示例#1
0
void ShaderEffectItem::updateGeometry()
{
    QRectF srcRect(0, 1, 1, -1);

    if (m_mirrored)
        srcRect = QRectF(0, 0, 1, 1);

    QRectF dstRect = QRectF(0,0, width(), height());

    int vmesh = m_meshResolution.height();
    int hmesh = m_meshResolution.width();

    QSGGeometry *g = &m_geometry;
    if (vmesh == 1 && hmesh == 1) {
        if (g->vertexCount() != 4)
            g->allocate(4);
        QSGGeometry::updateTexturedRectGeometry(g, dstRect, srcRect);
        return;
    }

    g->allocate((vmesh + 1) * (hmesh + 1), vmesh * 2 * (hmesh + 2));

    QSGGeometry::TexturedPoint2D *vdata = g->vertexDataAsTexturedPoint2D();

    for (int iy = 0; iy <= vmesh; ++iy) {
        float fy = iy / float(vmesh);
        float y = float(dstRect.top()) + fy * float(dstRect.height());
        float ty = float(srcRect.top()) + fy * float(srcRect.height());
        for (int ix = 0; ix <= hmesh; ++ix) {
            float fx = ix / float(hmesh);
            vdata->x = float(dstRect.left()) + fx * float(dstRect.width());
            vdata->y = y;
            vdata->tx = float(srcRect.left()) + fx * float(srcRect.width());
            vdata->ty = ty;
            ++vdata;
        }
    }

    quint16 *indices = (quint16 *)g->indexDataAsUShort();
    int i = 0;
    for (int iy = 0; iy < vmesh; ++iy) {
        *(indices++) = i + hmesh + 1;
        for (int ix = 0; ix <= hmesh; ++ix, ++i) {
            *(indices++) = i + hmesh + 1;
            *(indices++) = i;
        }
        *(indices++) = i - 1;
    }
}
void QQuickAndroid9PatchNode::initialize(QSGTexture *texture, const QRectF &bounds, const QSize &sourceSize,
        const QQuickAndroid9PatchDivs &xDivs, const QQuickAndroid9PatchDivs &yDivs)
{
    delete m_material.texture();
    m_material.setTexture(texture);

    const int xlen = xDivs.data.size();
    const int ylen = yDivs.data.size();

    if (xlen > 0 && ylen > 0) {
        const int quads = (xlen - 1) * (ylen - 1);
        static const int verticesPerQuad = 6;
        m_geometry.allocate(xlen * ylen, verticesPerQuad * quads);

        QSGGeometry::TexturedPoint2D *vertices = m_geometry.vertexDataAsTexturedPoint2D();
        QVector<qreal> xCoords = xDivs.coordsForSize(bounds.width());
        QVector<qreal> yCoords = yDivs.coordsForSize(bounds.height());
        for (int y = 0; y < ylen; ++y) {
            for (int x = 0; x < xlen; ++x, ++vertices)
                vertices->set(xCoords[x], yCoords[y], xDivs.data[x] / sourceSize.width(),
                              yDivs.data[y] / sourceSize.height());
        }

        quint16 *indices = m_geometry.indexDataAsUShort();
        int n = quads;
        for (int q = 0; n--; ++q) {
            if ((q + 1) % xlen == 0) // next row
                ++q;
            // Bottom-left half quad triangle
            indices[0] = q;
            indices[1] = q + xlen;
            indices[2] = q + xlen + 1;

            // Top-right half quad triangle
            indices[3] = q;
            indices[4] = q + xlen + 1;
            indices[5] = q + 1;

            indices += verticesPerQuad;
        }
    }

    markDirty(QSGNode::DirtyGeometry | QSGNode::DirtyMaterial);
}
QQuickShaderEffectNode* QQuickCustomParticle::buildCustomNodes()
{
    if (QOpenGLContext::currentContext()->isOpenGLES() && m_count * 4 > 0xffff) {
        printf("CustomParticle: Too many particles... \n");
        return 0;
    }

    if (m_count <= 0) {
        printf("CustomParticle: Too few particles... \n");
        return 0;
    }

    if (m_groups.isEmpty())
        return 0;

    QQuickShaderEffectNode *rootNode = 0;
    QQuickShaderEffectMaterial *material = new QQuickShaderEffectMaterial;
    m_dirtyProgram = true;

    foreach (const QString &str, m_groups){
        int gIdx = m_system->groupIds[str];
        int count = m_system->groupData[gIdx]->size();

