// Test between a polygon and a swept sphere with radius inRadius moving from inBegin to inBegin + inDelta // If there is an intersection the intersection position is returned in outPoint and the center of the // sphere is at inBegin + outFraction * inDelta when it collides bool PolygonSweptSphereIntersect(const Plane &inPlane, const Vector2 *inVertices, int inNumVertices, const Vector3 &inBegin, const Vector3 &inDelta, float inRadius, Vector3 &outPoint, float &outFraction) { // Determine the range over which the sphere intersects the plane float t1, t2; if (!PlaneSweptSphereIntersect(inPlane, inBegin, inDelta, inRadius, t1, t2)) return false; // The radius of the circle is defined as: radius^2 = (sphere radius)^2 - (distance plane to center)^2 // this can be written as: radius^2 = a * t^2 + b * t + c float n_dot_d = inPlane.mNormal.Dot(inDelta); float dist_to_b = inPlane.GetSignedDistance(inBegin); float a = -n_dot_d * n_dot_d; float b = -2.0f * n_dot_d * dist_to_b; float c = inRadius * inRadius - dist_to_b * dist_to_b; // Get basis Vector3 u, v; inPlane.GetBasisVectors(u, v); // Get begin and delta in plane space Vector2 begin = Plane::sConvertWorldToPlane(u, v, inBegin); Vector2 delta = Plane::sConvertWorldToPlane(u, v, inDelta); // Test if sphere intersects at t1 Vector2 p; if (PolygonCircleIntersect(inVertices, inNumVertices, begin + delta * t1, a * t1 * t1 + b * t1 + c, p)) { outFraction = t1; outPoint = inPlane.ConvertPlaneToWorld(u, v, p); return true; } // Test if sphere intersects with one of the edges or vertices if (SweptCircleEdgeVertexIntersect(inVertices, inNumVertices, begin, delta, a, b, c, p, outFraction)) { outPoint = inPlane.ConvertPlaneToWorld(u, v, p); return true; } return false; }
// Test intersection between a plane inPlane and a swept sphere with radius inRadius moving from inBegin to inBegin + inDelta // If there is an intersection the function returns true and the intersection range is from // inBegin + outT1 * inDelta to inBegin + outT2 * inDelta bool PlaneSweptSphereIntersect(const Plane &inPlane, const Vector3 &inBegin, const Vector3 &inDelta, float inRadius, float &outT1, float &outT2) { // If the center of the sphere moves like: center = inBegin + t * inDelta for t e [0, 1] // then the sphere intersects the plane if: -R <= distance plane to center <= R float n_dot_d = inPlane.mNormal.Dot(inDelta); float dist_to_b = inPlane.GetSignedDistance(inBegin); if (n_dot_d == 0.0f) { // The sphere is moving nearly parallel to the plane, check if the distance // is smaller than the radius if (Abs(dist_to_b) > inRadius) return false; // Intersection on the entire range outT1 = 0.0f; outT2 = 1.0f; } else { // Determine interval of intersection outT1 = (inRadius - dist_to_b) / n_dot_d; outT2 = (-inRadius - dist_to_b) / n_dot_d; // Order the results if (outT1 > outT2) Swap(outT1, outT2); // Early out if no hit possible if (outT1 > 1.0f || outT2 < 0.0f) return false; // Clamp it to the range [0, 1], the range of the swept sphere if (outT1 < 0.0f) outT1 = 0.0f; if (outT2 > 1.0f) outT2 = 1.0f; } return true; }