// inner part of dive int CbcHeuristicDive::solution(double & solutionValue, int & numberNodes, int & numberCuts, OsiRowCut ** cuts, CbcSubProblem ** & nodes, double * newSolution) { #ifdef DIVE_DEBUG int nRoundInfeasible = 0; int nRoundFeasible = 0; #endif int reasonToStop = 0; double time1 = CoinCpuTime(); int numberSimplexIterations = 0; int maxSimplexIterations = (model_->getNodeCount()) ? maxSimplexIterations_ : maxSimplexIterationsAtRoot_; // but can't be exactly coin_int_max maxSimplexIterations = CoinMin(maxSimplexIterations,COIN_INT_MAX>>3); OsiSolverInterface * solver = cloneBut(6); // was model_->solver()->clone(); # ifdef COIN_HAS_CLP OsiClpSolverInterface * clpSolver = dynamic_cast<OsiClpSolverInterface *> (solver); if (clpSolver) { ClpSimplex * clpSimplex = clpSolver->getModelPtr(); int oneSolveIts = clpSimplex->maximumIterations(); oneSolveIts = CoinMin(1000+2*(clpSimplex->numberRows()+clpSimplex->numberColumns()),oneSolveIts); clpSimplex->setMaximumIterations(oneSolveIts); if (!nodes) { // say give up easily clpSimplex->setMoreSpecialOptions(clpSimplex->moreSpecialOptions() | 64); } else { // get ray int specialOptions = clpSimplex->specialOptions(); specialOptions &= ~0x3100000; specialOptions |= 32; clpSimplex->setSpecialOptions(specialOptions); clpSolver->setSpecialOptions(clpSolver->specialOptions() | 1048576); if ((model_->moreSpecialOptions()&16777216)!=0) { // cutoff is constraint clpSolver->setDblParam(OsiDualObjectiveLimit, COIN_DBL_MAX); } } } # endif const double * lower = solver->getColLower(); const double * upper = solver->getColUpper(); const double * rowLower = solver->getRowLower(); const double * rowUpper = solver->getRowUpper(); const double * solution = solver->getColSolution(); const double * objective = solver->getObjCoefficients(); double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance); double primalTolerance; solver->getDblParam(OsiPrimalTolerance, primalTolerance); int numberRows = matrix_.getNumRows(); assert (numberRows <= solver->getNumRows()); int numberIntegers = model_->numberIntegers(); const int * integerVariable = model_->integerVariable(); double direction = solver->getObjSense(); // 1 for min, -1 for max double newSolutionValue = direction * solver->getObjValue(); int returnCode = 0; // Column copy const double * element = matrix_.getElements(); const int * row = matrix_.getIndices(); const CoinBigIndex * columnStart = matrix_.getVectorStarts(); const int * columnLength = matrix_.getVectorLengths(); #ifdef DIVE_FIX_BINARY_VARIABLES // Row copy const double * elementByRow = matrixByRow_.getElements(); const int * column = matrixByRow_.getIndices(); const CoinBigIndex * rowStart = matrixByRow_.getVectorStarts(); const int * rowLength = matrixByRow_.getVectorLengths(); #endif // Get solution array for heuristic solution int numberColumns = solver->getNumCols(); memcpy(newSolution, solution, numberColumns*sizeof(double)); // vectors to store the latest variables fixed at their bounds int* columnFixed = new int [numberIntegers]; double* originalBound = new double [numberIntegers+2*numberColumns]; double * lowerBefore = originalBound+numberIntegers; double * upperBefore = lowerBefore+numberColumns; memcpy(lowerBefore,lower,numberColumns*sizeof(double)); memcpy(upperBefore,upper,numberColumns*sizeof(double)); double * lastDjs=newSolution+numberColumns; bool * fixedAtLowerBound = new bool [numberIntegers]; PseudoReducedCost * candidate = new PseudoReducedCost [numberIntegers]; double * random = new double [numberIntegers]; int maxNumberAtBoundToFix = static_cast<int> (floor(percentageToFix_ * numberIntegers)); assert (!maxNumberAtBoundToFix||!nodes); // count how many fractional variables int numberFractionalVariables = 0; for (int i = 0; i < numberIntegers; i++) { random[i] = randomNumberGenerator_.randomDouble() + 0.3; int iColumn = integerVariable[i]; double value = newSolution[iColumn]; if (fabs(floor(value + 0.5) - value) > integerTolerance) { numberFractionalVariables++; } } const double* reducedCost = NULL; // See if not NLP if (model_->solverCharacteristics()->reducedCostsAccurate()) reducedCost = solver->getReducedCost(); int iteration = 0; while (numberFractionalVariables) { iteration++; // initialize any data initializeData(); // select a fractional variable to bound int bestColumn = -1; int bestRound; // -1 rounds down, +1 rounds up bool canRound = selectVariableToBranch(solver, newSolution, bestColumn, bestRound); // if the solution is not trivially roundable, we don't try to round; // if the solution is trivially roundable, we try to round. However, // if the rounded solution is worse than the current incumbent, // then we don't round and proceed normally. In this case, the // bestColumn will be a trivially roundable variable if (canRound) { // check if by rounding all fractional variables // we get a solution with an objective value // better than the current best integer solution double delta = 0.0; for (int i = 0; i < numberIntegers; i++) { int iColumn = integerVariable[i]; double value = newSolution[iColumn]; if (fabs(floor(value + 0.5) - value) > integerTolerance) { assert(downLocks_[i] == 0 || upLocks_[i] == 0); double obj = objective[iColumn]; if (downLocks_[i] == 0 && upLocks_[i] == 0) { if (direction * obj >= 0.0) delta += (floor(value) - value) * obj; else delta += (ceil(value) - value) * obj; } else if (downLocks_[i] == 0) delta += (floor(value) - value) * obj; else delta += (ceil(value) - value) * obj; } } if (direction*(solver->getObjValue() + delta) < solutionValue) { #ifdef DIVE_DEBUG nRoundFeasible++; #endif if (!nodes||bestColumn<0) { // Round all the fractional variables for (int i = 0; i < numberIntegers; i++) { int iColumn = integerVariable[i]; double value = newSolution[iColumn]; if (fabs(floor(value + 0.5) - value) > integerTolerance) { assert(downLocks_[i] == 0 || upLocks_[i] == 0); if (downLocks_[i] == 0 && upLocks_[i] == 0) { if (direction * objective[iColumn] >= 0.0) newSolution[iColumn] = floor(value); else newSolution[iColumn] = ceil(value); } else if (downLocks_[i] == 0) newSolution[iColumn] = floor(value); else newSolution[iColumn] = ceil(value); } } break; } else { // can't round if going to use in branching int i; for (i = 0; i < numberIntegers; i++) { int iColumn = integerVariable[i]; double value = newSolution[bestColumn]; if (fabs(floor(value + 0.5) - value) > integerTolerance) { if (iColumn==bestColumn) { assert(downLocks_[i] == 0 || upLocks_[i] == 0); double obj = objective[bestColumn]; if (downLocks_[i] == 0 && upLocks_[i] == 0) { if (direction * obj >= 0.0) bestRound=-1; else bestRound=1; } else if (downLocks_[i] == 0) bestRound=-1; else bestRound=1; break; } } } } } #ifdef DIVE_DEBUG else nRoundInfeasible++; #endif } // do reduced cost fixing #ifdef DIVE_DEBUG int numberFixed = reducedCostFix(solver); std::cout << "numberReducedCostFixed = " << numberFixed << std::endl; #else reducedCostFix(solver); #endif int numberAtBoundFixed = 0; #ifdef DIVE_FIX_BINARY_VARIABLES // fix binary variables based on pseudo reduced cost if (binVarIndex_.size()) { int cnt = 0; int n = static_cast<int>(binVarIndex_.size()); for (int j = 0; j < n; j++) { int iColumn1 = binVarIndex_[j]; double value = newSolution[iColumn1]; if (fabs(value) <= integerTolerance && lower[iColumn1] != upper[iColumn1]) { double maxPseudoReducedCost = 0.0; #ifdef DIVE_DEBUG std::cout << "iColumn1 = " << iColumn1 << ", value = " << value << std::endl; #endif int iRow = vbRowIndex_[j]; double chosenValue = 0.0; for (int k = rowStart[iRow]; k < rowStart[iRow] + rowLength[iRow]; k++) { int iColumn2 = column[k]; #ifdef DIVE_DEBUG std::cout << "iColumn2 = " << iColumn2 << std::endl; #endif if (iColumn1 != iColumn2) { double pseudoReducedCost = fabs(reducedCost[iColumn2] * elementByRow[k]); #ifdef DIVE_DEBUG int k2; for (k2 = rowStart[iRow]; k2 < rowStart[iRow] + rowLength[iRow]; k2++) { if (column[k2] == iColumn1) break; } std::cout << "reducedCost[" << iColumn2 << "] = " << reducedCost[iColumn2] << ", elementByRow[" << iColumn2 << "] = " << elementByRow[k] << ", elementByRow[" << iColumn1 << "] = " << elementByRow[k2] << ", pseudoRedCost = " << pseudoReducedCost << std::endl; #endif if (pseudoReducedCost > maxPseudoReducedCost) maxPseudoReducedCost = pseudoReducedCost; } else { // save value chosenValue = fabs(elementByRow[k]); } } assert (chosenValue); maxPseudoReducedCost /= chosenValue; #ifdef DIVE_DEBUG std::cout << ", maxPseudoRedCost = " << maxPseudoReducedCost << std::endl; #endif candidate[cnt].var = iColumn1; candidate[cnt++].pseudoRedCost = maxPseudoReducedCost; } } #ifdef DIVE_DEBUG std::cout << "candidates for rounding = " << cnt << std::endl; #endif std::sort(candidate, candidate + cnt, compareBinaryVars); for (int i = 0; i < cnt; i++) { int iColumn = candidate[i].var; if (numberAtBoundFixed < maxNumberAtBoundToFix) { columnFixed[numberAtBoundFixed] = iColumn; originalBound[numberAtBoundFixed] = upper[iColumn]; fixedAtLowerBound[numberAtBoundFixed] = true; solver->setColUpper(iColumn, lower[iColumn]); numberAtBoundFixed++; if (numberAtBoundFixed == maxNumberAtBoundToFix) break; } } } #endif // fix other integer variables that are at their bounds int cnt = 0; #ifdef GAP double gap = 1.0e30; #endif if (reducedCost && true) { #ifndef JJF_ONE cnt = fixOtherVariables(solver, solution, candidate, random); #else #ifdef GAP double cutoff = model_->getCutoff() ; if (cutoff < 1.0e20 && false) { double direction = solver->getObjSense() ; gap = cutoff - solver->getObjValue() * direction ; gap *= 0.1; // Fix more if plausible double tolerance; solver->getDblParam(OsiDualTolerance, tolerance) ; if (gap <= 0.0) gap = tolerance; gap += 100.0 * tolerance; } int nOverGap = 0; #endif int numberFree = 0; int numberFixed = 0; for (int i = 0; i < numberIntegers; i++) { int iColumn = integerVariable[i]; if (upper[iColumn] > lower[iColumn]) { numberFree++; double value = newSolution[iColumn]; if (fabs(floor(value + 0.5) - value) <= integerTolerance) { candidate[cnt].var = iColumn; candidate[cnt++].pseudoRedCost = fabs(reducedCost[iColumn] * random[i]); #ifdef GAP if (fabs(reducedCost[iColumn]) > gap) nOverGap++; #endif } } else { numberFixed++; } } #ifdef GAP int nLeft = maxNumberAtBoundToFix - numberAtBoundFixed; #ifdef CLP_INVESTIGATE4 printf("cutoff %g obj %g nover %d - %d free, %d fixed\n", cutoff, solver->getObjValue(), nOverGap, numberFree, numberFixed); #endif if (nOverGap > nLeft && true) { nOverGap = CoinMin(nOverGap, nLeft + maxNumberAtBoundToFix / 2); maxNumberAtBoundToFix += nOverGap - nLeft; } #else #ifdef CLP_INVESTIGATE4 printf("cutoff %g obj %g - %d free, %d fixed\n", model_->getCutoff(), solver->getObjValue(), numberFree, numberFixed); #endif #endif #endif } else { for (int i = 0; i < numberIntegers; i++) { int iColumn = integerVariable[i]; if (upper[iColumn] > lower[iColumn]) { double value = newSolution[iColumn]; if (fabs(floor(value + 0.5) - value) <= integerTolerance) { candidate[cnt].var = iColumn; candidate[cnt++].pseudoRedCost = numberIntegers - i; } } } } std::sort(candidate, candidate + cnt, compareBinaryVars); for (int i = 0; i < cnt; i++) { int iColumn = candidate[i].var; if (upper[iColumn] > lower[iColumn]) { double value = newSolution[iColumn]; if (fabs(floor(value + 0.5) - value) <= integerTolerance && numberAtBoundFixed < maxNumberAtBoundToFix) { // fix the variable at one of its bounds if (fabs(lower[iColumn] - value) <= integerTolerance) { columnFixed[numberAtBoundFixed] = iColumn; originalBound[numberAtBoundFixed] = upper[iColumn]; fixedAtLowerBound[numberAtBoundFixed] = true; solver->setColUpper(iColumn, lower[iColumn]); numberAtBoundFixed++; } else if (fabs(upper[iColumn] - value) <= integerTolerance) { columnFixed[numberAtBoundFixed] = iColumn; originalBound[numberAtBoundFixed] = lower[iColumn]; fixedAtLowerBound[numberAtBoundFixed] = false; solver->setColLower(iColumn, upper[iColumn]); numberAtBoundFixed++; } if (numberAtBoundFixed == maxNumberAtBoundToFix) break; } } } #ifdef DIVE_DEBUG std::cout << "numberAtBoundFixed = " << numberAtBoundFixed << std::endl; #endif double originalBoundBestColumn; double bestColumnValue; int whichWay; if (bestColumn >= 0) { bestColumnValue = newSolution[bestColumn]; if (bestRound < 0) { originalBoundBestColumn = upper[bestColumn]; solver->setColUpper(bestColumn, floor(bestColumnValue)); whichWay=0; } else { originalBoundBestColumn = lower[bestColumn]; solver->setColLower(bestColumn, ceil(bestColumnValue)); whichWay=1; } } else { break; } int originalBestRound = bestRound; int saveModelOptions = model_->specialOptions(); while (1) { model_->setSpecialOptions(saveModelOptions | 2048); solver->resolve(); model_->setSpecialOptions(saveModelOptions); if (!solver->isAbandoned()&&!solver->isIterationLimitReached()) { numberSimplexIterations += solver->getIterationCount(); } else { numberSimplexIterations = maxSimplexIterations + 1; reasonToStop += 100; break; } if (!solver->isProvenOptimal()) { if (nodes) { if (solver->isProvenPrimalInfeasible()) { if (maxSimplexIterationsAtRoot_!=COIN_INT_MAX) { // stop now printf("stopping on first infeasibility\n"); break; } else if (cuts) { // can do conflict cut printf("could do intermediate conflict cut\n"); bool localCut; OsiRowCut * cut = model_->conflictCut(solver,localCut); if (cut) { if (!localCut) { model_->makePartialCut(cut,solver); cuts[numberCuts++]=cut; } else { delete cut; } } } } else { reasonToStop += 10; break; } } if (numberAtBoundFixed > 0) { // Remove the bound fix for variables that were at bounds for (int i = 0; i < numberAtBoundFixed; i++) { int iColFixed = columnFixed[i]; if (fixedAtLowerBound[i]) solver->setColUpper(iColFixed, originalBound[i]); else solver->setColLower(iColFixed, originalBound[i]); } numberAtBoundFixed = 0; } else if (bestRound == originalBestRound) { bestRound *= (-1); whichWay |=2; if (bestRound < 0) { solver->setColLower(bestColumn, originalBoundBestColumn); solver->setColUpper(bestColumn, floor(bestColumnValue)); } else { solver->setColLower(bestColumn, ceil(bestColumnValue)); solver->setColUpper(bestColumn, originalBoundBestColumn); } } else break; } else break; } if (!solver->isProvenOptimal() || direction*solver->getObjValue() >= solutionValue) { reasonToStop += 1; } else if (iteration > maxIterations_) { reasonToStop += 2; } else if (CoinCpuTime() - time1 > maxTime_) { reasonToStop += 3; } else if (numberSimplexIterations > maxSimplexIterations) { reasonToStop += 4; // also switch off #ifdef CLP_INVESTIGATE printf("switching off diving as too many iterations %d, %d allowed\n", numberSimplexIterations, maxSimplexIterations); #endif when_ = 0; } else if (solver->getIterationCount() > 1000 && iteration > 3 && !nodes) { reasonToStop += 5; // also switch off #ifdef CLP_INVESTIGATE printf("switching off diving one iteration took %d iterations (total %d)\n", solver->getIterationCount(), numberSimplexIterations); #endif when_ = 0; } memcpy(newSolution, solution, numberColumns*sizeof(double)); numberFractionalVariables = 0; double sumFractionalVariables=0.0; for (int i = 0; i < numberIntegers; i++) { int iColumn = integerVariable[i]; double value = newSolution[iColumn]; double away = fabs(floor(value + 0.5) - value); if (away > integerTolerance) { numberFractionalVariables++; sumFractionalVariables += away; } } if (nodes) { // save information //branchValues[numberNodes]=bestColumnValue; //statuses[numberNodes]=whichWay+(bestColumn<<2); //bases[numberNodes]=solver->getWarmStart(); ClpSimplex * simplex = clpSolver->getModelPtr(); CbcSubProblem * sub = new CbcSubProblem(clpSolver,lowerBefore,upperBefore, simplex->statusArray(),numberNodes); nodes[numberNodes]=sub; // other stuff sub->branchValue_=bestColumnValue; sub->problemStatus_=whichWay; sub->branchVariable_=bestColumn; sub->objectiveValue_ = simplex->objectiveValue(); sub->sumInfeasibilities_ = sumFractionalVariables; sub->numberInfeasibilities_ = numberFractionalVariables; printf("DiveNode %d column %d way %d bvalue %g obj %g\n", numberNodes,sub->branchVariable_,sub->problemStatus_, sub->branchValue_,sub->objectiveValue_); numberNodes++; if (solver->isProvenOptimal()) { memcpy(lastDjs,solver->getReducedCost(),numberColumns*sizeof(double)); memcpy(lowerBefore,lower,numberColumns*sizeof(double)); memcpy(upperBefore,upper,numberColumns*sizeof(double)); } } if (!numberFractionalVariables||reasonToStop) break; } if (nodes) { printf("Exiting dive for reason %d\n",reasonToStop); if (reasonToStop>1) { printf("problems in diving\n"); int whichWay=nodes[numberNodes-1]->problemStatus_; CbcSubProblem * sub; if ((whichWay&2)==0) { // leave both ways sub = new CbcSubProblem(*nodes[numberNodes-1]); nodes[numberNodes++]=sub; } else { sub = nodes[numberNodes-1]; } if ((whichWay&1)==0) sub->problemStatus_=whichWay|1; else sub->problemStatus_=whichWay&~1; } if (!numberNodes) { // was good at start! - create fake clpSolver->resolve(); ClpSimplex * simplex = clpSolver->getModelPtr(); CbcSubProblem * sub = new CbcSubProblem(clpSolver,lowerBefore,upperBefore, simplex->statusArray(),numberNodes); nodes[numberNodes]=sub; // other stuff sub->branchValue_=0.0; sub->problemStatus_=0; sub->branchVariable_=-1; sub->objectiveValue_ = simplex->objectiveValue(); sub->sumInfeasibilities_ = 0.0; sub->numberInfeasibilities_ = 0; printf("DiveNode %d column %d way %d bvalue %g obj %g\n", numberNodes,sub->branchVariable_,sub->problemStatus_, sub->branchValue_,sub->objectiveValue_); numberNodes++; assert (solver->isProvenOptimal()); } nodes[numberNodes-1]->problemStatus_ |= 256*reasonToStop; // use djs as well if (solver->isProvenPrimalInfeasible()&&cuts) { // can do conflict cut and re-order printf("could do