示例#1
0
void GaborFilter<_Tp>::generateFilter(Mat_<complex<_Tp> > & result,
        int scale, int orientation, int filterSizeX, int filterSizeY,
        _Tp kMax, _Tp sigma)
{
	_Tp offsetX = filterSizeX/2.0;
	_Tp offsetY = filterSizeY/2.0;
	_Tp psi = ((orientation*M_PI)/8);
	_Tp f = sqrt(2);
	_Tp fV = pow(f, scale);
	_Tp kReal = (kMax/fV)*cos(psi);
	_Tp kImag = (kMax/fV)*sin(psi);
	_Tp kSquare = pow(sqrt(pow(kReal, 2) + pow(kImag, 2)), 2);
	_Tp sSquare = pow(sigma,2);
	_Tp sSquareHalf = -0.5 * sSquare;
	_Tp kS = kSquare/sSquare;
	_Tp kSHalf = -0.5f * kSquare / sSquare;

	result.create(filterSizeX, filterSizeY);

	int numberColumns = filterSizeY*filterSizeX;

	complex<_Tp>* data = ((Mat)result).ptr<complex<_Tp> >(0);


	GaborFilterBody<_Tp> gaborFilterBody(mFilterSizeX, mFilterSizeY,
			offsetX, offsetY, kS, kSHalf, kReal, kImag, sSquare, data);

	parallel_for(BlockedRange(0, numberColumns), gaborFilterBody);

}
//===========================================================================
void Multi_SVR_patch_expert::Response(const Mat_<float> &area_of_interest, Mat_<double> &response)
{
	
	int response_height = area_of_interest.rows - height + 1;
	int response_width = area_of_interest.cols - width + 1;

	if(response.rows != response_height || response.cols != response_width)
	{
		response.create(response_height, response_width);
	}

	// For the purposes of the experiment only use the response of normal intensity, for fair comparison

	if(svr_patch_experts.size() == 1)
	{
		svr_patch_experts[0].Response(area_of_interest, response);		
	}
	else
	{
		// responses from multiple patch experts these can be gradients, LBPs etc.
		response.setTo(1.0);
		
		Mat_<double> modality_resp(response_height, response_width);

		for(size_t i = 0; i < svr_patch_experts.size(); i++)
		{			
			svr_patch_experts[i].Response(area_of_interest, modality_resp);			
			response = response.mul(modality_resp);	
		}	
		
	}

}
示例#3
0
void BackgroundSubtractorGMGImpl::initialize(Size frameSize, double minVal, double maxVal)
{
    CV_Assert(minVal < maxVal);
    CV_Assert(maxFeatures > 0);
    CV_Assert(learningRate >= 0.0 && learningRate <= 1.0);
    CV_Assert(numInitializationFrames >= 1);
    CV_Assert(quantizationLevels >= 1 && quantizationLevels <= 255);
    CV_Assert(backgroundPrior >= 0.0 && backgroundPrior <= 1.0);

    minVal_ = minVal;
    maxVal_ = maxVal;

    frameSize_ = frameSize;
    frameNum_ = 0;

    nfeatures_.create(frameSize_);
    colors_.create(frameSize_.area(), maxFeatures);
    weights_.create(frameSize_.area(), maxFeatures);

    nfeatures_.setTo(Scalar::all(0));
}
void Multi_SVR_patch_expert::ResponseDepth(const Mat_<float>& area_of_interest, Mat_<double>& response)
{
	int response_height = area_of_interest.rows - height + 1;
	int response_width = area_of_interest.cols - width + 1;

	if(response.rows != response_height || response.cols != response_width)
	{
		response.create(response_height, response_width);
	}
	
	// With depth patch experts only do raw data modality
	svr_patch_experts[0].ResponseDepth(area_of_interest, response);
}
示例#5
0
int main()
{
	Mat_<Vec3b> srcImage;
	srcImage.create(512, 512);

	for (int i = 0; i < srcImage.rows; i++)
		for (int j = 0; j < srcImage.cols; j++)
			srcImage(i, j) = Vec3f(255, 255, 255);

	imshow("srcImage", srcImage);
	waitKey();
	return 0;
}
示例#6
0
    double ConjGradSolverImpl::minimize(InputOutputArray x){
        CV_Assert(_Function.empty()==false);
        dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));

