int main(int argc, char **argv) { char *f_name_lp, *last_dot_pos, f_name[256], *f_name_pos; int i, ncol; if((argc < 2) || (argc > 2)) { printf("### ERROR: main(): Usage: One of the following\ncgl_data_test input_file_name.mps\ncgl_data_test input_file_name.lp\n"); exit(1); } f_name_lp = strdup(argv[1]); f_name_pos = strrchr(f_name_lp, '/'); if(f_name_pos != NULL) { strcpy(f_name, &(f_name_pos[1])); } else { strcpy(f_name, f_name_lp); } last_dot_pos = strrchr(f_name, '.'); if(last_dot_pos != NULL) { last_dot_pos = '\0'; } OsiClpSolverInterface *clp = new OsiClpSolverInterface; clp->messageHandler()->setLogLevel(0); if(strcmp(&(f_name_lp[strlen(f_name_lp)-3]), ".lp") == 0) { clp->readLp(f_name_lp); } else { if(strcmp(&(f_name_lp[strlen(f_name_lp)-4]), ".mps") == 0) { clp->readMps(f_name_lp); } else { printf("### ERROR: unrecognized file type\n"); exit(1); } } ncol = clp->getNumCols(); clp->initialSolve(); printf("LP value: %12.2f\n", clp->getObjValue()); OsiCuts cuts; // Define parameters for CglRedSplit generator CglParam cpar; cpar.setMAX_SUPPORT(ncol+1); CglRedSplitParam rspar(cpar); // Create a cut generator with the given parameters CglRedSplit cutGen(rspar); char *colType = new char[ncol]; for(i=0; i<ncol; i++) { if(clp->isContinuous(i)) { colType[i] = 'C'; } else { colType[i] = 'I'; } } int round, max_rounds = 10; for(round=0; round<max_rounds; round++) { cutGen.generateCuts(*clp, cuts); int ncuts = cuts.sizeRowCuts(); const OsiRowCut **newRowCuts = new const OsiRowCut * [ncuts]; for(i=0; i<ncuts; i++) { newRowCuts[i] = &cuts.rowCut(i); } clp->applyRowCuts(ncuts, newRowCuts); delete[] newRowCuts; printf("round %4d: %4d generated cuts new objective value: %12.2f\n", round, ncuts, clp->getObjValue()); clp->resolve(); if(clp->isAbandoned()) { printf("###ERROR: Numerical difficulties in Solver\n"); exit(1); } if(clp->isProvenPrimalInfeasible()) { printf("### WARNING: Problem is infeasible\n"); exit(1); } } delete clp; free(f_name_lp); delete[] colType; return(0); }
/* Randomized Rounding Heuristic Returns 1 if solution, 0 if not */ int CbcHeuristicRandRound::solution(double & solutionValue, double * betterSolution) { // rlh: Todo: Memory Cleanup // std::cout << "Entering the Randomized Rounding Heuristic" << std::endl; setWhen(1); // setWhen(1) didn't have the effect I expected (e.g., run once). // Run only once. // // See if at root node bool atRoot = model_->getNodeCount() == 0; int passNumber = model_->getCurrentPassNumber(); // Just do once if (!atRoot || passNumber > 1) { // std::cout << "Leaving the Randomized Rounding Heuristic" << std::endl; return 0; } std::cout << "Entering the Randomized Rounding Heuristic" << std::endl; typedef struct { int numberSolutions; int maximumSolutions; int numberColumns; double ** solution; int * numberUnsatisfied; } clpSolution; double start = CoinCpuTime(); numCouldRun_++; // #ifdef HEURISTIC_INFORM printf("Entering heuristic %s - nRuns %d numCould %d when %d\n", heuristicName(),numRuns_,numCouldRun_,when_); #endif // Todo: Ask JJHF what "number of times // the heuristic could run" means. OsiSolverInterface * solver = model_->solver()->clone(); double primalTolerance ; solver->getDblParam(OsiPrimalTolerance, primalTolerance) ; OsiClpSolverInterface * clpSolver = dynamic_cast<OsiClpSolverInterface *> (solver); assert (clpSolver); ClpSimplex * simplex = clpSolver->getModelPtr(); // Initialize the structure holding the solutions for the Simplex iterations clpSolution solutions; // Set typeStruct field of ClpTrustedData