        QQuickShaderEffectNode* node = new QQuickShaderEffectNode();
        m_nodes.insert(gIdx, node);

        node->setMaterial(material);

        //Create Particle Geometry
        int vCount = count * 4;
        int iCount = count * 6;
        QSGGeometry *g = new QSGGeometry(PlainParticle_AttributeSet, vCount, iCount);
        g->setDrawingMode(GL_TRIANGLES);
        node->setGeometry(g);
        node->setFlag(QSGNode::OwnsGeometry, true);
        PlainVertex *vertices = (PlainVertex *) g->vertexData();
        for (int p=0; p < count; ++p) {
            commit(gIdx, p);
            vertices[0].tx = 0;
            vertices[0].ty = 0;

            vertices[1].tx = 1;
            vertices[1].ty = 0;

            vertices[2].tx = 0;
            vertices[2].ty = 1;

            vertices[3].tx = 1;
            vertices[3].ty = 1;
            vertices += 4;
        }
        quint16 *indices = g->indexDataAsUShort();
        for (int i=0; i < count; ++i) {
            int o = i * 4;
            indices[0] = o;
            indices[1] = o + 1;
            indices[2] = o + 2;
            indices[3] = o + 1;
            indices[4] = o + 3;
            indices[5] = o + 2;
            indices += 6;
        }
    }
void QSGDefaultImageNode::updateGeometry()
{
    Q_ASSERT(!m_targetRect.isEmpty());
    const QSGTexture *t = m_material.texture();
    if (!t) {
        QSGGeometry *g = geometry();
        g->allocate(4);
        g->setDrawingMode(GL_TRIANGLE_STRIP);
        memset(g->vertexData(), 0, g->sizeOfVertex() * 4);
    } else {
        QRectF sourceRect = t->normalizedTextureSubRect();

        QRectF innerSourceRect(sourceRect.x() + m_innerSourceRect.x() * sourceRect.width(),
                               sourceRect.y() + m_innerSourceRect.y() * sourceRect.height(),
                               m_innerSourceRect.width() * sourceRect.width(),
                               m_innerSourceRect.height() * sourceRect.height());

        bool hasMargins = m_targetRect != m_innerTargetRect;

        int floorLeft = qFloor(m_subSourceRect.left());
        int ceilRight = qCeil(m_subSourceRect.right());
        int floorTop = qFloor(m_subSourceRect.top());
        int ceilBottom = qCeil(m_subSourceRect.bottom());
        int hTiles = ceilRight - floorLeft;
        int vTiles = ceilBottom - floorTop;

        bool hasTiles = hTiles != 1 || vTiles != 1;
        bool fullTexture = innerSourceRect == QRectF(0, 0, 1, 1);

#ifdef QT_OPENGL_ES_2
        QOpenGLContext *ctx = QOpenGLContext::currentContext();
        bool npotSupported = ctx->functions()->hasOpenGLFeature(QOpenGLFunctions::NPOTTextureRepeat);
        QSize size = t->textureSize();
        bool isNpot = !isPowerOfTwo(size.width()) || !isPowerOfTwo(size.height());
        bool wrapSupported = npotSupported || !isNpot;
#else
        bool wrapSupported = true;
#endif

        // An image can be rendered as a single quad if:
        // - There are no margins, and either:
        //   - the image isn't repeated
        //   - the source rectangle fills the entire texture so that texture wrapping can be used,
        //     and NPOT is supported
        if (!hasMargins && (!hasTiles || (fullTexture && wrapSupported))) {
            QRectF sr;
            if (!fullTexture) {
                sr = QRectF(innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width(),
                            innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height(),
                            m_subSourceRect.width() * innerSourceRect.width(),
                            m_subSourceRect.height() * innerSourceRect.height());
            } else {
                sr = QRectF(m_subSourceRect.left() - floorLeft, m_subSourceRect.top() - floorTop,
                            m_subSourceRect.width(), m_subSourceRect.height());
            }
            if (m_mirror) {
                qreal oldLeft = sr.left();
                sr.setLeft(sr.right());
                sr.setRight(oldLeft);
            }