        Mat x_mat=x.getMat();
        CV_Assert(MIN(x_mat.rows,x_mat.cols)==1);
        int ndim=MAX(x_mat.rows,x_mat.cols);
        CV_Assert(x_mat.type()==CV_64FC1);

        if(d.cols!=ndim){
            d.create(1,ndim);
            r.create(1,ndim);
            r_old.create(1,ndim);
            minimizeOnTheLine_buf1.create(1,ndim);
            minimizeOnTheLine_buf2.create(1,ndim);
        }

        Mat_<double> proxy_x;
        if(x_mat.rows>1){
            buf_x.create(1,ndim);
            Mat_<double> proxy(ndim,1,buf_x.ptr<double>());
            x_mat.copyTo(proxy);
            proxy_x=buf_x;
        }else{
            proxy_x=x_mat;
        }
        _Function->getGradient(proxy_x.ptr<double>(),d.ptr<double>());
        d*=-1.0;
        d.copyTo(r);

        //here everything goes. check that everything is setted properly
        dprintf(("proxy_x\n"));print_matrix(proxy_x);
        dprintf(("d first time\n"));print_matrix(d);
        dprintf(("r\n"));print_matrix(r);

        for(int count=0;count<_termcrit.maxCount;count++){
            minimizeOnTheLine(_Function,proxy_x,d,minimizeOnTheLine_buf1,minimizeOnTheLine_buf2);
            r.copyTo(r_old);
            _Function->getGradient(proxy_x.ptr<double>(),r.ptr<double>());
            r*=-1.0;
            double r_norm_sq=norm(r);
            if(_termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && r_norm_sq<_termcrit.epsilon){
                break;
            }
            r_norm_sq=r_norm_sq*r_norm_sq;
            double beta=MAX(0.0,(r_norm_sq-r.dot(r_old))/r_norm_sq);
            d=r+beta*d;
        }



        if(x_mat.rows>1){
            Mat(ndim, 1, CV_64F, proxy_x.ptr<double>()).copyTo(x);
        }
        return _Function->calc(proxy_x.ptr<double>());
    }
示例#7
0
void myaccumarray(Mat & subs,Mat & val,Mat_<T> & accumM,cv::Size size){
	
	accumM.create(size);
	accumM.setTo(Scalar::all(0));
	cout<<"channels: "<<val.channels()<<endl;
	for (int i=0;i<subs.rows;i++)
	{
		for (int c=0;c<val.channels();c++)
		{
			//cout<<(subs.at<int>(i,0))<<","<<(subs.at<int>(i,1))<<" "<<endl;
			//cout<<val.at<T>(i,0)[c]<<endl;
			accumM.at<T>((subs.at<int>(i,0)),(subs.at<int>(i,1)))[c] += val.at<T>(i,0)[c];
			//cout<<(subs.at<int>(i,0))<<","<<(subs.at<int>(i,1))<<" "<<accumM.at<T>((subs.at<int>(i,0)),(subs.at<int>(i,1)))[c]<<endl;
		}
	}
}
示例#8
0
/**
 * @brief Util::convertQImageToMat
 * @brief 转换QImage到CV::Mat
 * @param img_qt QImage类型
 * @param img_cv cv::Mat类型
 * @return 没有返回值
 */
void Util::convertQImageToMat( QImage &img_qt,  Mat_<Vec3b>& img_cv){
    img_cv.create(img_qt.height(), img_qt.width());
    img_qt.convertToFormat(QImage::Format_RGB32);
    int lineNum = 0;
    int height = img_qt.height();
    int width = img_qt.width();
    uchar *imgBits = img_qt.bits();
    for(int i=0; i<height; i++){
        lineNum = i* width *4;
        for(int j=0; j<width; j++){
            img_cv(i, j)[2] = imgBits[lineNum + j*4 + 2];
            img_cv(i, j)[1] = imgBits[lineNum + j*4 + 1];
            img_cv(i, j)[0] = imgBits[lineNum + j*4 + 0];
        }
    }
}
示例#9
0
static inline void linearizeHomographyAt( const Mat_<double>& H, const Point2f& pt, Mat_<double>& A )
{
    A.create(2,2);
    double p1 = H(0,0)*pt.x + H(0,1)*pt.y + H(0,2),
           p2 = H(1,0)*pt.x + H(1,1)*pt.y + H(1,2),
           p3 = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2),
           p3_2 = p3*p3;
    if( p3 )
    {
        A(0,0) = H(0,0)/p3 - p1*H(2,0)/p3_2; // fxdx
        A(0,1) = H(0,1)/p3 - p1*H(2,1)/p3_2; // fxdy

