示例#1
0
void MixedModelLayout::doCall(
	PlanRep &PG,
	adjEntry adjExternal,
	GridLayout &gridLayout,
	IPoint &boundingBox,
	bool fixEmbedding)
{
	// handle graphs with less than 3 nodes
	node v1, v2;
	switch (PG.numberOfNodes()) {
	case 0:
		boundingBox = IPoint(0,0);
		return;

	case 1:
		v1 = PG.firstNode();
		gridLayout.x(v1) = gridLayout.y(v1) = 0;
		boundingBox = IPoint(0,0);
		return;

	case 2:
		v1 = PG.firstNode();
		v2 = v1->succ();
		gridLayout.x(v1) = gridLayout.y(v1) = gridLayout.y(v2) = 0;
		gridLayout.x(v2) = 1;
		boundingBox = IPoint(1,0);
		return;
	}

	MixedModelBase mm(PG,gridLayout);

	if(fixEmbedding) {
		OGDF_ASSERT(PG.representsCombEmbedding());
		PlanarAugmentationFix fixAugmenter;
		mm.computeOrder(fixAugmenter, 0, adjExternal, m_compOrder.get());
	} else
		mm.computeOrder(m_augmenter.get(),&m_embedder.get(),0,m_compOrder.get());

	mm.assignIopCoords();
	mm.placeNodes();
	mm.postprocessing1();
	mm.setBends();
	mm.postprocessing2();

	m_crossingsBeautifier.get().call(PG,gridLayout);

	int xmin, ymin;
	gridLayout.computeBoundingBox(xmin,boundingBox.m_x,ymin,boundingBox.m_y);
}
//
// insert an arc for each edge with direction m_arcDir
void CompactionConstraintGraphBase::insertBasicArcs(const PlanRep &PG)
{
	const Graph &G = *m_pOR;

	for(node v : G.nodes)
	{
		node start = m_pathNode[v];

		for(adjEntry adj : v->adjEdges) {
			if (m_pOR->direction(adj) == m_arcDir) {
				edge e = newEdge(start, m_pathNode[adj->theEdge()->opposite(v)]);
				m_edgeToBasicArc[adj] = e;

				m_cost[e] = m_edgeCost[PG.typeOf(adj->theEdge())];

				//try to pull nodes up in hierarchies
				if ( (PG.typeOf(adj->theEdge()) == Graph::generalization) &&
					(PG.typeOf(adj->theEdge()->target()) == Graph::generalizationExpander) &&
					!(PG.isExpansionEdge(adj->theEdge()))
					)
				{
					if (m_align)
					{
						//got to be higher than vertexarccost*doublebendfactor
						m_cost[e] = 4000*m_cost[e]; //use parameter later corresponding
						m_alignmentArc[e] = true;
					}//if align
					//to compconsgraph::doublebendfactor
					else m_cost[e] = 2*m_cost[e];
				}

				//set generalization type
				if (verticalGen(adj->theEdge())) m_verticalArc[e] = true;
				//set onborder
				if (PG.isDegreeExpansionEdge(adj->theEdge()))
				{
					edge borderE = adj->theEdge();
					node v1 = borderE->source();
					node v2 = borderE->target();
					m_border[e] = ((v1->degree()>2) && (v2->degree()>2) ? 2 : 1);
				}

			}
		}
	}
}
示例#3
0
	face SimpleEmbedder::findBestExternalFace(const PlanRep& PG,
	                                          const CombinatorialEmbedding& E)
	{
		FaceArray<int> weight(E);

		face f;
		forall_faces(f,E)
			weight[f] = f->size();

		node v;
		forall_nodes(v,PG)
		{
			if(PG.typeOf(v) != Graph::generalizationMerger)
				continue;

			adjEntry adj;
			forall_adj(adj,v) {
				if(adj->theEdge()->source() == v)
					break;
			}