final conflict cut\n"); bool localCut; OsiRowCut * cut = model_->conflictCut(solver,localCut); if (cut) { printf("cut - need to use conflict and previous djs\n"); if (!localCut) { model_->makePartialCut(cut,solver); cuts[numberCuts++]=cut; } else { delete cut; } } else { printf("bad conflict - just use previous djs\n"); } } } // re-compute new solution value double objOffset = 0.0; solver->getDblParam(OsiObjOffset, objOffset); newSolutionValue = -objOffset; for (int i = 0 ; i < numberColumns ; i++ ) newSolutionValue += objective[i] * newSolution[i]; newSolutionValue *= direction; //printf("new solution value %g %g\n",newSolutionValue,solutionValue); if (newSolutionValue < solutionValue && !reasonToStop) { double * rowActivity = new double[numberRows]; memset(rowActivity, 0, numberRows*sizeof(double)); // paranoid check memset(rowActivity, 0, numberRows*sizeof(double)); for (int i = 0; i < numberColumns; i++) { int j; double value = newSolution[i]; if (value) { for (j = columnStart[i]; j < columnStart[i] + columnLength[i]; j++) { int iRow = row[j]; rowActivity[iRow] += value * element[j]; } } } // check was approximately feasible bool feasible = true; for (int i = 0; i < numberRows; i++) { if (rowActivity[i] < rowLower[i]) { if (rowActivity[i] < rowLower[i] - 1000.0*primalTolerance) feasible = false; } else if (rowActivity[i] > rowUpper[i]) { if (rowActivity[i] > rowUpper[i] + 1000.0*primalTolerance) feasible = false; } } for (int i = 0; i < numberIntegers; i++) { int iColumn = integerVariable[i]; double value = newSolution[iColumn]; if (fabs(floor(value + 0.5) - value) > integerTolerance) { feasible = false; break; } } if (feasible) { // new solution solutionValue = newSolutionValue; //printf("** Solution of %g found by CbcHeuristicDive\n",newSolutionValue); //if (cuts) //clpSolver->getModelPtr()->writeMps("good8.mps", 2); returnCode = 1; } else { // Can easily happen //printf("Debug CbcHeuristicDive giving bad solution\n"); } delete [] rowActivity; } #ifdef DIVE_DEBUG std::cout << "nRoundInfeasible = " << nRoundInfeasible << ", nRoundFeasible = " << nRoundFeasible << ", returnCode = " << returnCode << ", reasonToStop = " << reasonToStop << ", simplexIts = " << numberSimplexIterations << ", iterations = " << iteration << std::endl; #endif delete [] columnFixed; delete [] originalBound; delete [] fixedAtLowerBound; delete [] candidate; delete [] random; delete [] downArray_; downArray_ = NULL; delete [] upArray_; upArray_ = NULL; delete solver; return returnCode; }
int main (int argc, const char *argv[]) { // Define your favorite OsiSolver OsiClpSolverInterface solver1; // Read in model using argv[1] // and assert that it is a clean model std::string mpsFileName; #if defined(SAMPLEDIR) mpsFileName = SAMPLEDIR "/p0033.mps"; #else if (argc < 2) { fprintf(stderr, "Do not know where to find sample MPS files.\n"); exit(1); } #endif if (argc>=2) mpsFileName = argv[1]; int numMpsReadErrors = solver1.readMps(mpsFileName.c_str(),""); assert(numMpsReadErrors==0); double time1 = CoinCpuTime(); /* Options are: preprocess to do preprocessing time in minutes if 2 parameters and numeric taken as time */ bool preProcess=false; double minutes=-1.0; int nGoodParam=0; for (int iParam=2; iParam<argc;iParam++) { if (!strcmp(argv[iParam],"preprocess")) { preProcess=true; nGoodParam++; } else if (!strcmp(argv[iParam],"time")) { if (iParam+1<argc&&isdigit(argv[iParam+1][0])) { minutes=atof(argv[iParam+1]); if (minutes>=0.0) { nGoodParam+=2; iParam++; // skip time } } } } if (nGoodParam==0&&argc==3&&isdigit(argv[2][0])) { // If time is given then stop after that number of minutes minutes = atof(argv[2]); if (minutes>=0.0) nGoodParam=1; } if (nGoodParam!=argc-2&&argc>=2) { printf("Usage <file> [preprocess] [time <minutes>] or <file> <minutes>\n"); exit(1); } //solver1.getModelPtr()->setLogLevel(0); solver1.messageHandler()->setLogLevel(0); solver1.initialSolve(); // Reduce printout solver1.setHintParam(OsiDoReducePrint,true,OsiHintTry); CbcModel model(solver1); model.solver()->setHintParam(OsiDoReducePrint,true,OsiHintTry); // Set up some cut generators and defaults // Probing first as gets tight bounds on continuous CglProbing generator1; generator1.setUsingObjective(true); generator1.setMaxPass(1); generator1.setMaxPassRoot(5); // Number of unsatisfied variables to look at generator1.setMaxProbe(10); generator1.setMaxProbeRoot(1000); // How far to follow the consequences generator1.setMaxLook(50); generator1.setMaxLookRoot(500); // Only look at rows with fewer than this number of elements generator1.setMaxElements(200); generator1.setRowCuts(3); CglGomory generator2; // try larger limit generator2.setLimit(300); CglKnapsackCover generator3; CglRedSplit generator4; // try larger limit generator4.setLimit(200); CglClique generator5; generator5.setStarCliqueReport(false); generator5.setRowCliqueReport(false); CglMixedIntegerRounding2 mixedGen; CglFlowCover flowGen; // Add in generators // Experiment with -1 and -99 etc model.addCutGenerator(&generator1,-1,"Probing"); model.addCutGenerator(&generator2,-1,"Gomory"); model.addCutGenerator(&generator3,-1,"Knapsack"); // model.addCutGenerator(&generator4,-1,"RedSplit"); model.addCutGenerator(&generator5,-1,"Clique"); model.addCutGenerator(&flowGen,-1,"FlowCover"); model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding"); OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver()); // go faster stripes if (osiclp) { // Turn this off if you get problems // Used to be automatically set osiclp->setSpecialOptions(128); if(osiclp->getNumRows()<300&&osiclp->getNumCols()<500) { //osiclp->setupForRepeatedUse(2,1); osiclp->setupForRepeatedUse(0,1); } } // Uncommenting this should switch off most CBC messages //model.messagesPointer()->setDetailMessages(10,5,5000); // Allow rounding heuristic CbcRounding heuristic1(model); model.addHeuristic(&heuristic1); // And