void Polynomial<int>::pseudo_div( const Polynomial<int>& f, const Polynomial<int>& g, Polynomial<int>& q, Polynomial<int>& r, int& D) { CGAL_NEF_TRACEN("pseudo_div "<<f<<" , "<< g); int fd=f.degree(), gd=g.degree(); if ( fd<gd ) { q = Polynomial<int>(0); r = f; D = 1; CGAL_postcondition(Polynomial<int>(D)*f==q*g+r); return; } // now we know fd >= gd and f>=g int qd=fd-gd, delta=qd+1, rd=fd; { q = Polynomial<int>( std::size_t(delta) ); }; // workaround for SUNPRO int G = g[gd]; // highest order coeff of g D = G; while (--delta) D*=G; // D = G^delta Polynomial<int> res = Polynomial<int>(D)*f; CGAL_NEF_TRACEN(" pseudo_div start "<<res<<" "<<qd<<" "<<q.degree()); while (qd >= 0) { int F = res[rd]; // highest order coeff of res int t = F/G; // ensured to be integer by multiplication of D q.coeff(qd) = t; // store q coeff res.minus_offsetmult(g,t,qd); if (res.is_zero()) break; rd = res.degree(); qd = rd - gd; } r = res; CGAL_postcondition(Polynomial<int>(D)*f==q*g+r); CGAL_NEF_TRACEN(" returning "<<q<<", "<<r<<", "<< D); }
void Polynomial<int>::euclidean_div( const Polynomial<int>& f, const Polynomial<int>& g, Polynomial<int>& q, Polynomial<int>& r) { r = f; r.copy_on_write(); int rd=r.degree(), gd=g.degree(), qd; if ( rd < gd ) { q = Polynomial<int>(int(0)); } else { qd = rd-gd+1; q = Polynomial<int>(std::size_t(qd)); } while ( rd >= gd && !(r.is_zero())) { int S = r[rd] / g[gd]; qd = rd-gd; q.coeff(qd) += S; r.minus_offsetmult(g,S,qd); rd = r.degree(); } CGAL_postcondition( f==q*g+r ); }