 31 channels
	int num_channels = 31;

	hog_file->write((char*)(&num_cols), 4);
	hog_file->write((char*)(&num_rows), 4);
	hog_file->write((char*)(&num_channels), 4);

	// Not the best way to store a bool, but will be much easier to read it
	float good_frame_float;
	if(good_frame)
		good_frame_float = 1;
	else
		good_frame_float = -1;

	hog_file->write((char*)(&good_frame_float), 4);

	cv::MatConstIterator_<double> descriptor_it = hog_descriptor.begin();

	for(int y = 0; y < num_cols; ++y)
	{
		for(int x = 0; x < num_rows; ++x)
		{
			for(unsigned int o = 0; o < 31; ++o)
			{

				float hog_data = (float)(*descriptor_it++);
				hog_file->write ((char*)&hog_data, 4);
			}
		}
	}
}
bool intersects(const vector<Point> &contour, const Mat_<uchar> &mask)
{
    Mat_<uchar> c = Mat_<uchar>::zeros(mask.size());
    fillConvexPoly(c, contour.data(), contour.size(), 255);

    /*
    Below is:

    bitwise_and(mask, c, c);
    return countNonZero(c);

    optimized.
    */

    auto it_m = mask.begin();
    auto it_c = c.begin();
    while (it_m != mask.end()) {
        if (*it_m && *it_c) return true;
        ++it_m, ++it_c;
    }

    return false;
}
//===========================================================================
void SVR_patch_expert::Response(const Mat_<float>& area_of_interest, Mat_<double>& response)
{

	int response_height = area_of_interest.rows - weights.rows + 1;
	int response_width = area_of_interest.cols - weights.cols + 1;
	
	// the patch area on which we will calculate reponses
	cv::Mat_<float> normalised_area_of_interest;
  
	if(response.rows != response_height || response.cols != response_width)
	{
		response.create(response_height, response_width);
	}

	// If type is raw just normalise mean and standard deviation
	if(type == 0)
	{
		// Perform normalisation across whole patch
		cv::Scalar mean;
		cv::Scalar std;

		cv::meanStdDev(area_of_interest, mean, std);
		// Avoid division by zero
		if(std[0] == 0)
		{
			std[0] = 1;
		}
		normalised_area_of_interest = (area_of_interest - mean[0]) / std[0];
	}
	// If type is gradient, perform the image gradient computation
	else if(type == 1)
	{
		Grad(area_of_interest, normalised_area_of_interest);
	}
  	else
	{
		printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__, type);
		abort();
	}
	
	Mat_<float> svr_response;

	// The empty matrix as we don't pass precomputed dft's of image
	Mat_<double> empty_matrix_0(0,0,0.0);
	Mat_<float> empty_matrix_1(0,0,0.0);
	Mat_<float> empty_matrix_2(0,0,0.0);

	// Efficient calc of patch expert SVR response across the area of interest
	matchTemplate_m(normalised_area_of_interest, empty_matrix_0, empty_matrix_1, empty_matrix_2, weights, weights_dfts, svr_response, CV_TM_CCOEFF_NORMED); 

	response.create(svr_response.size());
	MatIterator_<double> p = response.begin();

	cv::MatIterator_<float> q1 = svr_response.begin(); // respone for each pixel
	cv::MatIterator_<float> q2 = svr_response.end();

	while(q1 != q2)
	{
		// the SVR response passed into logistic regressor
		*p++ = 1.0/(1.0 + exp( -(*q1++ * scaling + bias )));
	}

}
示例#5
0
//======================================================================
// Compute the mapping coefficients
void PAW::WarpRegion(Mat_<float>& mapx, Mat_<float>& mapy)
{
	
	cv::MatIterator_<float> xp = mapx.begin();
	cv::MatIterator_<float> yp = mapy.begin();
	cv::MatIterator_<uchar> mp = pixel_mask.begin();
	cv::MatIterator_<int>   tp = triangle_id.begin();
	
	// The coefficients corresponding to the current triangle
	double * a;

	// Current triangle being processed	
	int k=-1;

	for(int y = 0; y < pixel_mask.rows; y++)
	{
		double yi = double(y) + min_y;
	
		for(int x = 0; x < pixel_mask.cols; x++)
		{
			double xi = double(x) + min_x;

			if(*mp == 0)
			{
				*xp = -1;
				*yp = -1;
			}
			else
			{
				// triangle corresponding to the current pixel
				int j = *tp;

				// If it is different from the previous triangle point to new coefficients
				// This will always be the case in the first iteration, hence a will not point to nothing
				if(j != k)
				{
					// Update the coefficient pointer if a new triangle is being processed
					a = coefficients.ptr<double>(j);			
					k = j;
				}  	

				//ap is now the pointer to the coefficients
				double *ap = a;							

				//look at the first coefficient (and increment). first coefficient is an x offset
				double xo = *ap++;						
				//second coefficient is an x scale as a function of x
				xo += *ap++ * xi;						
				//third coefficient ap(2) is an x scale as a function of y
				*xp = float(xo + *ap++ * yi);			

				//then fourth coefficient ap(3) is a y offset
				double yo = *ap++;						
				//fifth coeff adds coeff[4]*x to y
				yo += *ap++ * xi;						
				//final coeff adds coeff[5]*y to y
				*yp = float(yo + *ap++ * yi);			

			}
			mp++; tp++; xp++; yp++;	
		}
	}
}
示例#6
0
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
    int count=0;
    for(;;){
        dprintf(("iteration #%d\n",count));
        count++;

        static MatIterator_<double> pos_ptr;
        int e=-1,pos_ctr=0,min_var=INT_MAX;
        bool all_nonzero=true;
        for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){
            if(*pos_ptr==0){
                all_nonzero=false;
            }
            if(*pos_ptr>0){
                if(N[pos_ctr]<min_var){
                    e=pos_ctr;
                    min_var=N[pos_ctr];
                }
            }
        }
        if(e==-1){
            dprintf(("hello from e==-1\n"));
            print_matrix(c);
            if(all_nonzero==true){
                return SOLVELP_SINGLE;
            }else{
                return SOLVELP_MULTI;
            }
        }

        int l=-1;
        min_var=INT_MAX;
        double min=DBL_MAX;
        int row_it=0;
        MatIterator_<double> min_row_ptr=b.begin();
        for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){
            double myite=0;
            //check constraints, select the tightest one, reinforcing Bland's rule
            if((myite=it[e])>0){
                double val=it[b.cols-1]/myite;
                if(val<min || (val==min && B[row_it]<min_var)){
                    min_var=B[row_it];
                    min_row_ptr=it;
                    min=val;
                    l=row_it;
                }
            }
        }
        if(l==-1){
            return SOLVELP_UNBOUNDED;
        }
        dprintf(("the tightest constraint is in row %d with %g\n",l,min));

        pivot(c,b,v,N,B,l,e,indexToRow);

        dprintf(("objective, v=%g\n",v));
        print_matrix(c);
        dprintf(("constraints\n"));
        print_matrix(b);
        dprintf(("non-basic: "));
        print_matrix(Mat(N));
        dprintf(("basic: "));
        print_matrix(Mat(B));
    }
}