			OGDF_ASSERT(adj->theEdge()->source() == v);

			node w = adj->theEdge()->target();
			bool isBase = true;

			adjEntry adj2;
			forall_adj(adj2, w) {
				edge e = adj2->theEdge();
				if(e->target() != w && PG.typeOf(e) == Graph::generalization) {
					isBase = false;
					break;
				}
			}

			if(isBase == false)
				continue;

			face f1 = E.leftFace(adj);
			face f2 = E.rightFace(adj);

			weight[f1] += v->indeg();
			if(f2 != f1)
				weight[f2] += v->indeg();
		}
示例#4
0
void IOPoints::restoreDeg1Nodes(PlanRep &PG, Stack<PlanRep::Deg1RestoreInfo> &S)
{
	List<node> deg1s;

	PG.restoreDeg1Nodes(S,deg1s);

	ListConstIterator<node> it;
	for(it = deg1s.begin(); it.valid(); ++it) {
		adjEntry adj = (*it)->firstAdj();
		m_mark[adj] = m_mark[adj->twin()] = true;
	}
}
示例#5
0
void SubgraphPlanarizer::CrossingStructure::restore(PlanRep &PG, int cc)
{
	//PG.initCC(cc);
	
	Array<node> id2Node(0,m_numCrossings-1,0);
	
	SListPure<edge> edges;
	PG.allEdges(edges);

	for(SListConstIterator<edge> itE = edges.begin(); itE.valid(); ++itE)
	{
		edge ePG = *itE;
		edge e = PG.original(ePG);
		
		SListConstIterator<int> it;
		for(it = m_crossings[e].begin(); it.valid(); ++it)
		{
			node x = id2Node[*it];
			edge ePGOld = ePG;
			ePG = PG.split(ePG);
			node y = ePG->source();
			
			if(x == 0) {
				id2Node[*it] = y;
			} else {
				PG.moveTarget(ePGOld, x);
				PG.moveSource(ePG, x);
				PG.delNode(y);
			}
		}
	}
}
示例#6
0
文件: Layout.cpp 项目: ogdf/ogdf
DPoint Layout::computeBoundingBox(PlanRep &PG) const
{
	double maxWidth  = 0;
	double maxHeight = 0;

	// check rightmost and uppermost extension of all (original) nodes
	for(int i = PG.startNode(); i < PG.stopNode(); ++i) {
		node vG = PG.v(i);

		double maxX = x(PG.copy(vG)) + PG.widthOrig(vG)/2;
		if (maxX > maxWidth ) maxWidth  = maxX;

		double maxY = y(PG.copy(vG)) + PG.heightOrig(vG)/2;
		if (maxY > maxHeight) maxHeight = maxY;

		// check polylines of all (original) edges
		for(adjEntry adj : vG->adjEntries) {
			if ((adj->index() & 1) == 0) continue;
			edge eG = adj->theEdge();

			const List<edge> &path = PG.chain(eG);

			for(edge e : path)
			{
				// we have to check (only) all interior points, i.e., we can
				// omitt the first and last point since it lies in the box of
				// the source or target node.
				// This version checks also the first for simplicity of the loop.
				node v = e->source();
				if (x(v) > maxWidth ) maxWidth  = x(v);
				if (y(v) > maxHeight) maxHeight = y(v);

				const DPolyline &dpl = bends(e);

				for(const DPoint &dp : dpl)
				{
					if (dp.m_x > maxWidth ) maxWidth  = dp.m_x;
					if (dp.m_y > maxHeight) maxHeight = dp.m_y;
				}
			}
		}
	}

	return DPoint(maxWidth,maxHeight);
}
示例#7
0
//---------------------------------------------------------
// actual call (called by all variations of call)
//   crossing of generalizations is forbidden if forbidCrossingGens = true
//   edge costs are obeyed if costOrig != 0
//
Module::ReturnType FixedEmbeddingInserter::doCall(
	PlanRep &PG,
	const List<edge> &origEdges,
	bool forbidCrossingGens,
	const EdgeArray<int>  *costOrig,
	const EdgeArray<bool> *forbiddenEdgeOrig,
	const EdgeArray<unsigned int> *edgeSubGraph)
{
  
	double T;
	usedTime(T);
	
