Module::ReturnType SubgraphPlanarizer::doCall( PlanRep &pr, int cc, const EdgeArray<int> *pCostOrig, const EdgeArray<bool> *pForbiddenOrig, const EdgeArray<__uint32> *pEdgeSubGraphs, int &crossingNumber) { OGDF_ASSERT(m_permutations >= 1); PlanarSubgraphModule &subgraph = m_subgraph.get(); EdgeInsertionModule &inserter = m_inserter.get(); int nThreads = min(m_maxThreads, m_permutations); __int64 startTime; System::usedRealTime(startTime); __int64 stopTime = (m_timeLimit >= 0) ? (startTime + __int64(1000.0*m_timeLimit)) : -1; // // Compute subgraph // if(m_setTimeout) subgraph.timeLimit(m_timeLimit); pr.initCC(cc); List<edge> delEdges; ReturnType retValue; if(pCostOrig) { EdgeArray<int> costPG(pr); edge e; forall_edges(e,pr) costPG[e] = (*pCostOrig)[pr.original(e)]; retValue = subgraph.call(pr, costPG, delEdges); } else retValue = subgraph.call(pr, delEdges); if(isSolution(retValue) == false) return retValue; const int m = delEdges.size(); if(m == 0) return retOptimal; // graph is planar for(ListIterator<edge> it = delEdges.begin(); it.valid(); ++it) *it = pr.original(*it); // // Permutation phase // int seed = rand(); #ifdef OGDF_HAVE_CPP11 minstd_rand rng(seed); #endif if(nThreads > 1) { // // Parallel implementation // ThreadMaster master( pr, cc, pCostOrig, pForbiddenOrig, pEdgeSubGraphs, delEdges, seed, m_permutations - nThreads, stopTime); Array<Worker *> thread(nThreads-1); for(int i = 0; i < nThreads-1; ++i) { thread[i] = new Worker(&master, inserter.clone()); thread[i]->start(); } #ifdef OGDF_HAVE_CPP11 doWorkHelper(master, inserter, rng); #else doWorkHelper(master, inserter); #endif for(int i = 0; i < nThreads-1; ++i) { thread[i]->join(); delete thread[i]; } master.restore(pr, crossingNumber); } else { // // Sequential implementation // PlanRepLight prl(pr); Array<edge> deletedEdges(m); int j = 0; for(ListIterator<edge> it = delEdges.begin(); it.valid(); ++it) deletedEdges[j++] = *it; bool foundSolution = false; CrossingStructure cs; for(int i = 1; i <= m_permutations; ++i) { int cr; bool ok = doSinglePermutation(prl, cc, pCostOrig, pForbiddenOrig, pEdgeSubGraphs, deletedEdges, inserter, #ifdef OGDF_HAVE_CPP11 rng, #endif cr); if(ok && (foundSolution == false || cr < cs.weightedCrossingNumber())) { foundSolution = true; cs.init(prl, cr); } if(stopTime >= 0 && System::realTime() >= stopTime) { if(foundSolution == false) return retTimeoutInfeasible; // not able to find a solution... break; } } cs.restore(pr,cc); // restore best solution in pr crossingNumber = cs.weightedCrossingNumber(); OGDF_ASSERT(isPlanar(pr) == true); } return retFeasible; }
Module::ReturnType SubgraphPlanarizer::doCall(PlanRep &PG, int cc, const EdgeArray<int> &cost, const EdgeArray<bool> &forbid, const EdgeArray<unsigned int> &subgraphs, int& crossingNumber) { OGDF_ASSERT(m_permutations >= 1); OGDF_ASSERT(!(useSubgraphs()) || useCost()); // ersetze durch exception handling double startTime; usedTime(startTime); if(m_setTimeout) m_subgraph.get().timeLimit(m_timeLimit); List<edge> deletedEdges; PG.initCC(cc); EdgeArray<int> costPG(PG); edge e; forall_edges(e,PG) costPG[e] = cost[PG.original(e)]; ReturnType retValue = m_subgraph.get().call(PG, costPG, deletedEdges); if(isSolution(retValue) == false) return retValue; for(ListIterator<edge> it = deletedEdges.begin(); it.valid(); ++it) *it = PG.original(*it); bool foundSolution = false; CrossingStructure cs; for(int i = 1; i <= m_permutations; ++i) { const int nG = PG.numberOfNodes(); for(ListConstIterator<edge> it = deletedEdges.begin(); it.valid(); ++it) PG.delCopy(PG.copy(*it)); deletedEdges.permute(); if(m_setTimeout) m_inserter.get().timeLimit( (m_timeLimit >= 0) ? max(0.0,m_timeLimit - usedTime(startTime)) : -1); ReturnType ret; if(useForbid()) { if(useCost()) { if(useSubgraphs()) ret = m_inserter.get().call(PG, cost, forbid, deletedEdges, subgraphs); else ret = m_inserter.get().call(PG, cost, forbid, deletedEdges); } else ret = m_inserter.get().call(PG, forbid, deletedEdges); } else { if(useCost()) { if(useSubgraphs()) ret = m_inserter.get().call(PG, cost, deletedEdges, subgraphs); else ret = m_inserter.get().call(PG, cost, deletedEdges); } else ret = m_inserter.get().call(PG, deletedEdges); } if(isSolution(ret) == false) continue; // no solution found, that's bad... if(!useCost()) crossingNumber = PG.numberOfNodes() - nG; else { crossingNumber = 0; node n; forall_nodes(n, PG) { if(PG.original(n) == 0) { // dummy found -> calc cost edge e1 = PG.original(n->firstAdj()->theEdge()); edge e2 = PG.original(n->lastAdj()->theEdge()); if(useSubgraphs()) { int subgraphCounter = 0; for(int i=0; i<32; i++) { if(((subgraphs[e1] & (1<<i))!=0) && ((subgraphs[e2] & (1<<i)) != 0)) subgraphCounter++; } crossingNumber += (subgraphCounter*cost[e1] * cost[e2]); } else crossingNumber += cost[e1] * cost[e2]; } } } if(i == 1 || crossingNumber < cs.weightedCrossingNumber()) { foundSolution = true; cs.init(PG, crossingNumber); } if(localLogMode() == LM_STATISTIC) { if(m_permutations <= 200 || i <= 10 || (i <= 30 && (i % 2) == 0) || (i > 30 && i <= 100 && (i % 5) == 0) || ((i % 10) == 0)) sout() << "\t" << cs.weightedCrossingNumber(); } PG.initCC(cc); if(m_timeLimit >= 0 && usedTime(startTime) >= m_timeLimit) { if(foundSolution == false) return retTimeoutInfeasible; // not able to find a solution... break; } } cs.restore(PG,cc); // restore best solution in PG crossingNumber = cs.weightedCrossingNumber(); PlanarModule pm; OGDF_ASSERT(pm.planarityTest(PG) == true); return retFeasible; }