        A(1,0) = H(1,0)/p3 - p2*H(2,0)/p3_2; // fydx
        A(1,1) = H(1,1)/p3 - p2*H(2,1)/p3_2; // fydx
    }
    else
        A.setTo(Scalar::all(numeric_limits<double>::max()));
}
void ShapeModel::viewShapeModelUpdate(ModelViewInfo *pInfo)
{
    Mat_< double > paramV;
    paramV.create(this->nShapeParams, 1);
    for (int i=0;i<nShapeParams;i++){
        paramV(i, 0) = (pInfo->vList[i]/30.0 - 0.5)*6*
                        sqrt(pcaShape->eigenvalues.at<double>(i, 0));
    }
    Mat_<cv::Vec3b> img;
    
    ModelImage s;
    s.setShapeInfo(&shapeInfo);
    s.loadTrainImage(Mat_<unsigned char>::ones(190*2, 160*2)*255);
    projectParamToShape(paramV, s.shapeVec);
    SimilarityTrans st = s.shapeVec.getShapeTransformFitingSize(
                            Size(320, 380));
    s.buildFromShapeVec(st, 1000);
    img = s.show(0, -1, false);
    imshow("Viewing Shape Model", img);
}
示例#11
0
void EnhancedStereo::computeDistance(Mat_<float> & distance)
{
    distance.create(smallHeight(), smallWidth());
    for (int v = 0; v < smallHeight(); v++)
    {
        for (int u = 0; u < smallWidth(); u++)
        {
            if (smallDisparity(v, u) == 0) 
            {
                distance(v, u) = 100;
                continue;
            }
            int idx = getLinearIdx(vBig(v), uBig(u));
            Point pinf = pinfPxVec[idx];
            CurveRasterizer<Polynomial2> raster(pinf.x, pinf.y, epipolePx.x, epipolePx.y, epipolarVec[idx]);
            raster.step(smallDisparity(v, u));
            Vector3d X = triangulate(uBig(u), vBig(v), raster.x, raster.y);
            distance(v, u) = X.norm();
        }
    }
}
示例#12
0
void EnhancedStereo::generatePlane(Transformation<double> TcameraPlane,
        Mat_<float> & distance, const vector<Vector3d> & polygonVec)
{
    distance.create(smallHeight(), smallWidth());
    Vector3d t = TcameraPlane.trans();
    Vector3d z = TcameraPlane.rotMat().col(2);
    vector<Vector3d> polygonCamVec;
    TcameraPlane.transform(polygonVec, polygonCamVec);
    for (int v = 0; v < smallHeight(); v++)
    {
        for (int u = 0; u < smallWidth(); u++)
        {
            distance(v, u) = 0;
            Vector3d vec; // the direction vector
            if (not cam1.reconstructPoint(Vector2d(uBig(u), vBig(v)), vec)) continue;
            double zvec = z.dot(vec);
            if (zvec < 1e-3) 
            {
                continue;
            }
            bool inside = true;
            for (int i = 0; i < polygonCamVec.size(); i++)
            {
                int j = (i + 1) % polygonCamVec.size();
                Vector3d normal = polygonCamVec[i].cross(polygonCamVec[j]);
                if (vec.dot(normal) < 0)
                {
                    inside = false;
                    break;
                }
            }
            if (not inside) continue;
            double tz = t.dot(z);
            double alpha = tz / zvec;
            vec *= alpha;
            distance(v, u) = vec.norm();
        }
    }
}
void SegmenterHumanSimple::segment(const cv::Mat& img, Mat_<uchar>& mask)
{
	Mat imgBGR;
	Mat imgLAB;
	Mat imgBGRo;

	float rate = 500.0f/img.cols;