struct to 1 to indicate // desired behavior for RandRound heuristic (which is what?) ClpTrustedData trustedSolutions; trustedSolutions.typeStruct = 1; trustedSolutions.data = &solutions; solutions.numberSolutions = 0; solutions.maximumSolutions = 0; solutions.numberColumns = simplex->numberColumns(); solutions.solution = NULL; solutions.numberUnsatisfied = NULL; simplex->setTrustedUserPointer(&trustedSolutions); // Solve from all slack to get some points simplex->allSlackBasis(); // Calling primal() invalidates pointers to some rim vectors, // like...row sense (!) simplex->primal(); // 1. Okay - so a workaround would be to copy the data I want BEFORE // calling primal. // 2. Another approach is to ask the simplex solvers NOT to mess up my // rims. // 3. See freeCachedResults() for what is getting // deleted. Everything else points into the structure. // ...or use collower and colupper rather than rowsense. // ..store address of where one of these // Store the basic problem information // -Get the number of columns, rows and rhs vector int numCols = clpSolver->getNumCols(); int numRows = clpSolver->getNumRows(); // Find the integer variables (use columnType(?)) // One if not continuous, that is binary or general integer) // columnType() = 0 continuous // = 1 binary // = 2 general integer bool * varClassInt = new bool[numCols]; const char* columnType = clpSolver->columnType(); int numGenInt = 0; for (int i = 0; i < numCols; i++) { if (clpSolver->isContinuous(i)) varClassInt[i] = 0; else varClassInt[i] = 1; if (columnType[i] == 2) numGenInt++; } // Heuristic is for problems with general integer variables. // If there are none, quit. if (numGenInt++ < 1) { delete [] varClassInt ; std::cout << "Leaving the Randomized Rounding Heuristic" << std::endl; return 0; } // -Get the rows sense const char * rowSense; rowSense = clpSolver->getRowSense(); // -Get the objective coefficients double *originalObjCoeff = CoinCopyOfArray(clpSolver->getObjCoefficients(), numCols); // -Get the matrix of the problem // rlh: look at using sparse representation double ** matrix = new double * [numRows]; for (int i = 0; i < numRows; i++) { matrix[i] = new double[numCols]; for (int j = 0; j < numCols; j++) matrix[i][j] = 0; } const CoinPackedMatrix* matrixByRow = clpSolver->getMatrixByRow(); const double * matrixElements = matrixByRow->getElements(); const int * matrixIndices = matrixByRow->getIndices(); const int * matrixStarts = matrixByRow->getVectorStarts(); for (int j = 0; j < numRows; j++) { for (int i = matrixStarts[j]; i < matrixStarts[j+1]; i++) { matrix[j][matrixIndices[i]] = matrixElements[i]; } } double * newObj = new double [numCols]; srand ( static_cast<unsigned int>(time(NULL) + 1)); int randNum; // Shuffle the rows: // Put the rows in a random order // so that the optimal solution is a different corner point than the // starting point. int * index = new int [numRows]; for (int i = 0; i < numRows; i++) index[i] = i; for (int i = 0; i < numRows; i++) { int temp = index[i]; int randNumTemp = i + intRand(numRows - i); index[i] = index[randNumTemp]; index[randNumTemp] = temp; } // Start finding corner points by iteratively doing the following: // - contruct a randomly tilted objective // - solve for (int i = 0; i < numRows; i++) { // TODO: that 10,000 could be a param in the member data if (solutions.numberSolutions > 10000) break; randNum = intRand(2); for (int j = 0; j < numCols; j++) { // for row i and column j vary the coefficient "a bit" if (randNum == 1) // if the element