local search when new solution found CbcHeuristicLocal heuristic2(model); model.addHeuristic(&heuristic2); // Redundant definition of default branching (as Default == User) CbcBranchUserDecision branch; model.setBranchingMethod(&branch); // Definition of node choice CbcCompareUser compare; model.setNodeComparison(compare); // Do initial solve to continuous model.initialSolve(); // Could tune more double objValue = model.solver()->getObjSense()*model.solver()->getObjValue(); double minimumDropA=CoinMin(1.0,fabs(objValue)*1.0e-3+1.0e-4); double minimumDrop= fabs(objValue)*1.0e-4+1.0e-4; printf("min drop %g (A %g)\n",minimumDrop,minimumDropA); model.setMinimumDrop(minimumDrop); if (model.getNumCols()<500) model.setMaximumCutPassesAtRoot(-100); // always do 100 if possible else if (model.getNumCols()<5000) model.setMaximumCutPassesAtRoot(100); // use minimum drop else model.setMaximumCutPassesAtRoot(20); model.setMaximumCutPasses(10); //model.setMaximumCutPasses(2); // Switch off strong branching if wanted // model.setNumberStrong(0); // Do more strong branching if small if (model.getNumCols()<5000) model.setNumberStrong(10); model.setNumberStrong(20); //model.setNumberStrong(5); model.setNumberBeforeTrust(5); //model.setSizeMiniTree(2); model.solver()->setIntParam(OsiMaxNumIterationHotStart,100); // If time is given then stop after that number of minutes if (minutes>=0.0) { std::cout<<"Stopping after "<<minutes<<" minutes"<<std::endl; model.setDblParam(CbcModel::CbcMaximumSeconds,60.0*minutes); } // Switch off most output if (model.getNumCols()<3000) { model.messageHandler()->setLogLevel(1); //model.solver()->messageHandler()->setLogLevel(0); } else { model.messageHandler()->setLogLevel(2); model.solver()->messageHandler()->setLogLevel(1); } // Default strategy will leave cut generators as they exist already // so cutsOnlyAtRoot (1) ignored // numberStrong (2) is 5 (default) // numberBeforeTrust (3) is 5 (default is 0) // printLevel (4) defaults (0) CbcStrategyDefault strategy(true,5,5); // Set up pre-processing to find sos if wanted if (preProcess) strategy.setupPreProcessing(2); model.setStrategy(strategy); // Go round adding cuts to cutoff last solution // Stop after finding 20 best solutions for (int iPass=0;iPass<20;iPass++) { time1 = CoinCpuTime(); // Do complete search model.branchAndBound(); std::cout<<mpsFileName<<" took "<<CoinCpuTime()-time1<<" seconds, " <<model.getNodeCount()<<" nodes with objective " <<model.getObjValue() <<(!model.status() ? " Finished" : " Not finished") <<std::endl; // Stop if infeasible if (model.isProvenInfeasible()) break; // Print solution if finished - we can't get names from Osi! - so get from OsiClp assert (model.getMinimizationObjValue()<1.0e50); OsiSolverInterface * solver = model.solver(); int numberColumns = solver->getNumCols(); const double * solution = model.bestSolution(); //const double * lower = solver->getColLower(); //const double * upper = solver->getColUpper(); // Get names from solver1 (as OsiSolverInterface may lose) std::vector<std::string> columnNames = *solver1.getModelPtr()->columnNames(); int iColumn; std::cout<<std::setiosflags(std::ios::fixed|std::ios::showpoint)<<std::setw(14); std::cout<<"--------------------------------------"<<std::endl; for (iColumn=0;iColumn<numberColumns;iColumn++) { double value=solution[iColumn]; if (fabs(value)>1.0e-7&&solver->isInteger(iColumn)) std::cout<<std::setw(6)<<iColumn<<" " <<columnNames[iColumn]<<" " <<value //<<" "<<lower[iColumn]<<" "<<upper[iColumn] <<std::endl; } std::cout<<"--------------------------------------"<<std::endl; std::cout<<std::resetiosflags(std::ios::fixed|std::ios::showpoint|std::ios::scientific); /* Now add cut to reference copy. resetting to reference copy also gets rid of best solution so we should either save best solution, reset, add cut OR add cut to reference copy then reset - this is doing latter */ OsiSolverInterface * refSolver = model.referenceSolver(); const double * bestSolution = model.bestSolution(); const double * originalLower = refSolver->getColLower(); const double * originalUpper = refSolver->getColUpper(); CoinPackedVector cut; double rhs = 1.0; for (iColumn=0;iColumn<numberColumns;iColumn++) { double value=bestSolution[iColumn]; if (solver->isInteger(iColumn)) { // only works for 0-1 variables assert (originalLower[iColumn]==0.0&& originalUpper[iColumn]==1.0); // double check integer assert (fabs(floor(value+0.5)-value)<1.0e-5); if (value>0.5) { // at 1.0 cut.insert(iColumn,-1.0); rhs -= 1.0; } else { // at 0.0 cut.insert(iColumn,1.0); } } } // now add cut refSolver->addRow(cut,rhs,COIN_DBL_MAX); model.resetToReferenceSolver(); } return 0; }
int main (int argc, const char *argv[]) { // Define your favorite OsiSolver OsiClpSolverInterface solver1; // Read in model using argv[1] // and assert that it is a clean model std::string dirsep(1,CoinFindDirSeparator()); std::string mpsFileName; # if defined(SAMPLEDIR) mpsFileName = SAMPLEDIR ; mpsFileName += dirsep+"p0033.mps"; # else if (argc < 2) { fprintf(stderr, "Do not know where to find sample MPS files.\n"); exit(1); } # endif if (argc>=2) mpsFileName = argv[1]; int numMpsReadErrors = solver1.readMps(mpsFileName.c_str(),""); if( numMpsReadErrors != 0 ) { printf("%d errors reading MPS file\n", numMpsReadErrors); return numMpsReadErrors; } double time1 = CoinCpuTime(); /* Options are: preprocess to do preprocessing time in minutes if 2 parameters and numeric taken as time */ bool preProcess=false; double minutes=-1.0; int nGoodParam=0; for (int iParam=2; iParam<argc;iParam++) { if (!strcmp(argv[iParam],"preprocess")) { preProcess=true; nGoodParam++; } else if (!strcmp(argv[iParam],"time")) { if (iParam+1<argc&&isdigit(argv[iParam+1][0])) { minutes=atof(argv[iParam+1]); if (minutes>=0.0) { nGoodParam+=2; iParam++; // skip time } } } } if (nGoodParam==0&&argc==3&&isdigit(argv[2][0])) { // If time is given then stop after that number of minutes minutes = atof(argv[2]); if (minutes>=0.0) nGoodParam=1; } if (nGoodParam!