	GaussianBlur(img,imgBGRo,Size(),0.8,0.8);

	vector<Rect> faces;

	resize(imgBGRo,imgBGRo,Size(),rate,rate);
	cv::CascadeClassifier faceModel(this->_m_filenameFaceModel);
	faceModel.detectMultiScale(imgBGRo,faces);

	imgBGRo.convertTo( imgBGR, CV_32F, 1.0/255. );

	cvtColor( imgBGR, imgLAB, CV_BGR2Lab );

	Superpixel sp(1000,1,5);

	Mat_<int> segmentation = sp.segment(imgLAB);
	vector<SuperpixelStatistic> stat = sp.stat(imgLAB,imgBGR,segmentation);

	Mat_<float> prob;
	this->getPixelProbability(imgBGRo,prob,faces);
	Mat_<float> sprob;
	UtilsSuperpixel::Stat(segmentation,prob,stat,sprob);

	Mat_<int> initial(int(stat.size()),1);
	initial.setTo(1,sprob>0.5);
	initial.setTo(0,sprob<=0.5);
	Mat_<float> probaColor;
	int myx = cv::countNonZero(initial);
	this->_getColorProba(stat,initial,probaColor);

	Mat_<float> fgdInit,bgdInit,fgdColor,bgdColor;
	this->_prob2energy(sprob,fgdInit,bgdInit);
	this->_prob2energy(probaColor,fgdColor,bgdColor);
	Mat_<float> fgdEnergy, bgdEnergy;
	
	fgdEnergy = fgdInit + fgdColor;
	bgdEnergy = bgdInit + bgdColor;

	Mat_<int> label;
	mask.create(imgBGRo.rows,imgBGRo.cols);

	UtilsSegmentation::MaxFlowSuperpixel(stat,fgdEnergy,bgdEnergy,50.0,label);

	for( int i=0;i<mask.rows;i++)
	{
		for(int j=0;j<mask.cols;j++)
		{
			if ( label(segmentation(i,j)) > 0.5)
			{
				mask(i,j) = 255;
			}
			else
			{
				mask(i,j) = 0;
			}
		}
	}

	cv::resize(mask,mask,Size(img.cols,img.rows));
	mask.setTo(255,mask>128);
	mask.setTo(0,mask<=128);
}
void UtilsSegmentation::MaxFlowSuperpixel(std::vector<SuperpixelStatistic>& spstat, const Mat_<float>& fgdEnergy,
		const Mat_<float>& bgdEnergy, float gamma, Mat_<int>& label)
{
	//::Graph<float,float,float> graph(nNode,nEdge,errfunc);
	//graph
	int nEdge = UtilsSuperpixel::CountEdge(spstat);
	Mat_<int> edgeVertex(nEdge,2);
	Mat_<float> edgeWeight(nEdge,1);
	Mat_<float> edgeLen(nEdge,1);

	int idx = 0;
	for(int i=0;i<spstat.size();i++)
	{
		SuperpixelStatistic& sp = spstat[i];
		for( set<int>::iterator j=sp.conn.begin();
			j!= sp.conn.end();
			j++)
		{
			int d = (*j);
			SuperpixelStatistic& dsp = spstat[d];
			if ( i != d)
			{
				edgeVertex(idx,0) = min(i,d);
				edgeVertex(idx,1) = max(i,d);
				float diff = (float) norm(sp.mean_color_ - dsp.mean_color_);
				edgeWeight(idx) = diff*diff;
				edgeLen(idx) = (float) cv::norm(sp.mean_position_-dsp.mean_position_);
				idx++;
			}
		}
	}

	float beta = (float) cv::mean(edgeWeight)[0];

	Graph<float,float,float> graph((int)spstat.size(), nEdge, errfunc);

	graph.add_node((int)spstat.size());

	for(int i=0;i<fgdEnergy.total();i++)
	{
		graph.add_tweights(i,bgdEnergy(i),fgdEnergy(i));
	}

	edgeWeight = - edgeWeight / beta;
	cv::exp(edgeWeight,edgeWeight);
	edgeWeight *= gamma;
	cv::divide(edgeWeight, edgeLen,edgeWeight);

	for(int i=0;i<nEdge;i++)
	{
		float w = edgeWeight(i);
		graph.add_edge(edgeVertex(i,0),edgeVertex(i,1),w,w);
	}

	graph.maxflow();