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);
                g->allocate(8, 14);
                g->setDrawingMode(GL_TRIANGLE_STRIP);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                        ? m_targetRect.width() : m_targetRect.height()) * 0.5f;
                float sx = float(sr.width() / m_targetRect.width());
                float sy = float(sr.height() / m_targetRect.height());
                for (int d = -1; d <= 1; d += 2) {
                    for (int j = 0; j < 2; ++j) {
                        for (int i = 0; i < 2; ++i, ++vertices) {
                            vertices->x = m_targetRect.x() + i * m_targetRect.width();
                            vertices->y = m_targetRect.y() + j * m_targetRect.height();
                            vertices->u = sr.x() + i * sr.width();
                            vertices->v = sr.y() + j * sr.height();
                            vertices->dx = (i == 0 ? delta : -delta) * d;
                            vertices->dy = (j == 0 ? delta : -delta) * d;
                            vertices->du = (d < 0 ? 0 : vertices->dx * sx);
                            vertices->dv = (d < 0 ? 0 : vertices->dy * sy);
                        }
                    }
                }
                Q_ASSERT(vertices - g->vertexCount() == g->vertexData());
                static const quint16 indices[] = {
                    0, 4, 1, 5, 3, 7, 2, 6, 0, 4,
                    4, 6, 5, 7
                };
                Q_ASSERT(g->sizeOfIndex() * g->indexCount() == sizeof(indices));
                memcpy(g->indexDataAsUShort(), indices, sizeof(indices));
            } else {
                m_geometry.allocate(4);
                m_geometry.setDrawingMode(GL_TRIANGLE_STRIP);
                QSGGeometry::updateTexturedRectGeometry(&m_geometry, m_targetRect, sr);
            }
        } else {
            int hCells = hTiles;
            int vCells = vTiles;
            if (m_innerTargetRect.width() == 0)
                hCells = 0;
            if (m_innerTargetRect.left() != m_targetRect.left())
                ++hCells;
            if (m_innerTargetRect.right() != m_targetRect.right())
                ++hCells;
            if (m_innerTargetRect.height() == 0)
                vCells = 0;
            if (m_innerTargetRect.top() != m_targetRect.top())
                ++vCells;
            if (m_innerTargetRect.bottom() != m_targetRect.bottom())
                ++vCells;
            QVarLengthArray<X, 32> xData(2 * hCells);
            QVarLengthArray<Y, 32> yData(2 * vCells);
            X *xs = xData.data();
            Y *ys = yData.data();

            if (m_innerTargetRect.left() != m_targetRect.left()) {
                xs[0].x = m_targetRect.left();
                xs[0].tx = sourceRect.left();
                xs[1].x = m_innerTargetRect.left();
                xs[1].tx = innerSourceRect.left();
                xs += 2;
            }
            if (m_innerTargetRect.width() != 0) {
                xs[0].x = m_innerTargetRect.left();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width();
                ++xs;
                float b = m_innerTargetRect.width() / m_subSourceRect.width();
                float a = m_innerTargetRect.x() - m_subSourceRect.x() * b;
                for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
                    xs[0].x = xs[1].x = a + b * i;
                    xs[0].tx = innerSourceRect.right();
                    xs[1].tx = innerSourceRect.left();
                    xs += 2;
                }
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
                ++xs;
            }
            if (m_innerTargetRect.right() != m_targetRect.right()) {
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.right();
                xs[1].x = m_targetRect.right();
                xs[1].tx = sourceRect.right();
                xs += 2;
            }
            Q_ASSERT(xs == xData.data() + xData.size());
            if (m_mirror) {
                float leftPlusRight = m_targetRect.left() + m_targetRect.right();
                int count = xData.size();
                xs = xData.data();
                for (int i = 0; i < count >> 1; ++i)
                    qSwap(xs[i], xs[count - 1 - i]);
                for (int i = 0; i < count; ++i)
                    xs[i].x = leftPlusRight - xs[i].x;
            }

            if (m_innerTargetRect.top() != m_targetRect.top()) {
                ys[0].y = m_targetRect.top();
                ys[0].ty = sourceRect.top();
                ys[1].y = m_innerTargetRect.top();
                ys[1].ty = innerSourceRect.top();
                ys += 2;
            }
            if (m_innerTargetRect.height() != 0) {
                ys[0].y = m_innerTargetRect.top();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height();
                ++ys;
                float b = m_innerTargetRect.height() / m_subSourceRect.height();
                float a = m_innerTargetRect.y() - m_subSourceRect.y() * b;
                for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
                    ys[0].y = ys[1].y = a + b * i;
                    ys[0].ty = innerSourceRect.bottom();
                    ys[1].ty = innerSourceRect.top();
                    ys += 2;
                }
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
                ++ys;
            }
            if (m_innerTargetRect.bottom() != m_targetRect.bottom()) {
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.bottom();
                ys[1].y = m_targetRect.bottom();
                ys[1].ty = sourceRect.bottom();
                ys += 2;
            }
            Q_ASSERT(ys == yData.data() + yData.size());