=argc-2&&argc>=2) { printf("Usage <file> [preprocess] [time <minutes>] or <file> <minutes>\n"); exit(1); } solver1.initialSolve(); // Reduce printout solver1.setHintParam(OsiDoReducePrint,true,OsiHintTry); // See if we want preprocessing OsiSolverInterface * solver2=&solver1; #if PREPROCESS==1 CglPreProcess process; if (preProcess) { /* Do not try and produce equality cliques and do up to 5 passes */ solver2 = process.preProcess(solver1,false,5); if (!solver2) { printf("Pre-processing says infeasible\n"); exit(2); } solver2->resolve(); } #endif CbcModel model(*solver2); model.solver()->setHintParam(OsiDoReducePrint,true,OsiHintTry); // Set up some cut generators and defaults // Probing first as gets tight bounds on continuous CglProbing generator1; generator1.setUsingObjective(true); generator1.setMaxPass(1); generator1.setMaxPassRoot(5); // Number of unsatisfied variables to look at generator1.setMaxProbe(10); generator1.setMaxProbeRoot(1000); // How far to follow the consequences generator1.setMaxLook(50); generator1.setMaxLookRoot(500); // Only look at rows with fewer than this number of elements generator1.setMaxElements(200); generator1.setRowCuts(3); CglGomory generator2; // try larger limit generator2.setLimit(300); CglKnapsackCover generator3; CglRedSplit generator4; // try larger limit generator4.setLimit(200); CglClique generator5; generator5.setStarCliqueReport(false); generator5.setRowCliqueReport(false); CglMixedIntegerRounding2 mixedGen; CglFlowCover flowGen; // Add in generators // Experiment with -1 and -99 etc model.addCutGenerator(&generator1,-1,"Probing"); model.addCutGenerator(&generator2,-1,"Gomory"); model.addCutGenerator(&generator3,-1,"Knapsack"); // model.addCutGenerator(&generator4,-1,"RedSplit"); model.addCutGenerator(&generator5,-1,"Clique"); model.addCutGenerator(&flowGen,-1,"FlowCover"); model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding"); // Say we want timings int numberGenerators = model.numberCutGenerators(); int iGenerator; for (iGenerator=0;iGenerator<numberGenerators;iGenerator++) { CbcCutGenerator * generator = model.cutGenerator(iGenerator); generator->setTiming(true); } OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver()); // go faster stripes if (osiclp) { // Turn this off if you get problems // Used to be automatically set osiclp->setSpecialOptions(128); if(osiclp->getNumRows()<300&&osiclp->getNumCols()<500) { //osiclp->setupForRepeatedUse(2,0); osiclp->setupForRepeatedUse(0,0); } } // Uncommenting this should switch off all CBC messages // model.messagesPointer()->setDetailMessages(10,10000,NULL); // Allow rounding heuristic CbcRounding heuristic1(model); model.addHeuristic(&heuristic1); // And local search when new solution found CbcHeuristicLocal heuristic2(model); model.addHeuristic(&heuristic2); // Redundant definition of default branching (as Default == User) CbcBranchUserDecision branch; model.setBranchingMethod(&branch); // Definition of node choice CbcCompareUser compare; model.setNodeComparison(compare); // Do initial solve to continuous model.initialSolve(); // Could tune more double objValue = model.solver()->getObjSense()*model.solver()->getObjValue(); double minimumDropA=CoinMin(1.0,fabs(objValue)*1.0e-3+1.0e-4); double minimumDrop= fabs(objValue)*1.0e-4+1.0e-4; printf("min drop %g (A %g)\n",minimumDrop,minimumDropA); model.setMinimumDrop(minimumDrop); if (model.getNumCols()<500) model.setMaximumCutPassesAtRoot(-100); // always do 100 if possible else if (model.getNumCols()<5000) model.setMaximumCutPassesAtRoot(100); // use minimum drop else model.setMaximumCutPassesAtRoot(20); model.setMaximumCutPasses(10); //model.setMaximumCutPasses(2); // Switch off strong branching if wanted // model.setNumberStrong(0); // Do more strong branching if small if (model.getNumCols()<5000) model.setNumberStrong(10); model.setNumberStrong(20); //model.setNumberStrong(5); model.setNumberBeforeTrust(5); model.solver()->setIntParam(OsiMaxNumIterationHotStart,100); // If time is given then stop after that number of minutes if (minutes>=0.0) { std::cout<<"Stopping after "<<minutes<<" minutes"<<std::endl; model.setDblParam(CbcModel::CbcMaximumSeconds,60.0*minutes); } // Switch off most output if (model.getNumCols()<3000) { model.messageHandler()->setLogLevel(1); //model.solver()->messageHandler()->setLogLevel(0); } else { model.messageHandler()->setLogLevel(2); model.solver()->messageHandler()->setLogLevel(1); } //model.messageHandler()->setLogLevel(2); //model.solver()->messageHandler()->setLogLevel(2); //model.setPrintFrequency(50); //#define DEBUG_CUTS #ifdef DEBUG_CUTS // Set up debugger by name (only if no preprocesing) if (!preProcess) { std::string problemName ; model.solver()->getStrParam(OsiProbName,problemName) ; model.solver()->activateRowCutDebugger(problemName.c_str()) ; } #endif #if PREPROCESS==2 // Default strategy will leave cut generators as they exist already // so cutsOnlyAtRoot (1) ignored // numberStrong (2) is 5 (default) // numberBeforeTrust (3) is 5 (default is 0) // printLevel (4) defaults (0) CbcStrategyDefault strategy(true,5,5); // Set up pre-processing to find sos if wanted if (preProcess) strategy.setupPreProcessing(2); model.setStrategy(strategy); #endif // Do complete search model.branchAndBound(); std::cout<<mpsFileName<<" took "<<CoinCpuTime()-time1<<" seconds, " <<model.getNodeCount()<<" nodes with objective " <<model.getObjValue() <<(!model.status() ? " Finished" : " Not finished") <<std::endl; // Print more statistics std::cout<<"Cuts at root node changed objective from "<<model.getContinuousObjective() <<" to "<<model.rootObjectiveAfterCuts()<<std::endl; for (iGenerator=0;iGenerator<numberGenerators;iGenerator++) { CbcCutGenerator * generator = model.cutGenerator(iGenerator); std::cout<<generator->cutGeneratorName()<<" was tried " <<generator->numberTimesEntered()<<" times and created " <<generator->numberCutsInTotal()<<" cuts of which " <<generator->numberCutsActive()<<" were active after adding rounds of cuts"; if (generator->timing()) std::cout<<" ( "<<generator->timeInCutGenerator()<<" seconds)"<<std::endl; else std::cout<<std::endl; } // Print solution if finished - we can't get names from Osi! - so get from OsiClp if (model.getMinimizationObjValue()<1.0e50) { #if PREPROCESS==1 // post process OsiSolverInterface * solver; if (preProcess) { process.postProcess(*model.solver()); // Solution now back in solver1 solver = & solver1; } else { solver = model.solver(); } #else OsiSolverInterface * solver = model.solver(); #endif int numberColumns = solver->getNumCols(); const double * solution = solver->getColSolution(); // Get names from solver1 (as OsiSolverInterface may lose) std::vector<std::string> columnNames = *solver1.getModelPtr()->columnNames(); int iColumn; std::cout<<std::setiosflags(std::ios::fixed|std::ios::showpoint)<<std::setw(14); std::cout<<"--------------------------------------"<<std::endl; for (iColumn=0;iColumn<numberColumns;iColumn++) { double value=solution[iColumn]; if (fabs(value)>1.0e-7&&solver->isInteger(iColumn)) std::cout<<std::setw(6)<<iColumn<<" " <<columnNames[iColumn]<<" " <<value<<std::endl; } std::cout<<"--------------------------------------"<<std::endl; std::cout<<std::resetiosflags(std::ios::fixed|std::ios::showpoint|std::ios::scientific); } return 0; }
int main (int argc, const char *argv[]) { // Define your favorite OsiSolver OsiClpSolverInterface solver1; // Read in model using argv[1] // and assert that it is a clean model std::string mpsFileName; #if defined(SAMPLEDIR) mpsFileName = SAMPLEDIR "/p0033.mps"; #else if (argc < 2) { fprintf(stderr, "Do not know where to find sample MPS files.\n"); exit(1); } #endif if (argc>=2) mpsFileName = argv[1]; int numMpsReadErrors = solver1.readMps(mpsFileName.c_str(),""); assert(numMpsReadErrors==0); double time1 = CoinCpuTime(); OsiClpSolverInterface solverSave = solver1; /* Options are: preprocess to do preprocessing time in minutes if 2 parameters and numeric taken as time */ bool preProcess=false; double minutes=-1.0; int nGoodParam=0; for (int iParam=2; iParam<argc;iParam++) { if (!strcmp(argv[iParam],"preprocess")) { preProcess=true; nGoodParam++; } else if (!strcmp(argv[iParam],"time")) { if (iParam+1<argc&&isdigit(argv[iParam+1][0])) { minutes=atof(argv[iParam+1]); if (minutes>=0.0) { nGoodParam+=2; iParam++; // skip time } } } } if (nGoodParam==0&&argc==3&&isdigit(argv[2][0])) { // If time is given then stop after that number of minutes minutes = atof(argv[2]); if (minutes>=0.0) nGoodParam=1; } if (nGoodParam!=argc-2&&argc>=2) { printf("Usage <file> [preprocess] [time <minutes>] or <file> <minutes>\n"); exit(1); } // Reduce printout solver1.setHintParam(OsiDoReducePrint,true,OsiHintTry); // See if we want preprocessing OsiSolverInterface * solver2=&solver1; CglPreProcess process; // Never do preprocessing until dual tests out as can fix incorrectly preProcess=false; if (preProcess) { /* Do not try and produce equality cliques and do up to 5 passes */ solver2 = process.preProcess(solver1,false,5); if (!solver2) { printf("Pre-processing says infeasible\n"); exit(2); } solver2->resolve(); } // Turn L rows into cuts CglStoredUser stored; { int numberRows = solver2->getNumRows(); int * whichRow = new int[numberRows]; // get row copy const CoinPackedMatrix * rowCopy = solver2->getMatrixByRow(); const int * column = rowCopy->getIndices(); const int * rowLength = rowCopy->getVectorLengths(); const CoinBigIndex * rowStart = rowCopy->getVectorStarts(); const double * rowLower = solver2->getRowLower(); const double * rowUpper = solver2->getRowUpper(); const double * element = rowCopy->getElements(); int iRow,nDelete=0; for (iRow=0;iRow<numberRows;iRow++) { if (rowLower[iRow]<-1.0e20||rowUpper[iRow]>1.0e20) { // take out whichRow[nDelete++]=iRow; } } // leave some rows to avoid empty problem (Gomory does not like) nDelete = CoinMax(CoinMin(nDelete,numberRows-5),0); for (int jRow=0;jRow<nDelete;jRow++) { iRow=whichRow[jRow]; int start = rowStart[iRow]; stored.addCut(rowLower[iRow],rowUpper[iRow],rowLength[iRow], column+start,element+start); } /* The following is problem specific. Normally cuts are deleted if slack on cut basic. On some problems you may wish to leave cuts in as long as slack value zero */ int numberCuts=stored.sizeRowCuts(); for (int iCut=0;iCut<numberCuts;iCut++) { //stored.mutableRowCutPointer(iCut)->setEffectiveness(1.0e50); } solver2->deleteRows(nDelete,whichRow); delete [] whichRow; } CbcModel model(*solver2); model.solver()->setHintParam(OsiDoReducePrint,true,OsiHintTry); // Set up some cut generators and defaults // Probing first as gets tight bounds on continuous CglProbing generator1; generator1.setUsingObjective(true); generator1.setMaxPass(1); generator1.setMaxPassRoot(5); // Number of unsatisfied variables to look at generator1.setMaxProbe(10); generator1.setMaxProbeRoot(1000); // How far to follow the consequences generator1.setMaxLook(50); generator1.setMaxLookRoot(500); // Only look at rows with fewer than this number of elements generator1.setMaxElements(200); generator1.setRowCuts(3); CglGomory generator2; // try larger limit generator2.setLimit(300); CglKnapsackCover generator3; CglRedSplit generator4; // try larger limit generator4.setLimit(200); CglClique generator5; generator5.setStarCliqueReport(false); generator5.setRowCliqueReport(false); CglMixedIntegerRounding2 mixedGen; CglFlowCover flowGen; // Add in generators // Experiment with -1 and -99 etc // This is just for one particular model