	ReturnType retValue = retFeasible;
	m_runsPostprocessing = 0;

	PG.embed(); 
	OGDF_ASSERT(PG.representsCombEmbedding() == true);

	if (origEdges.size() == 0)
		return retOptimal;  // nothing to do

	// initialization
	CombinatorialEmbedding E(PG);  // embedding of PG

	m_dual.clear();
	m_primalAdj.init(m_dual);
	m_nodeOf.init(E);

	// construct dual graph
	m_primalIsGen.init(m_dual,false);

	OGDF_ASSERT(forbidCrossingGens == false || forbiddenEdgeOrig == 0);

	if(forbidCrossingGens)
		constructDualForbidCrossingGens((const PlanRepUML&)PG,E);
	else
		constructDual(PG,E,forbiddenEdgeOrig);

	// m_delFaces and m_newFaces are used by removeEdge()
	// if we can't allocate memory for them, we throw an exception
	if (removeReinsert() != rrNone) {
		m_delFaces = new FaceSetSimple(E);
		if (m_delFaces == 0)
			OGDF_THROW(InsufficientMemoryException);

		m_newFaces = new FaceSetPure(E);
		if (m_newFaces == 0) {
			delete m_delFaces;
			OGDF_THROW(InsufficientMemoryException);
		}

	// no postprocessing -> no removeEdge()
	} else {
		m_delFaces = 0;
		m_newFaces = 0;
	}

	SListPure<edge> currentOrigEdges;
	if(removeReinsert() == rrIncremental) {
		edge e;
		forall_edges(e,PG)
			currentOrigEdges.pushBack(PG.original(e));
	}

	// insertion of edges
	ListConstIterator<edge> it;
	for(it = origEdges.begin(); it.valid(); ++it)
	{
		edge eOrig = *it;

		int eSubGraph = 0;  // edgeSubGraph-data of eOrig
		if(edgeSubGraph!=0) eSubGraph = (*edgeSubGraph)[eOrig];

		SList<adjEntry> crossed;
		if(costOrig != 0) {
			findShortestPath(PG, E, *costOrig,
				PG.copy(eOrig->source()),PG.copy(eOrig->target()),
				forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
				crossed, edgeSubGraph, eSubGraph);
		} else {
			findShortestPath(E,
				PG.copy(eOrig->source()),PG.copy(eOrig->target()),
				forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
				crossed);
		}

		insertEdge(PG,E,eOrig,crossed,forbidCrossingGens,forbiddenEdgeOrig);
		
		if(removeReinsert() == rrIncremental) {
			currentOrigEdges.pushBack(eOrig);

			bool improved;
			do {
				++m_runsPostprocessing;
				improved = false;
				
				SListConstIterator<edge> itRR;
				for(itRR = currentOrigEdges.begin(); itRR.valid(); ++itRR)
				{
					edge eOrigRR = *itRR;
		
					int pathLength;
					if(costOrig != 0)
						pathLength = costCrossed(eOrigRR,PG,*costOrig,edgeSubGraph);
					else
						pathLength = PG.chain(eOrigRR).size() - 1;
					if (pathLength == 0) continue; // cannot improve
		
					removeEdge(PG,E,eOrigRR,forbidCrossingGens,forbiddenEdgeOrig);
		
					// try to find a better insertion path
					SList<adjEntry> crossed;
					if(costOrig != 0) {
						int eSubGraph = 0;  // edgeSubGraph-data of eOrig
						if(edgeSubGraph!=0) eSubGraph = (*edgeSubGraph)[eOrigRR];

						findShortestPath(PG, E, *costOrig,
							PG.copy(eOrigRR->source()),PG.copy(eOrigRR->target()),
							forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrigRR) : Graph::association,
							crossed, edgeSubGraph, eSubGraph);
					} else {
						findShortestPath(E,
							PG.copy(eOrigRR->source()),PG.copy(eOrigRR->target()),
							forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrigRR) : Graph::association,
							crossed);
					}
					