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);

                g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
                            hCells * vCells * 6 + (hCells + vCells) * 12);
                g->setDrawingMode(GL_TRIANGLES);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
                quint16 *indices = g->indexDataAsUShort();

                // The deltas are how much the fuzziness can reach into the image.
                // Only the border vertices are moved by the vertex shader, so the fuzziness
                // can't reach further into the image than the closest interior vertices.
                float leftDx = xData.at(1).x - xData.at(0).x;
                float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
                float topDy = yData.at(1).y - yData.at(0).y;
                float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;

                float leftDu = xData.at(1).tx - xData.at(0).tx;
                float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
                float topDv = yData.at(1).ty - yData.at(0).ty;
                float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;

                if (hCells == 1) {
                    leftDx = rightDx *= 0.5f;
                    leftDu = rightDu *= 0.5f;
                }
                if (vCells == 1) {
                    topDy = bottomDy *= 0.5f;
                    topDv = bottomDv *= 0.5f;
                }

                // This delta is how much the fuzziness can reach out from the image.
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                                    ? m_targetRect.width() : m_targetRect.height()) * 0.5f;

                quint16 index = 0;
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    bool isTop = j == 0;
                    bool isBottom = j == vCells - 1;
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        bool isLeft = i == 0;
                        bool isRight = i == hCells - 1;

                        SmoothVertex *v = vertices + index;

                        quint16 topLeft = index;
                        for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 topRight = index;
                        for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 bottomLeft = index;
                        for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        quint16 bottomRight = index;
                        for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);

                        if (isTop) {
                            vertices[topLeft].dy = vertices[topRight].dy = topDy;
                            vertices[topLeft].dv = vertices[topRight].dv = topDv;
                            vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
                            appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
                        }

                        if (isBottom) {
                            vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
                            vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
                            vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
                            appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
                        }

                        if (isLeft) {
                            vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
                            vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
                            vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
                            appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
                        }

                        if (isRight) {
                            vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
                            vertices[topRight].du = vertices[bottomRight].du = -rightDu;
                            vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
                            appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
                        }
                    }
                }

                Q_ASSERT(index == g->vertexCount());
                Q_ASSERT(indices - g->indexCount() == g->indexData());
            } else {
                m_geometry.allocate(hCells * vCells * 4, hCells * vCells * 6);
                m_geometry.setDrawingMode(GL_TRIANGLES);
                QSGGeometry::TexturedPoint2D *vertices = m_geometry.vertexDataAsTexturedPoint2D();
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        vertices[0].x = vertices[2].x = xs[0].x;
                        vertices[0].tx = vertices[2].tx = xs[0].tx;
                        vertices[1].x = vertices[3].x = xs[1].x;
                        vertices[1].tx = vertices[3].tx = xs[1].tx;

                        vertices[0].y = vertices[1].y = ys[0].y;
                        vertices[0].ty = vertices[1].ty = ys[0].ty;
                        vertices[2].y = vertices[3].y = ys[1].y;
                        vertices[2].ty = vertices[3].ty = ys[1].ty;

                        vertices += 4;
                    }
                }

                quint16 *indices = m_geometry.indexDataAsUShort();
                for (int i = 0; i < 4 * vCells * hCells; i += 4)
                    appendQuad(&indices, i, i + 1, i + 2, i + 3);
            }
        }
    }
    markDirty(DirtyGeometry);
    m_dirtyGeometry = false;
}
示例#5
0
void QSGBasicInternalImageNode::updateGeometry()
{
    Q_ASSERT(!m_targetRect.isEmpty());
    const QSGTexture *t = materialTexture();
    if (!t) {
        QSGGeometry *g = geometry();
        g->allocate(4);
        g->setDrawingMode(QSGGeometry::DrawTriangleStrip);
        memset(g->vertexData(), 0, g->sizeOfVertex() * 4);
    } else {
        QRectF sourceRect = t->normalizedTextureSubRect();