model.addCutGenerator(&generator1,-1,"Probing"); //model.addCutGenerator(&generator2,-1,"Gomory"); model.addCutGenerator(&generator2,1,"Gomory"); model.addCutGenerator(&generator3,-1,"Knapsack"); // model.addCutGenerator(&generator4,-1,"RedSplit"); //model.addCutGenerator(&generator5,-1,"Clique"); model.addCutGenerator(&generator5,1,"Clique"); model.addCutGenerator(&flowGen,-1,"FlowCover"); model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding"); // Add stored cuts (making sure at all depths) model.addCutGenerator(&stored,1,"Stored",true,false,false,-100,1,-1); int numberGenerators = model.numberCutGenerators(); int iGenerator; // Say we want timings for (iGenerator=0;iGenerator<numberGenerators;iGenerator++) { CbcCutGenerator * generator = model.cutGenerator(iGenerator); generator->setTiming(true); } OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver()); // go faster stripes if (osiclp) { if(osiclp->getNumRows()<300&&osiclp->getNumCols()<500) { //osiclp->setupForRepeatedUse(2,0); osiclp->setupForRepeatedUse(0,0); } // Don't allow dual stuff osiclp->setSpecialOptions(osiclp->specialOptions()|262144); } // Uncommenting this should switch off all CBC messages // model.messagesPointer()->setDetailMessages(10,10000,NULL); // No heuristics // Do initial solve to continuous model.initialSolve(); /* You need the next few lines - a) so that cut generator will always be called again if it generated cuts b) it is known that matrix is not enough to define problem so do cuts even if it looks integer feasible at continuous optimum. c) a solution found by strong branching will be ignored. d) don't recompute a solution once found */ // Make sure cut generator called correctly (a) iGenerator=numberGenerators-1; model.cutGenerator(iGenerator)->setMustCallAgain(true); // Say cuts needed at continuous (b) OsiBabSolver oddCuts; oddCuts.setSolverType(4); // owing to bug must set after initialSolve model.passInSolverCharacteristics(&oddCuts); // Say no to all solutions by strong branching (c) CbcFeasibilityNoStrong noStrong; model.setProblemFeasibility(noStrong); // Say don't recompute solution d) model.setSpecialOptions(4); // Could tune more double objValue = model.solver()->getObjSense()*model.solver()->getObjValue(); double minimumDropA=CoinMin(1.0,fabs(objValue)*1.0e-3+1.0e-4); double minimumDrop= fabs(objValue)*1.0e-4+1.0e-4; printf("min drop %g (A %g)\n",minimumDrop,minimumDropA); model.setMinimumDrop(minimumDrop); if (model.getNumCols()<500) model.setMaximumCutPassesAtRoot(-100); // always do 100 if possible else if (model.getNumCols()<5000) model.setMaximumCutPassesAtRoot(100); // use minimum drop else model.setMaximumCutPassesAtRoot(20); model.setMaximumCutPasses(10); //model.setMaximumCutPasses(2); // Switch off strong branching if wanted // model.setNumberStrong(0); // Do more strong branching if small if (model.getNumCols()<5000) model.setNumberStrong(10); model.setNumberStrong(20); //model.setNumberStrong(5); model.setNumberBeforeTrust(5); model.solver()->setIntParam(OsiMaxNumIterationHotStart,100); // If time is given then stop after that number of minutes if (minutes>=0.0) { std::cout<<"Stopping after "<<minutes<<" minutes"<<std::endl; model.setDblParam(CbcModel::CbcMaximumSeconds,60.0*minutes); } // Switch off most output if (model.getNumCols()<30000) { model.messageHandler()->setLogLevel(1); //model.solver()->messageHandler()->setLogLevel(0); } else { model.messageHandler()->setLogLevel(2); model.solver()->messageHandler()->setLogLevel(1); } //model.messageHandler()->setLogLevel(2); //model.solver()->messageHandler()->setLogLevel(2); //model.setPrintFrequency(50); //#define DEBUG_CUTS #ifdef DEBUG_CUTS // Set up debugger by name (only if no preprocesing) if (!preProcess) { std::string problemName ; model.solver()->getStrParam(OsiProbName,problemName) ; model.solver()->activateRowCutDebugger(problemName.c_str()) ; } #endif // Do complete search model.branchAndBound(); std::cout<<mpsFileName<<" took "<<CoinCpuTime()-time1<<" seconds, " <<model.getNodeCount()<<" nodes with objective " <<model.getObjValue() <<(!model.status() ? " Finished" : " Not finished") <<std::endl; // Print more statistics std::cout<<"Cuts at root node changed objective from "<<model.getContinuousObjective() <<" to "<<model.rootObjectiveAfterCuts()<<std::endl; for (iGenerator=0;iGenerator<numberGenerators;iGenerator++) { CbcCutGenerator * generator = model.cutGenerator(iGenerator); std::cout<<generator->cutGeneratorName()<<" was tried " <<generator->numberTimesEntered()<<" times and created " <<generator->numberCutsInTotal()<<" cuts of which " <<generator->numberCutsActive()<<" were active after adding rounds of cuts"; if (generator->timing()) std::cout<<" ( "<<generator->timeInCutGenerator()<<" seconds)"<<std::endl; else std::cout<<std::endl; } // Print solution if finished - we can't get names from Osi! - so get from OsiClp if (model.getMinimizationObjValue()<1.0e50) { // post process OsiSolverInterface * solver; if (preProcess) { process.postProcess(*model.solver()); // Solution now back in solver1 solver = & solver1; } else { solver = model.solver(); } int numberColumns = solver->getNumCols(); const double * solution = solver->getColSolution(); // Get names from solver1 (as OsiSolverInterface may lose) std::vector<std::string> columnNames = *solver1.getModelPtr()->columnNames(); int iColumn; std::cout<<std::setiosflags(std::ios::fixed|std::ios::showpoint)<<std::setw(14); std::cout<<"--------------------------------------"<<std::endl; for (iColumn=0;iColumn<numberColumns;iColumn++) { double value=solution[iColumn]; if (fabs(value)>1.0e-7&&solver->isInteger(iColumn)) { std::cout<<std::setw(6)<<iColumn<<" " <<columnNames[iColumn]<<" " <<value<<std::endl; solverSave.setColLower(iColumn,value); solverSave.setColUpper(iColumn,value); } } std::cout<<"--------------------------------------"<<std::endl; std::cout<<std::resetiosflags(std::ios::fixed|std::ios::showpoint|std::ios::scientific); solverSave.initialSolve(); } return 0; }