示例#1
0
vector<ImportDescriptor*> Jpeg2000Importer::getImportDescriptors(const string& filename)
{
   vector<ImportDescriptor*> descriptors;
   if (filename.empty() == true)
   {
      return descriptors;
   }

   vector<string>& warnings = msWarnings[filename];
   warnings.clear();

   vector<string>& errors = msErrors[filename];
   errors.clear();

   ImportDescriptor* pImportDescriptor = mpModel->createImportDescriptor(filename, "RasterElement", NULL);
   if (pImportDescriptor != NULL)
   {
      RasterDataDescriptor* pDescriptor = dynamic_cast<RasterDataDescriptor*>(pImportDescriptor->getDataDescriptor());
      if (pDescriptor != NULL)
      {
         vector<EncodingType> validDataTypes;
         validDataTypes.push_back(INT1UBYTE);
         validDataTypes.push_back(INT1SBYTE);
         validDataTypes.push_back(INT2UBYTES);
         validDataTypes.push_back(INT2SBYTES);
         validDataTypes.push_back(INT4UBYTES);
         validDataTypes.push_back(INT4SBYTES);
         validDataTypes.push_back(FLT4BYTES);
         pDescriptor->setValidDataTypes(validDataTypes);
         pDescriptor->setProcessingLocation(IN_MEMORY);

         // Create and set a file descriptor in the data descriptor
         FactoryResource<RasterFileDescriptor> pFileDescriptor;
         pFileDescriptor->setEndian(BIG_ENDIAN_ORDER);
         if (pFileDescriptor.get() != NULL)
         {
            pFileDescriptor->setFilename(filename);
            pDescriptor->setFileDescriptor(pFileDescriptor.get());
         }

         // Populate the data descriptor from the file
         bool bSuccess = populateDataDescriptor(pDescriptor);
         if (bSuccess == true)
         {
            descriptors.push_back(pImportDescriptor);
         }
         else
         {
            // Delete the import descriptor
            mpModel->destroyImportDescriptor(pImportDescriptor);
         }
      }
   }

   return descriptors;
}
示例#2
0
std::vector<ImportDescriptor*> VideoImporter::getImportDescriptors(const std::string &filename)
{
   std::vector<ImportDescriptor*> descriptors;
   AVFormatResource pFormatCtx;
   { // scope
      AVFormatContext* pTmp = NULL;
      if (av_open_input_file(&pTmp, filename.c_str(), NULL, 0, NULL) != 0)
      {
         return descriptors;
      }
      pFormatCtx.reset(pTmp);
   }
   if (av_find_stream_info(pFormatCtx) < 0)
   {
      return descriptors;
   }
   for(int streamId = 0; streamId < pFormatCtx->nb_streams; streamId++)
   {
      if(pFormatCtx->streams[streamId]->codec->codec_type == CODEC_TYPE_VIDEO)
      {
         AVCodecContext* pCodecCtx = pFormatCtx->streams[streamId]->codec;
         AVCodec *pCodec = avcodec_find_decoder(pCodecCtx->codec_id);
         VERIFYRV(pCodec != NULL, descriptors);
         if(pCodec->capabilities & CODEC_CAP_TRUNCATED)
         {
            pCodecCtx->flags |= CODEC_FLAG_TRUNCATED;
         }
         if(avcodec_open(pCodecCtx, pCodec) < 0)
         {
            return descriptors;
         }

         ImportDescriptorResource pStreamDescriptor(filename, "VideoStream");
         VERIFYRV(pStreamDescriptor.get() != NULL, descriptors);
         pStreamDescriptor->getDataDescriptor()->setProcessingLocation(ON_DISK_READ_ONLY);
         RasterUtilities::generateAndSetFileDescriptor(pStreamDescriptor->getDataDescriptor(), filename,
            StringUtilities::toDisplayString(streamId), LITTLE_ENDIAN);
         std::string rasterName = filename + QString(":%1").arg(streamId).toStdString();
         ImportDescriptorResource pRasterDescriptor(rasterName,
                                                    TypeConverter::toString<RasterElement>(),
                                                    std::vector<std::string>(1, filename));
         VERIFYRV(pRasterDescriptor.get() != NULL, descriptors);

