示例#1
0
        void Slice::setup_draw (int axis, Projection& with_projection)
        {
          // info for projection:
          float fov = FOV() / (float) (with_projection.width()+with_projection.height());
          float depth = 2.0 * std::max (std::max (
                image()->header().vox(0) * image()->header().dim(0), 
                image()->header().vox(1) * image()->header().dim(1)), 
              image()->header().vox(2) * image()->header().dim(2));

          // set up projection & modelview matrices:
          GL::mat4 P = GL::ortho (
              -with_projection.width()*fov, with_projection.width()*fov,
              -with_projection.height()*fov, with_projection.height()*fov,
              -depth, depth);
          GL::mat4 M = snap_to_image() ? GL::mat4 (image()->interp.image2scanner_matrix()) : GL::mat4 (orientation());
          GL::mat4 MV = adjust_projection_matrix (M, axis) * GL::translate (-target());
          with_projection.set (MV, P);
        }
示例#2
0
        void AbstractFixel::update_interp_image_buffer (const Projection& projection,
                                                const MR::Image::ConstHeader &fixel_header,
                                                const MR::Image::Transform &header_transform)
        {
          // Code below "inspired" by ODF::draw
          Point<> p (Window::main->target());
          p += projection.screen_normal() * (projection.screen_normal().dot (Window::main->focus() - p));
          p = header_transform.scanner2voxel (p);

          if (fixel_tool.do_lock_to_grid) {
            p[0] = (int)std::round (p[0]);
            p[1] = (int)std::round (p[1]);
            p[2] = (int)std::round (p[2]);
          }

          p = header_transform.voxel2scanner (p);

          const MR::Image::Info& header_info = fixel_header.info();

          Point<> x_dir = projection.screen_to_model_direction (1.0f, 0.0f, projection.depth_of (p));
          x_dir.normalise();
          x_dir = header_transform.scanner2image_dir (x_dir);
          x_dir[0] *= header_info.vox(0);
          x_dir[1] *= header_info.vox(1);
          x_dir[2] *= header_info.vox(2);
          x_dir = header_transform.image2scanner_dir (x_dir);

          Point<> y_dir = projection.screen_to_model_direction (0.0f, 1.0f, projection.depth_of (p));
          y_dir.normalise();
          y_dir = header_transform.scanner2image_dir (y_dir);
          y_dir[0] *= header_info.vox(0);
          y_dir[1] *= header_info.vox(1);
          y_dir[2] *= header_info.vox(2);
          y_dir = header_transform.image2scanner_dir (y_dir);

          Point<> x_width = projection.screen_to_model_direction (projection.width()/2.0f, 0.0f, projection.depth_of (p));
          int nx = std::ceil (x_width.norm() / x_dir.norm());
          Point<> y_width = projection.screen_to_model_direction (0.0f, projection.height()/2.0f, projection.depth_of (p));
          int ny = std::ceil (y_width.norm() / y_dir.norm());

          regular_grid_buffer_pos.clear();
          regular_grid_buffer_dir.clear();
          regular_grid_buffer_val.clear();

          for (int y = -ny; y <= ny; ++y) {
            for (int x = -nx; x <= nx; ++x) {
              Point<> scanner_pos = p + float(x)*x_dir + float(y)*y_dir;
              Point<> voxel_pos = header_transform.scanner2voxel(scanner_pos);

              // Round to nearest neighbour
              voxel_pos[0] = (int)std::round (voxel_pos[0]);
              voxel_pos[1] = (int)std::round (voxel_pos[1]);
              voxel_pos[2] = (int)std::round (voxel_pos[2]);

              // Find and add point indices that correspond to projected voxel
              const auto &voxel_indices = voxel_to_indices_map[voxel_pos];

              // Load all corresponding fixel data into separate buffer
              // We can't reuse original buffer because off-axis rendering means that
              // two or more points in our regular grid may correspond to the same nearest voxel
              for(const GLsizei index : voxel_indices) {
                regular_grid_buffer_pos.push_back(scanner_pos);
                regular_grid_buffer_dir.push_back(buffer_dir[index]);
                regular_grid_buffer_val.push_back(buffer_val[2 * index]);
                regular_grid_buffer_val.push_back(buffer_val[(2 * index) + 1]);
              }
            }
          }

          if(!regular_grid_buffer_pos.size())
            return;

          regular_grid_vao.bind();
          regular_grid_vertex_buffer.bind (gl::ARRAY_BUFFER);
          gl::BufferData (gl::ARRAY_BUFFER, regular_grid_buffer_pos.size() * sizeof(Point<float>),
                          &regular_grid_buffer_pos[0], gl::DYNAMIC_DRAW);
          gl::EnableVertexAttribArray (0);
          gl::VertexAttribPointer (0, 3, gl::FLOAT, gl::FALSE_, 0, (void*)0);

          // fixel directions
          regular_grid_dir_buffer.bind (gl::ARRAY_BUFFER);
          gl::BufferData (gl::ARRAY_BUFFER, regular_grid_buffer_dir.size() * sizeof(Point<float>),
                          &regular_grid_buffer_dir[0], gl::DYNAMIC_DRAW);
          gl::EnableVertexAttribArray (1);
          gl::VertexAttribPointer (1, 3, gl::FLOAT, gl::FALSE_, 0, (void*)0);

          // fixel sizes and values
          regular_grid_val_buffer.bind (gl::ARRAY_BUFFER);
          gl::BufferData (gl::ARRAY_BUFFER, regular_grid_buffer_val.size() * sizeof(float),
                          &regular_grid_buffer_val[0], gl::DYNAMIC_DRAW);
          gl::EnableVertexAttribArray (2);
          gl::VertexAttribPointer (2, 2, gl::FLOAT, gl::FALSE_, 0, (void*)0);
        }