					// re-insert edge (insertion path cannot be longer)
					insertEdge(PG,E,eOrigRR,crossed,forbidCrossingGens,forbiddenEdgeOrig);
		
					int newPathLength = (costOrig != 0) ? costCrossed(eOrigRR,PG,*costOrig,edgeSubGraph) : (PG.chain(eOrigRR).size() - 1);
					OGDF_ASSERT(newPathLength <= pathLength);
					
					if(newPathLength < pathLength)
						improved = true;
				}
			} while (improved);
		}
	}

	const Graph &G = PG.original();
	if(removeReinsert() != rrIncremental) {
		// postprocessing (remove-reinsert heuristc)
		SListPure<edge> rrEdges;
	
		switch(removeReinsert())
		{
		case rrAll:
		case rrMostCrossed: {
				const List<node> &origInCC = PG.nodesInCC();
				ListConstIterator<node> itV;
	
				for(itV = origInCC.begin(); itV.valid(); ++itV) {
					node vG = *itV;
					adjEntry adj;
					forall_adj(adj,vG) {
						if ((adj->index() & 1) == 0) continue;
						edge eG = adj->theEdge();
						rrEdges.pushBack(eG);
					}
				}
			}
			break;
	
		case rrInserted:
			for(ListConstIterator<edge> it = origEdges.begin(); it.valid(); ++it)
				rrEdges.pushBack(*it);
			break;

		case rrNone:
		case rrIncremental:
			break;
		}
	
		// marks the end of the interval of rrEdges over which we iterate
		// initially set to invalid iterator which means all edges
		SListConstIterator<edge> itStop;
	
		bool improved;
		do {
			// abort postprocessing if time limit reached
			if (m_timeLimit >= 0 && m_timeLimit <= usedTime(T)) {
				retValue = retTimeoutFeasible;
				break;
			}
				
			++m_runsPostprocessing;
			improved = false;
	
			if(removeReinsert() == rrMostCrossed)
			{
				FEICrossingsBucket bucket(&PG);
				rrEdges.bucketSort(bucket);
	
				const int num = int(0.01 * percentMostCrossed() * G.numberOfEdges());
				itStop = rrEdges.get(num);
			}
	
			SListConstIterator<edge> it;
			for(it = rrEdges.begin(); it != itStop; ++it)
			{
				edge eOrig = *it;
							
				// remove only if crossings on edge;
				// in especially: forbidden edges are never handled by postprocessing
				//   since there are no crossings on such edges
				int pathLength;
				if(costOrig != 0)
					pathLength = costCrossed(eOrig,PG,*costOrig,edgeSubGraph);
				else
					pathLength = PG.chain(eOrig).size() - 1;
				if (pathLength == 0) continue; // cannot improve
	
				removeEdge(PG,E,eOrig,forbidCrossingGens,forbiddenEdgeOrig);
	
				// try to find a better insertion path
				SList<adjEntry> crossed;
				if(costOrig != 0) {
					int eSubGraph = 0;  // edgeSubGraph-data of eOrig
					if(edgeSubGraph!=0) eSubGraph = (*edgeSubGraph)[eOrig];

					findShortestPath(PG, E, *costOrig,
						PG.copy(eOrig->source()),PG.copy(eOrig->target()),
						forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
						crossed, edgeSubGraph, eSubGraph);
				} else {
					findShortestPath(E,
						PG.copy(eOrig->source()),PG.copy(eOrig->target()),
						forbidCrossingGens ? ((const PlanRepUML&)PG).typeOrig(eOrig) : Graph::association,
						crossed);
				}
	
				// re-insert edge (insertion path cannot be longer)
				insertEdge(PG,E,eOrig,crossed,forbidCrossingGens,forbiddenEdgeOrig);
	
				int newPathLength = (costOrig != 0) ? costCrossed(eOrig,PG,*costOrig,edgeSubGraph) : (PG.chain(eOrig).size() - 1);
				OGDF_ASSERT(newPathLength <= pathLength);
				
				if(newPathLength < pathLength)
					improved = true;
			}
		} while(improved); // iterate as long as we improve
	}
示例#8
0
	int getBucket(const edge &e) {
		return -m_pPG->chain(e).size();
	}
示例#9
0
Module::ReturnType SubgraphPlanarizer::doCall(
	PlanRep &pr,
	int      cc,
	const EdgeArray<int>      *pCostOrig,
	const EdgeArray<bool>     *pForbiddenOrig,
	const EdgeArray<__uint32> *pEdgeSubGraphs,
	int                       &crossingNumber)
{
	OGDF_ASSERT(m_permutations >= 1);