        QRectF innerSourceRect(sourceRect.x() + m_innerSourceRect.x() * sourceRect.width(),
                               sourceRect.y() + m_innerSourceRect.y() * sourceRect.height(),
                               m_innerSourceRect.width() * sourceRect.width(),
                               m_innerSourceRect.height() * sourceRect.height());

        bool hasMargins = m_targetRect != m_innerTargetRect;

        int floorLeft = qFloor(m_subSourceRect.left());
        int ceilRight = qCeil(m_subSourceRect.right());
        int floorTop = qFloor(m_subSourceRect.top());
        int ceilBottom = qCeil(m_subSourceRect.bottom());
        int hTiles = ceilRight - floorLeft;
        int vTiles = ceilBottom - floorTop;

        bool hasTiles = hTiles != 1 || vTiles != 1;
        bool fullTexture = innerSourceRect == QRectF(0, 0, 1, 1);

        // An image can be rendered as a single quad if:
        // - There are no margins, and either:
        //   - the image isn't repeated
        //   - the source rectangle fills the entire texture so that texture wrapping can be used,
        //     and NPOT is supported
        if (!hasMargins && (!hasTiles || (fullTexture && supportsWrap(t->textureSize())))) {
            QRectF sr;
            if (!fullTexture) {
                sr = QRectF(innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width(),
                            innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height(),
                            m_subSourceRect.width() * innerSourceRect.width(),
                            m_subSourceRect.height() * innerSourceRect.height());
            } else {
                sr = QRectF(m_subSourceRect.left() - floorLeft, m_subSourceRect.top() - floorTop,
                            m_subSourceRect.width(), m_subSourceRect.height());
            }
            if (m_mirror) {
                qreal oldLeft = sr.left();
                sr.setLeft(sr.right());
                sr.setRight(oldLeft);
            }

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);
                g->allocate(8, 14);
                g->setDrawingMode(QSGGeometry::DrawTriangleStrip);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                        ? m_targetRect.width() : m_targetRect.height()) * 0.5f;
                float sx = float(sr.width() / m_targetRect.width());
                float sy = float(sr.height() / m_targetRect.height());
                for (int d = -1; d <= 1; d += 2) {
                    for (int j = 0; j < 2; ++j) {
                        for (int i = 0; i < 2; ++i, ++vertices) {
                            vertices->x = m_targetRect.x() + i * m_targetRect.width();
                            vertices->y = m_targetRect.y() + j * m_targetRect.height();
                            vertices->u = sr.x() + i * sr.width();
                            vertices->v = sr.y() + j * sr.height();
                            vertices->dx = (i == 0 ? delta : -delta) * d;
                            vertices->dy = (j == 0 ? delta : -delta) * d;
                            vertices->du = (d < 0 ? 0 : vertices->dx * sx);
                            vertices->dv = (d < 0 ? 0 : vertices->dy * sy);
                        }
                    }
                }
                Q_ASSERT(vertices - g->vertexCount() == g->vertexData());
                static const quint16 indices[] = {
                    0, 4, 1, 5, 3, 7, 2, 6, 0, 4,
                    4, 6, 5, 7
                };
                Q_ASSERT(g->sizeOfIndex() * g->indexCount() == sizeof(indices));
                memcpy(g->indexDataAsUShort(), indices, sizeof(indices));
            } else {
                m_geometry.allocate(4);
                m_geometry.setDrawingMode(QSGGeometry::DrawTriangleStrip);
                QSGGeometry::updateTexturedRectGeometry(&m_geometry, m_targetRect, sr);
            }
        } else {
            QSGGeometry *g = m_antialiasing ? geometry() : &m_geometry;
            updateGeometry(m_targetRect, m_innerTargetRect,
                           sourceRect, innerSourceRect, m_subSourceRect,
                           g, m_mirror, m_antialiasing);
        }
    }
    markDirty(DirtyGeometry);
    m_dirtyGeometry = false;
}
示例#6
0
QSGGeometry *QSGBasicInternalImageNode::updateGeometry(const QRectF &targetRect,
                                               const QRectF &innerTargetRect,
                                               const QRectF &sourceRect,
                                               const QRectF &innerSourceRect,
                                               const QRectF &subSourceRect,
                                               QSGGeometry *geometry,
                                               bool mirror,
                                               bool antialiasing)
{
    int floorLeft = qFloor(subSourceRect.left());
    int ceilRight = qCeil(subSourceRect.right());
    int floorTop = qFloor(subSourceRect.top());
    int ceilBottom = qCeil(subSourceRect.bottom());
    int hTiles = ceilRight - floorLeft;
    int vTiles = ceilBottom - floorTop;