	label.create((int)spstat.size(),1);
	for(int i=0;i<spstat.size();i++)
	{
		if ( graph.what_segment(i) == Graph<float,float,float>::SOURCE)
		{
			label(i) = 1;
		}
		else
		{
			label(i) = 0;
		}
	}
}
示例#15
0
文件: spmbp.cpp 项目: IanDaisy/spm-bp
void spm_bp::init_label_super(Mat_<Vec2f>& label_super_k, Mat_<float>& dCost_super_k) //, vector<vector<Vec2f> > &label_saved, vector<vector<Mat_<float> > > &dcost_saved)
{
    printf("==================================================\n");
    printf("Initiating particles...Done!\n");
    vector<Vec2f> label_vec;
    Mat_<float> localDataCost;
    for (int sp = 0; sp < numOfSP1; ++sp) {
        int id = repPixels1[sp];
        int y = subRange1[id][0];
        int x = subRange1[id][1];
        int h = subRange1[id][3] - subRange1[id][1] + 1;
        int w = subRange1[id][2] - subRange1[id][0] + 1;

        label_vec.clear();
        int k = 0;

        while (k < NUM_TOP_K) {
            float du = (float(rand()) / RAND_MAX - 0.5) * 2 * (float)disp_range_u;
            float dv = (float(rand()) / RAND_MAX - 0.5) * 2 * (float)disp_range_v;
            du = floor(du * upScale + 0.5) / upScale;
            dv = floor(dv * upScale + 0.5) / upScale;

            if (du >= -disp_range_u && du <= disp_range_u && dv >= -disp_range_v && dv <= disp_range_v) {
                int index_tp = 1;
                for (int k1 = 0; k1 < k; ++k1) {
                    if (checkEqual_PMF_PMBP(label_super_k[repPixels1[sp]][k1], Vec2f(du, dv)))
                        index_tp = 0;
                }

                if (index_tp == 1) {
                    for (int ii = 0; ii < superpixelsList1[sp].size(); ++ii)
                        label_super_k[superpixelsList1[sp][ii]][k] = Vec2f(du, dv);

                    label_vec.push_back(Vec2f(du, dv));
                    ++k;
                }
            }
        }
#if USE_CLMF0_TO_AGGREGATE_COST
        cv::Mat_<cv::Vec4b> leftCombinedCrossMap;
        leftCombinedCrossMap.create(h, w);
        subCrossMap1[sp].copyTo(leftCombinedCrossMap);
        CFFilter cff;
#endif
        int vec_size = label_vec.size();
        localDataCost.create(h, w * vec_size);
        localDataCost.setTo(0);
#pragma omp parallel for num_threads(NTHREADS)
        for (int i = 0; i < vec_size; ++i) {
            int kx = i * w;
            Mat_<float> rawCost;
            getLocalDataCostPerlabel(sp, label_vec[i], rawCost);
#if USE_CLMF0_TO_AGGREGATE_COST
            cff.FastCLMF0FloatFilterPointer(leftCombinedCrossMap, rawCost, rawCost);
#endif
            rawCost.copyTo(localDataCost(cv::Rect(kx, 0, w, h)));
        }

        //getLocalDataCost( sp, label_vec, localDataCost);

        int pt, px, py, kx;
        for (int ii = 0; ii < superpixelsList1[sp].size(); ++ii) {
            //cout<<ii<<endl;
            pt = superpixelsList1[sp][ii];
            px = pt / width1;
            py = pt % width1;
            for (int kk = 0; kk < NUM_TOP_K; kk++) {
                kx = kk * w;
                const Mat_<float>& local = localDataCost(cv::Rect(kx, 0, w, h));
                dCost_super_k[pt][kk] = local[px - x][py - y];
            }
        }
    }
    printf("==================================================\n");
}
示例#16
0
文件: spmbp.cpp 项目: IanDaisy/spm-bp
void spm_bp::getLocalDataCost(int sp, vector<Vec2f>& flowList, Mat_<float>& localDataCost) //, vector<vector<Vec2f> > &label_saved, vector<vector<Mat_<float> > > &dcost_saved)
{
    int dSize = flowList.size();