	PlanarSubgraphModule &subgraph = m_subgraph.get();
	EdgeInsertionModule  &inserter = m_inserter.get();

	int nThreads = min(m_maxThreads, m_permutations);

	__int64 startTime;
	System::usedRealTime(startTime);
	__int64 stopTime = (m_timeLimit >= 0) ? (startTime + __int64(1000.0*m_timeLimit)) : -1;

	//
	// Compute subgraph
	//
	if(m_setTimeout)
		subgraph.timeLimit(m_timeLimit);

	pr.initCC(cc);

	List<edge> delEdges;
	ReturnType retValue;

	if(pCostOrig) {
		EdgeArray<int> costPG(pr);
		edge e;
		forall_edges(e,pr)
			costPG[e] = (*pCostOrig)[pr.original(e)];

		retValue = subgraph.call(pr, costPG, delEdges);
	} else
		retValue = subgraph.call(pr, delEdges);

	if(isSolution(retValue) == false)
		return retValue;

	const int m = delEdges.size();
	if(m == 0)
		return retOptimal;  // graph is planar

	for(ListIterator<edge> it = delEdges.begin(); it.valid(); ++it)
		*it = pr.original(*it);

	//
	// Permutation phase
	//

	int seed = rand();
#ifdef OGDF_HAVE_CPP11
	minstd_rand rng(seed);
#endif

	if(nThreads > 1) {
		//
		// Parallel implementation
		//
		ThreadMaster master(
			pr, cc,
			pCostOrig, pForbiddenOrig, pEdgeSubGraphs,
			delEdges,
			seed,
			m_permutations - nThreads,
			stopTime);

		Array<Worker *> thread(nThreads-1);
		for(int i = 0; i < nThreads-1; ++i) {
			thread[i] = new Worker(&master, inserter.clone());
			thread[i]->start();
		}

#ifdef OGDF_HAVE_CPP11
		doWorkHelper(master, inserter, rng);
#else
		doWorkHelper(master, inserter);
#endif

		for(int i = 0; i < nThreads-1; ++i) {
			thread[i]->join();
			delete thread[i];
		}

		master.restore(pr, crossingNumber);

	} else {
		//
		// Sequential implementation
		//
		PlanRepLight prl(pr);

		Array<edge> deletedEdges(m);
		int j = 0;
		for(ListIterator<edge> it = delEdges.begin(); it.valid(); ++it)
			deletedEdges[j++] = *it;

		bool foundSolution = false;
		CrossingStructure cs;
		for(int i = 1; i <= m_permutations; ++i)
		{
			int cr;
			bool ok = doSinglePermutation(prl, cc, pCostOrig, pForbiddenOrig, pEdgeSubGraphs, deletedEdges, inserter,
#ifdef OGDF_HAVE_CPP11
				rng,
#endif
				cr);

			if(ok && (foundSolution == false || cr < cs.weightedCrossingNumber())) {
				foundSolution = true;
				cs.init(prl, cr);
			}

			if(stopTime >= 0 && System::realTime() >= stopTime) {
				if(foundSolution == false)
					return retTimeoutInfeasible; // not able to find a solution...
				break;
			}
		}

		cs.restore(pr,cc); // restore best solution in pr
		crossingNumber = cs.weightedCrossingNumber();

		OGDF_ASSERT(isPlanar(pr) == true);
	}

	return retFeasible;
}
示例#10
0
Module::ReturnType SubgraphPlanarizer::doCall(PlanRep &PG,
	int cc,
	const EdgeArray<int>  &cost,
	const EdgeArray<bool> &forbid,
	const EdgeArray<unsigned int>  &subgraphs,
	int& crossingNumber)
{
	OGDF_ASSERT(m_permutations >= 1);
  