    int hCells = hTiles;
    int vCells = vTiles;
    if (innerTargetRect.width() == 0)
        hCells = 0;
    if (innerTargetRect.left() != targetRect.left())
        ++hCells;
    if (innerTargetRect.right() != targetRect.right())
        ++hCells;
    if (innerTargetRect.height() == 0)
        vCells = 0;
    if (innerTargetRect.top() != targetRect.top())
        ++vCells;
    if (innerTargetRect.bottom() != targetRect.bottom())
        ++vCells;
    QVarLengthArray<X, 32> xData(2 * hCells);
    QVarLengthArray<Y, 32> yData(2 * vCells);
    X *xs = xData.data();
    Y *ys = yData.data();

    if (innerTargetRect.left() != targetRect.left()) {
        xs[0].x = targetRect.left();
        xs[0].tx = sourceRect.left();
        xs[1].x = innerTargetRect.left();
        xs[1].tx = innerSourceRect.left();
        xs += 2;
    }
    if (innerTargetRect.width() != 0) {
        xs[0].x = innerTargetRect.left();
        xs[0].tx = innerSourceRect.x() + (subSourceRect.left() - floorLeft) * innerSourceRect.width();
        ++xs;
        float b = innerTargetRect.width() / subSourceRect.width();
        float a = innerTargetRect.x() - subSourceRect.x() * b;
        for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
            xs[0].x = xs[1].x = a + b * i;
            xs[0].tx = innerSourceRect.right();
            xs[1].tx = innerSourceRect.left();
            xs += 2;
        }
        xs[0].x = innerTargetRect.right();
        xs[0].tx = innerSourceRect.x() + (subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
        ++xs;
    }
    if (innerTargetRect.right() != targetRect.right()) {
        xs[0].x = innerTargetRect.right();
        xs[0].tx = innerSourceRect.right();
        xs[1].x = targetRect.right();
        xs[1].tx = sourceRect.right();
        xs += 2;
    }
    Q_ASSERT(xs == xData.data() + xData.size());
    if (mirror) {
        float leftPlusRight = targetRect.left() + targetRect.right();
        int count = xData.size();
        xs = xData.data();
        for (int i = 0; i < count >> 1; ++i)
            qSwap(xs[i], xs[count - 1 - i]);
        for (int i = 0; i < count; ++i)
            xs[i].x = leftPlusRight - xs[i].x;
    }

    if (innerTargetRect.top() != targetRect.top()) {
        ys[0].y = targetRect.top();
        ys[0].ty = sourceRect.top();
        ys[1].y = innerTargetRect.top();
        ys[1].ty = innerSourceRect.top();
        ys += 2;
    }
    if (innerTargetRect.height() != 0) {
        ys[0].y = innerTargetRect.top();
        ys[0].ty = innerSourceRect.y() + (subSourceRect.top() - floorTop) * innerSourceRect.height();
        ++ys;
        float b = innerTargetRect.height() / subSourceRect.height();
        float a = innerTargetRect.y() - subSourceRect.y() * b;
        for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
            ys[0].y = ys[1].y = a + b * i;
            ys[0].ty = innerSourceRect.bottom();
            ys[1].ty = innerSourceRect.top();
            ys += 2;
        }
        ys[0].y = innerTargetRect.bottom();
        ys[0].ty = innerSourceRect.y() + (subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
        ++ys;
    }
    if (innerTargetRect.bottom() != targetRect.bottom()) {
        ys[0].y = innerTargetRect.bottom();
        ys[0].ty = innerSourceRect.bottom();
        ys[1].y = targetRect.bottom();
        ys[1].ty = sourceRect.bottom();
        ys += 2;
    }
    Q_ASSERT(ys == yData.data() + yData.size());

    if (antialiasing) {
        QSGGeometry *g = geometry;
        Q_ASSERT(g);

        g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
                    hCells * vCells * 6 + (hCells + vCells) * 12);
        g->setDrawingMode(QSGGeometry::DrawTriangles);
        SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
        memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
        quint16 *indices = g->indexDataAsUShort();