    //USE_COLOR_FEATURES
    cv::Mat_<cv::Vec3f> subLt = subImage1[sp];
#if USE_CENSUS
    vector<vector<bitset<CENSUS_SIZE_OF> > > subLt_css = subCensusBS1[sp];
//cv::Mat_<Vec_css> subLt_css = subCensus1[sp];
//cv::Mat_<Vec_css_bit> subLt_css_bit = subCensus_bit1[sp];
#endif

    int upHeight, upWidth;
    upHeight = im1Up.rows;
    upWidth = im1Up.cols;

    // extract sub-image from subrange
    int p1 = repPixels1[sp];
    int w = subRange1[p1][2] - subRange1[p1][0] + 1;
    int h = subRange1[p1][3] - subRange1[p1][1] + 1;
    int x = subRange1[p1][0];
    int y = subRange1[p1][1];

#if USE_CLMF0_TO_AGGREGATE_COST
    cv::Mat_<cv::Vec4b> leftCombinedCrossMap;
    leftCombinedCrossMap.create(h, w);
    subCrossMap1[sp].copyTo(leftCombinedCrossMap);
    CFFilter cff;
#endif

    Mat_<float> rawCost(h, w);
    cv::Mat_<Vec3f> subRt(h, w);
    cv::Mat_<Vec2f> subRt_g(h, w);
#if USE_CENSUS
    vector<vector<bitset<CENSUS_SIZE_OF> > > subRt_css(h, vector<bitset<CENSUS_SIZE_OF> >(w));
#endif

    cv::Mat_<float> tmpCost(h, w);
    // localDataCost.release();
    localDataCost.create(h, w * dSize);
    int kx;
    for (int kd = 0; kd < dSize; ++kd) {
        kx = kd * w;
        clock_t start = clock();
        clock_t end;
//int check_id = isNewLabel_PMF_PMBP(label_saved[sp],flowList[kd]);

#if SAVE_DCOST
        if (check_id >= 0) {
            cout << "hit" << endl;
            //dcost_saved[sp][check_id].copyTo(localDataCost(cv::Rect(kx, 0, w, h)));
            //cout<<"hit"<<end-start<<endl;
            //continue;
        }
#endif
        start = clock();

        Vec2f fl = flowList[kd];

        Vec3f* subLtPtr = (cv::Vec3f*)(subLt.ptr(0));
        Vec3f* subRtPtr = (cv::Vec3f*)(subRt.ptr(0));
        float* rawCostPtr = (float*)(rawCost.ptr(0));

        int cy, cx, oy, ox;
        oy = y;
        for (cy = 0; cy < h; ++cy, ++oy) {
            ox = x;
            for (cx = 0; cx < w; ++cx, ++ox) {
                int oyUp, oxUp;
                oyUp = (oy + fl[0]) * upScale;
                oxUp = (ox + fl[1]) * upScale;

                if (oyUp < 0)
                    oyUp = 0;
                if (oyUp >= upHeight)
                    oyUp = upHeight - 1;
                if (oxUp < 0)
                    oxUp = 0;
                if (oxUp >= upWidth)
                    oxUp = upWidth - 1;
#if USE_POINTER_WISE
                *subRtPtr++ = im2Up[oyUp][oxUp];
#else
                subRt[cy][cx] = im2Up[oyUp][oxUp];
#endif

#if USE_CENSUS
                subRt_css[cy][cx] = censusBS2[oyUp][oxUp];
#endif
            }
        }
        // calculate raw cost
        subLtPtr = (cv::Vec3f*)(subLt.ptr(0));
        subRtPtr = (cv::Vec3f*)(subRt.ptr(0));

        rawCostPtr = (float*)(rawCost.ptr(0));

        int iy, ix;
        for (iy = 0; iy < h; ++iy) {
            for (ix = 0; ix < w; ++ix) {