	OGDF_ASSERT(!(useSubgraphs()) || useCost()); // ersetze durch exception handling

	double startTime;
	usedTime(startTime);

	if(m_setTimeout)
		m_subgraph.get().timeLimit(m_timeLimit);

	List<edge> deletedEdges;
	PG.initCC(cc);
	EdgeArray<int> costPG(PG);
	edge e;
	forall_edges(e,PG)
		costPG[e] = cost[PG.original(e)];
	ReturnType retValue = m_subgraph.get().call(PG, costPG, deletedEdges);
	if(isSolution(retValue) == false)
		return retValue;

	for(ListIterator<edge> it = deletedEdges.begin(); it.valid(); ++it)
		*it = PG.original(*it);

	bool foundSolution = false;
	CrossingStructure cs;
	for(int i = 1; i <= m_permutations; ++i)
	{
		const int nG = PG.numberOfNodes();
		
		for(ListConstIterator<edge> it = deletedEdges.begin(); it.valid(); ++it)
			PG.delCopy(PG.copy(*it));

		deletedEdges.permute();
	
		if(m_setTimeout)
			m_inserter.get().timeLimit(
				(m_timeLimit >= 0) ? max(0.0,m_timeLimit - usedTime(startTime)) : -1);
		
		ReturnType ret;
		if(useForbid()) {
			if(useCost()) {
				if(useSubgraphs())
					ret = m_inserter.get().call(PG, cost, forbid, deletedEdges, subgraphs);
				else
					ret = m_inserter.get().call(PG, cost, forbid, deletedEdges);
			} else
				ret = m_inserter.get().call(PG, forbid, deletedEdges);
		} else {
			if(useCost()) {	
				if(useSubgraphs())
					ret = m_inserter.get().call(PG, cost, deletedEdges, subgraphs);
				else
					ret = m_inserter.get().call(PG, cost, deletedEdges);
			} else
				ret = m_inserter.get().call(PG, deletedEdges);
		}

		if(isSolution(ret) == false)
			continue; // no solution found, that's bad...
	
		if(!useCost())
			crossingNumber = PG.numberOfNodes() - nG;
		else {
			crossingNumber = 0;
			node n;
			forall_nodes(n, PG) {
				if(PG.original(n) == 0) { // dummy found -> calc cost
					edge e1 = PG.original(n->firstAdj()->theEdge());
					edge e2 = PG.original(n->lastAdj()->theEdge());
					if(useSubgraphs()) {
						int subgraphCounter = 0;
						for(int i=0; i<32; i++) {
							if(((subgraphs[e1] & (1<<i))!=0) && ((subgraphs[e2] & (1<<i)) != 0))
								subgraphCounter++;
						}
						crossingNumber += (subgraphCounter*cost[e1] * cost[e2]);
					} else
						crossingNumber += cost[e1] * cost[e2];
				}
			}
		}
		
		if(i == 1 || crossingNumber < cs.weightedCrossingNumber()) {
			foundSolution = true;
			cs.init(PG, crossingNumber);
		}
		
		if(localLogMode() == LM_STATISTIC) {
			if(m_permutations <= 200 ||
				i <= 10 || (i <= 30 && (i % 2) == 0) || (i > 30 && i <= 100 && (i % 5) == 0) || ((i % 10) == 0))
				sout() << "\t" << cs.weightedCrossingNumber();
		}
		
		PG.initCC(cc);

		if(m_timeLimit >= 0 && usedTime(startTime) >= m_timeLimit) {
			if(foundSolution == false)
				return retTimeoutInfeasible; // not able to find a solution...
			break;
		}
	}
	
	cs.restore(PG,cc); // restore best solution in PG
	crossingNumber = cs.weightedCrossingNumber();
	
	PlanarModule pm;
	OGDF_ASSERT(pm.planarityTest(PG) == true);
	
	return retFeasible;
}