        // The deltas are how much the fuzziness can reach into the image.
        // Only the border vertices are moved by the vertex shader, so the fuzziness
        // can't reach further into the image than the closest interior vertices.
        float leftDx = xData.at(1).x - xData.at(0).x;
        float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
        float topDy = yData.at(1).y - yData.at(0).y;
        float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;

        float leftDu = xData.at(1).tx - xData.at(0).tx;
        float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
        float topDv = yData.at(1).ty - yData.at(0).ty;
        float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;

        if (hCells == 1) {
            leftDx = rightDx *= 0.5f;
            leftDu = rightDu *= 0.5f;
        }
        if (vCells == 1) {
            topDy = bottomDy *= 0.5f;
            topDv = bottomDv *= 0.5f;
        }

        // This delta is how much the fuzziness can reach out from the image.
        float delta = float(qAbs(targetRect.width()) < qAbs(targetRect.height())
                            ? targetRect.width() : targetRect.height()) * 0.5f;

        quint16 index = 0;
        ys = yData.data();
        for (int j = 0; j < vCells; ++j, ys += 2) {
            xs = xData.data();
            bool isTop = j == 0;
            bool isBottom = j == vCells - 1;
            for (int i = 0; i < hCells; ++i, xs += 2) {
                bool isLeft = i == 0;
                bool isRight = i == hCells - 1;

                SmoothVertex *v = vertices + index;

                quint16 topLeft = index;
                for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[0].x;
                    v->u = xs[0].tx;
                    v->y = ys[0].y;
                    v->v = ys[0].ty;
                }

                quint16 topRight = index;
                for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[1].x;
                    v->u = xs[1].tx;
                    v->y = ys[0].y;
                    v->v = ys[0].ty;
                }

                quint16 bottomLeft = index;
                for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[0].x;
                    v->u = xs[0].tx;
                    v->y = ys[1].y;
                    v->v = ys[1].ty;
                }

                quint16 bottomRight = index;
                for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[1].x;
                    v->u = xs[1].tx;
                    v->y = ys[1].y;
                    v->v = ys[1].ty;
                }

                appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);

                if (isTop) {
                    vertices[topLeft].dy = vertices[topRight].dy = topDy;
                    vertices[topLeft].dv = vertices[topRight].dv = topDv;
                    vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
                    appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
                }

                if (isBottom) {
                    vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
                    vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
                    vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
                    appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
                }

                if (isLeft) {
                    vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
                    vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
                    vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
                    appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
                }

                if (isRight) {
                    vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
                    vertices[topRight].du = vertices[bottomRight].du = -rightDu;
                    vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
                    appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
                }
            }
        }

        Q_ASSERT(index == g->vertexCount());
        Q_ASSERT(indices - g->indexCount() == g->indexData());
    } else {
        if (!geometry) {
            geometry = new QSGGeometry(QSGGeometry::defaultAttributes_TexturedPoint2D(),
                                       hCells * vCells * 4, hCells * vCells * 6,
                                       QSGGeometry::UnsignedShortType);
        } else {
            geometry->allocate(hCells * vCells * 4, hCells * vCells * 6);
        }
        geometry->setDrawingMode(QSGGeometry::DrawTriangles);
        QSGGeometry::TexturedPoint2D *vertices = geometry->vertexDataAsTexturedPoint2D();
        ys = yData.data();
        for (int j = 0; j < vCells; ++j, ys += 2) {
            xs = xData.data();
            for (int i = 0; i < hCells; ++i, xs += 2) {
                vertices[0].x = vertices[2].x = xs[0].x;
                vertices[0].tx = vertices[2].tx = xs[0].tx;
                vertices[1].x = vertices[3].x = xs[1].x;
                vertices[1].tx = vertices[3].tx = xs[1].tx;

                vertices[0].y = vertices[1].y = ys[0].y;
                vertices[0].ty = vertices[1].ty = ys[0].ty;
                vertices[2].y = vertices[3].y = ys[1].y;
                vertices[2].ty = vertices[3].ty = ys[1].ty;

                vertices += 4;
            }
        }

        quint16 *indices = geometry->indexDataAsUShort();
        for (int i = 0; i < 4 * vCells * hCells; i += 4)
            appendQuad(&indices, i, i + 1, i + 2, i + 3);
    }
    return geometry;
}