#if DATA_COST_ADCENSUS
                bitset<CENSUS_SIZE_OF> tmpBS = subRt_css[iy][ix] ^ subLt_css[iy][ix];
#if USE_POINTER_WISE
                float dist_c = fabs((float)(*subLtPtr)[0] - (*subRtPtr)[0])
                    + fabs((float)(*subLtPtr)[1] - (*subRtPtr)[1])
                    + fabs((float)(*subLtPtr++)[2] - (*subRtPtr++)[2]);
#else
                float dist_c = std::abs(subLt[iy][ix][0] - subRt[iy][ix][0])
                    + std::abs(subLt[iy][ix][1] - subRt[iy][ix][1])
                    + std::abs(subLt[iy][ix][2] - subRt[iy][ix][2]);
#endif
                float dist_css = expCensusDiffTable[tmpBS.count()];
                //cout<<dist_c/3<<endl;
                float dist_ce = expColorDiffTable[int(dist_c / 3)];
//cout<<dist_css<<"and               "<<dist_c1<<endl;
//float dist_css = 1-std::exp( - float(HammingDis_bit(subLt_css_bit[iy][ix],subRt_css_bit[iy][ix]))/miu);
#if USE_POINTER_WISE
                *rawCostPtr++ = 255 * (dist_css + dist_ce);
#else
                rawCost[iy][ix] = 255 * (dist_css + dist_ce); //beta*min(dist_c/3,tau_c);//beta*min(dist_c/3,tau_c);//*255 + beta*min(dist_c/3,tau_c);
#endif

#endif
            }
        }

#if USE_CLMF0_TO_AGGREGATE_COST
        cff.FastCLMF0FloatFilterPointer(leftCombinedCrossMap, rawCost, tmpCost);
//cout<<"filtering"<<clock()-end<<endl;
#endif
#if SAVE_DCOST
        label_saved[sp].push_back(fl);
//dcost_saved[sp].push_back(tmpCost);
#endif
        tmpCost.copyTo(localDataCost(cv::Rect(kx, 0, w, h)));
        end = clock();
        //cout<<"not hit"<<end-start<<endl;
    }
    //cout<<label_saved[sp].size()<<endl;
}
示例#17
0
文件: spmbp.cpp 项目: IanDaisy/spm-bp
void spm_bp::getLocalDataCostPerlabel(int sp, const Vec2f& fl, Mat_<float>& localDataCost)
{
    //USE_COLOR_FEATURES
    cv::Mat_<cv::Vec3f> subLt = subImage1[sp];
#if USE_CENSUS
    vector<vector<bitset<CENSUS_SIZE_OF> > > subLt_css = subCensusBS1[sp];
#endif

    int upHeight, upWidth;
    upHeight = im1Up.rows;
    upWidth = im1Up.cols;

    // extract sub-image from subrange
    int p1 = repPixels1[sp];
    int w = subRange1[p1][2] - subRange1[p1][0] + 1;
    int h = subRange1[p1][3] - subRange1[p1][1] + 1;
    int x = subRange1[p1][0];
    int y = subRange1[p1][1];

    // localDataCost.release();
    localDataCost.create(h, w);
    //Mat_<float> rawCost(h, w);
    Mat_<Vec3f> subRt(h, w);
    vector<vector<bitset<CENSUS_SIZE_OF> > > subRt_css(h, vector<bitset<CENSUS_SIZE_OF> >(w));
#if SAVE_DCOST
    if (check_id >= 0) {
        cout << "hit" << endl;
    }
#endif

    Vec3f* subLtPtr = (cv::Vec3f*)(subLt.ptr(0));
    Vec3f* subRtPtr = (cv::Vec3f*)(subRt.ptr(0));
    float* rawCostPtr = (float*)(localDataCost.ptr(0));

    cv::Vec3f *im2UpPtr = (cv::Vec3f*) im2Up.ptr(0);
    int im2UpWidth = im2Up.cols;
    int maxHeight = upHeight - 1;
    int maxWidth = upWidth - 1;

    int cy, cx, oy, ox;
    float fl0 = fl[0], fl1 = fl[1];
#pragma omp parallel for
    for (cy = 0; cy < h; ++cy) {
        oy = y + cy;
        int oyUp = (oy + fl0) * upScale;
        if (oyUp < 0)
            oyUp = 0;
        if (oyUp >= upHeight)
            oyUp = maxHeight;

        for (cx = 0; cx < w; ++cx) {
            ox = x + cx;
            int oxUp = (ox + fl1) * upScale;
            if (oxUp < 0)
                oxUp = 0;
            if (oxUp >= upWidth)
                oxUp = maxWidth;

#if USE_POINTER_WISE
            // *subRtPtr++ = im2Up[oyUp][oxUp];
            subRtPtr[cy * w + cx] = im2UpPtr[oyUp * im2UpWidth + oxUp];
#else
            subRt[cy][cx] = im2Up[oyUp][oxUp];
#endif