is zero, then set the new obj // coefficient to 0.1 (i.e., round up) if (fabs(matrix[index[i]][j]) < primalTolerance) newObj[j] = 0.1; else // if the element is nonzero, then increase the new obj // coefficient "a bit" newObj[j] = matrix[index[i]][j] * 1.1; else // if randnum is 2, then // if the element is zero, then set the new obj coeffient // to NEGATIVE 0.1 (i.e., round down) if (fabs(matrix[index[i]][j]) < primalTolerance) newObj[j] = -0.1; else // if the element is nonzero, then DEcrease the new obj coeffienct "a bit" newObj[j] = matrix[index[i]][j] * 0.9; } // Use the new "tilted" objective clpSolver->setObjective(newObj); // Based on the row sense, we decide whether to max or min if (rowSense[i] == 'L') clpSolver->setObjSense(-1); else clpSolver->setObjSense(1); // Solve with primal simplex simplex->primal(1); // rlh+ll: This was the original code. But we already have the // model pointer (it's in simplex). And, calling getModelPtr() // invalidates the cached data in the OsiClpSolverInterface // object, which means our precious rowsens is lost. So let's // not use the line below... /******* clpSolver->getModelPtr()->primal(1); */ printf("---------------------------------------------------------------- %d\n", i); } // Iteratively do this process until... // either you reach the max number of corner points (aka 10K) // or all the rows have been used as an objective. // Look at solutions int numberSolutions = solutions.numberSolutions; //const char * integerInfo = simplex->integerInformation(); //const double * columnLower = simplex->columnLower(); //const double * columnUpper = simplex->columnUpper(); printf("there are %d solutions\n", numberSolutions); // Up to here we have all the corner points // Now we need to do the random walks and roundings double ** cornerPoints = new double * [numberSolutions]; for (int j = 0; j < numberSolutions; j++) cornerPoints[j] = solutions.solution[j]; bool feasibility = 1; // rlh: use some COIN max instead of 1e30 (?) double bestObj = 1e30; std::vector< std::vector <double> > feasibles; int numFeasibles = 0; // Check the feasibility of the corner points int numCornerPoints = numberSolutions; const double * rhs = clpSolver->getRightHandSide(); // rlh: row sense hasn't changed. why a fresh copy? // Delete next line. rowSense = clpSolver->getRowSense(); for (int i = 0; i < numCornerPoints; i++) { //get the objective value for this this point double objValue = 0; for (int k = 0; k < numCols; k++) objValue += cornerPoints[i][k] * originalObjCoeff[k]; if (objValue < bestObj) { // check integer feasibility feasibility = 1; for (int j = 0; j < numCols; j++) { if (varClassInt[j]) { double closest = floor(cornerPoints[i][j] + 0.5); if (fabs(cornerPoints[i][j] - closest) > primalTolerance) { feasibility = 0; break; } } } // check all constraints satisfied if (feasibility) { for (int irow = 0; irow < numRows; irow++) { double lhs = 0; for (int j = 0; j < numCols; j++) { lhs += matrix[irow][j] * cornerPoints[i][j]; } if (rowSense[irow] == 'L' && lhs > rhs[irow] + primalTolerance) { feasibility = 0; break; } if (rowSense[irow] == 'G' && lhs < rhs[irow] - primalTolerance) { feasibility = 0; break; } if (rowSense[irow] == 'E' && (lhs - rhs[irow] > primalTolerance || lhs - rhs[irow] < -primalTolerance)) { feasibility = 0; break; } } } if (feasibility) { numFeasibles++; feasibles.push_back(std::vector <double> (numCols)); for (int k = 0; k < numCols; k++) feasibles[numFeasibles-1][k] = cornerPoints[i][k]; printf("obj: %f\n", objValue); if (objValue < bestObj) bestObj = objValue; } } } int numFeasibleCorners; numFeasibleCorners = numFeasibles; //find the center of gravity of the corner points as the first random point double * rp = new double[numCols]; for (int i = 0; i < numCols; i++) { rp[i] = 0; for (int j = 0; j < numCornerPoints; j++) { rp[i] += cornerPoints[j][i]; } rp[i] = rp[i] / numCornerPoints; } //------------------------------------------- //main loop: // -generate the next random point // -round the random point // -check the feasibility of the random point //------------------------------------------- srand ( static_cast<unsigned int>(time(NULL) + 1)); int numRandomPoints = 0; while (numRandomPoints < 50000) { numRandomPoints++; //generate the next random point int randomIndex = intRand(numCornerPoints); double random = CoinDrand48(); for (int i = 0; i < numCols; i++) { rp[i] = (random * (cornerPoints[randomIndex][i] - rp[i])) + rp[i]; } //CRISP ROUNDING //round the random point just generated double * roundRp = new double[numCols]; for (int i = 0; i < numCols; i++) { roundRp[i] = rp[i]; if (varClassInt[i]) { if (rp[i] >= 0) { if (fmod(rp[i], 1) > 0.5) roundRp[i] = floor(rp[i]) + 1; else roundRp[i] = floor(rp[i]); } else { if (fabs(fmod(rp[i], 1)) > 0.5) roundRp[i] = floor(rp[i]); else roundRp[i] = floor(rp[i]) + 1; } } } //SOFT ROUNDING // Look at original files for the "how to" on soft rounding; // Soft rounding omitted here. //Check the feasibility of the rounded random point // -Check the feasibility // -Get the rows sense rowSense = clpSolver->getRowSense(); rhs = clpSolver->getRightHandSide(); //get the objective value for this feasible point double objValue = 0; for (int i = 0; i < numCols; i++) objValue += roundRp[i] * originalObjCoeff[i]; if (objValue < bestObj) { feasibility = 1; for (int i = 0; i < numRows; i++) { double lhs = 0; for (int j = 0; j < numCols; j++) { lhs += matrix[i][j] * roundRp[j]; } if (rowSense[i] == 'L' && lhs > rhs[i] + primalTolerance) { feasibility = 0; break; } if (rowSense[i] == 'G' && lhs < rhs[i] - primalTolerance) { feasibility = 0; break; } if (rowSense[i] == 'E' && (lhs - rhs[i] > primalTolerance || lhs - rhs[i] < -primalTolerance)) { feasibility = 0; break; } } if (feasibility) { printf("Feasible Found.\n"); printf("%.2f\n", CoinCpuTime() - start); numFeasibles++; feasibles.push_back(std::vector <double> (numCols)); for (int i = 0; i < numCols; i++) feasibles[numFeasibles-1][i] = roundRp[i]; printf("obj: %f\n", objValue); if (objValue < bestObj) bestObj = objValue; } } delete [] roundRp; } printf("Number of Feasible Corners: %d\n", numFeasibleCorners); printf("Number of Feasibles Found: %d\n", numFeasibles); if (numFeasibles > 0) printf("Best Objective: %f\n", bestObj); printf("time: %.2f\n", CoinCpuTime() - start); if (numFeasibles == 0) { // cleanup delete [] varClassInt; for (int i = 0; i < numRows; i++) delete matrix[i]; delete [] matrix; delete [] newObj; delete [] index; for (int i = 0; i < numberSolutions; i++) delete cornerPoints[i]; delete [] cornerPoints; delete [] rp; return 0; } // We found something better solutionValue = bestObj; for (int k = 0; k < numCols; k++) { betterSolution[k] = feasibles[numFeasibles-1][k]; } delete [] varClassInt; for (int i = 0; i < numRows; i++) delete matrix[i]; delete [] matrix; delete [] newObj; delete [] index; for (int i = 0; i < numberSolutions; i++) delete cornerPoints[i]; delete [] cornerPoints; delete [] rp; std::cout << "Leaving the Randomized Rounding Heuristic" << std::endl; return 1; }