Status applyAbortTransaction(OperationContext* opCtx,
                             const OplogEntry& entry,
                             repl::OplogApplication::Mode mode) {
    // Return error if run via applyOps command.
    uassert(50972,
            "abortTransaction is only used internally by secondaries.",
            mode != repl::OplogApplication::Mode::kApplyOpsCmd);

    // We don't put transactions into the prepare state until the end of recovery and initial sync,
    // so there is no transaction to abort.
    if (mode == repl::OplogApplication::Mode::kRecovering ||
        mode == repl::OplogApplication::Mode::kInitialSync) {
        return Status::OK();
    }

    invariant(mode == repl::OplogApplication::Mode::kSecondary);

    // Transaction operations are in its own batch, so we can modify their opCtx.
    invariant(entry.getSessionId());
    invariant(entry.getTxnNumber());
    opCtx->setLogicalSessionId(*entry.getSessionId());
    opCtx->setTxnNumber(*entry.getTxnNumber());
    // The write on transaction table may be applied concurrently, so refreshing state
    // from disk may read that write, causing starting a new transaction on an existing
    // txnNumber. Thus, we start a new transaction without refreshing state from disk.
    MongoDOperationContextSessionWithoutRefresh sessionCheckout(opCtx);

    auto transaction = TransactionParticipant::get(opCtx);
    transaction.unstashTransactionResources(opCtx, "abortTransaction");
    transaction.abortActiveTransaction(opCtx);
    return Status::OK();
}
Status applyCommitTransaction(OperationContext* opCtx,
                              const OplogEntry& entry,
                              repl::OplogApplication::Mode mode) {
    // Return error if run via applyOps command.
    uassert(50987,
            "commitTransaction is only used internally by secondaries.",
            mode != repl::OplogApplication::Mode::kApplyOpsCmd);

    IDLParserErrorContext ctx("commitTransaction");
    auto commitOplogEntryOpTime = entry.getOpTime();
    auto commitCommand = CommitTransactionOplogObject::parse(ctx, entry.getObject());
    const bool prepared = !commitCommand.getPrepared() || *commitCommand.getPrepared();
    if (!prepared)
        return Status::OK();
    invariant(commitCommand.getCommitTimestamp());

    if (mode == repl::OplogApplication::Mode::kRecovering ||
        mode == repl::OplogApplication::Mode::kInitialSync) {
        return _applyTransactionFromOplogChain(opCtx,
                                               entry,
                                               mode,
                                               *commitCommand.getCommitTimestamp(),
                                               commitOplogEntryOpTime.getTimestamp());
    }

    invariant(mode == repl::OplogApplication::Mode::kSecondary);

    // Transaction operations are in its own batch, so we can modify their opCtx.
    invariant(entry.getSessionId());
    invariant(entry.getTxnNumber());
    opCtx->setLogicalSessionId(*entry.getSessionId());
    opCtx->setTxnNumber(*entry.getTxnNumber());

    // The write on transaction table may be applied concurrently, so refreshing state
    // from disk may read that write, causing starting a new transaction on an existing
    // txnNumber. Thus, we start a new transaction without refreshing state from disk.
    MongoDOperationContextSessionWithoutRefresh sessionCheckout(opCtx);

    auto transaction = TransactionParticipant::get(opCtx);
    invariant(transaction);
    transaction.unstashTransactionResources(opCtx, "commitTransaction");
    transaction.commitPreparedTransaction(
        opCtx, *commitCommand.getCommitTimestamp(), commitOplogEntryOpTime);
    return Status::OK();
}