#if USE_CENSUS
            subRt_css[cy][cx] = censusBS2[oyUp][oxUp];
#endif
        }

    }

    // calculate raw cost
    subLtPtr = (cv::Vec3f*)(subLt.ptr(0));
    subRtPtr = (cv::Vec3f*)(subRt.ptr(0));
    rawCostPtr = (float*)(localDataCost.ptr(0));

    int iy, ix;
    for (iy = 0; iy < h; ++iy) {
        for (ix = 0; ix < w; ++ix) {

#if DATA_COST_ADCENSUS
            bitset<CENSUS_SIZE_OF> tmpBS = subRt_css[iy][ix] ^ subLt_css[iy][ix];

#if USE_POINTER_WISE

            float dist_c = fabsf((*subLtPtr)[0] - (*subRtPtr)[0])
                         + fabsf((*subLtPtr)[1] - (*subRtPtr)[1])
                         + fabsf((*subLtPtr)[2] - (*subRtPtr)[2]);
            ++subLtPtr;
            ++subRtPtr;
#else
            float dist_c = std::abs(subLt[iy][ix][0] - subRt[iy][ix][0])
                + std::abs(subLt[iy][ix][1] - subRt[iy][ix][1])
                + std::abs(subLt[iy][ix][2] - subRt[iy][ix][2]);
#endif

            float dist_css = expCensusDiffTable[tmpBS.count()];
            float dist_ce = expColorDiffTable[int(dist_c / 3)];

#if USE_POINTER_WISE
            *rawCostPtr++ = 255 * (dist_css + dist_ce);
#else
            localDataCost[iy][ix] = 255 * (dist_css + dist_ce); //beta*min(dist_c/3,tau_c);//beta*min(dist_c/3,tau_c);//*255 + beta*min(dist_c/3,tau_c);
#endif

#endif
        }
    }

#if SAVE_DCOST
    label_saved[sp].push_back(fl);
#endif

}
示例#18
0
//===========================================================================
void SVR_patch_expert::Response(const Mat_<float>& area_of_interest, Mat_<double>& response)
{

	int response_height = area_of_interest.rows - weights.rows + 1;
	int response_width = area_of_interest.cols - weights.cols + 1;
	
	// the patch area on which we will calculate reponses
	cv::Mat_<float> normalised_area_of_interest;
  
	if(response.rows != response_height || response.cols != response_width)
	{
		response.create(response_height, response_width);
	}

	// If type is raw just normalise mean and standard deviation
	if(type == 0)
	{
		// Perform normalisation across whole patch
		cv::Scalar mean;
		cv::Scalar std;

		cv::meanStdDev(area_of_interest, mean, std);
		// Avoid division by zero
		if(std[0] == 0)
		{
			std[0] = 1;
		}
		normalised_area_of_interest = (area_of_interest - mean[0]) / std[0];
	}
	// If type is gradient, perform the image gradient computation
	else if(type == 1)
	{
		Grad(area_of_interest, normalised_area_of_interest);
	}
  	else
	{
		printf("ERROR(%s,%d): Unsupported patch type %d!\n", __FILE__,__LINE__, type);
		abort();
	}
	
	Mat_<float> svr_response;

	// The empty matrix as we don't pass precomputed dft's of image
	Mat_<double> empty_matrix_0(0,0,0.0);
	Mat_<float> empty_matrix_1(0,0,0.0);
	Mat_<float> empty_matrix_2(0,0,0.0);

	// Efficient calc of patch expert SVR response across the area of interest
	matchTemplate_m(normalised_area_of_interest, empty_matrix_0, empty_matrix_1, empty_matrix_2, weights, weights_dfts, svr_response, CV_TM_CCOEFF_NORMED); 

	response.create(svr_response.size());
	MatIterator_<double> p = response.begin();

	cv::MatIterator_<float> q1 = svr_response.begin(); // respone for each pixel
	cv::MatIterator_<float> q2 = svr_response.end();

	while(q1 != q2)
	{
		// the SVR response passed into logistic regressor
		*p++ = 1.0/(1.0 + exp( -(*q1++ * scaling + bias )));
	}

}