         RasterDataDescriptor* pDesc = static_cast<RasterDataDescriptor*>(pRasterDescriptor->getDataDescriptor());

         std::vector<DimensionDescriptor> rowDims = RasterUtilities::generateDimensionVector(pCodecCtx->height);
         pDesc->setRows(rowDims);
         std::vector<DimensionDescriptor> colDims = RasterUtilities::generateDimensionVector(pCodecCtx->width);
         pDesc->setColumns(colDims);
         std::vector<DimensionDescriptor> bandDims = RasterUtilities::generateDimensionVector(3);
         pDesc->setBands(bandDims);
         pDesc->setInterleaveFormat(BIP);
         pDesc->setDataType(INT1UBYTE);
         pDesc->setProcessingLocation(IN_MEMORY);
         pDesc->setDisplayMode(RGB_MODE);
         pDesc->setDisplayBand(RED, pDesc->getActiveBand(0));
         pDesc->setDisplayBand(GREEN, pDesc->getActiveBand(1));
         pDesc->setDisplayBand(BLUE, pDesc->getActiveBand(2));
         RasterUtilities::generateAndSetFileDescriptor(pDesc, filename, StringUtilities::toDisplayString(streamId), LITTLE_ENDIAN);

         descriptors.push_back(pStreamDescriptor.release());
         descriptors.push_back(pRasterDescriptor.release());
      }
   }
   return descriptors;
}
示例#3
0
bool SignatureLibraryImp::import(const string &filename, const string &importerName, Progress* pProgress)
{
   ImporterResource importer(importerName, filename, pProgress);
   vector<ImportDescriptor*> descs = importer->getImportDescriptors();

   RasterDataDescriptor* pCubeDescriptor = NULL;
   if (descs.size() == 1 && descs.front() != NULL)
   {
      pCubeDescriptor = dynamic_cast<RasterDataDescriptor*>(descs.front()->getDataDescriptor());
   }

   if (pCubeDescriptor != NULL)
   {
      pCubeDescriptor->setProcessingLocation(ON_DISK);
      bool cubeSuccess = importer->execute();
      if (cubeSuccess)
      {
         vector<DataElement*> importedElements = importer->getImportedElements();
         if (!importedElements.empty())
         {
            RasterElement* pCube = dynamic_cast<RasterElement*>(importedElements.front());
            Service<ModelServices>()->setElementParent(pCube, dynamic_cast<DataElement*>(this));
            if (pCube != NULL)
            {
               clear();
               mpOdre.reset(pCube);
               DynamicObject* pMetadata = getMetadata();
               if (pMetadata != NULL)
               {
                  string pCenterPath[] = { SPECIAL_METADATA_NAME, BAND_METADATA_NAME, 
                     CENTER_WAVELENGTHS_METADATA_NAME, END_METADATA_NAME };
                  mOriginalAbscissa = dv_cast<vector<double> >(
                     pMetadata->getAttributeByPath(pCenterPath), vector<double>());

                  vector<string> sigNames = 
                     dv_cast<vector<string> >(pMetadata->getAttribute("Signature Names"), vector<string>());

                  SignatureLibrary* pLib = dynamic_cast<SignatureLibrary*>(this);
                  VERIFY(pLib != NULL);

                  unsigned int numSigs = pCubeDescriptor->getRowCount();

                  mSignatures.reserve(numSigs);
                  for (unsigned int i = 0; i < numSigs; ++i)
                  {
                     string name;
                     if (i >= sigNames.size())
                     {
                        stringstream stream;
                        stream << "Signature " << i+1;
                        name = stream.str();
                     }
                     else
                     {
                        name = sigNames[i];
                     }
                     DataDescriptor* pDataDesc =
                        Service<ModelServices>()->createDataDescriptor(name, "DataElement", pLib);
                     DataDescriptorImp* pSigDesc = dynamic_cast<DataDescriptorImp*>(pDataDesc);
                     mSignatures.push_back(new LibrarySignatureAdapter(*pSigDesc,
                        SessionItemImp::generateUniqueId(), i, pLib));
                     mSignatureNames[name] = mSignatures.back();
                  }
               }
               notify(SIGNAL_NAME(Subject, Modified));
               return true;
            }
         }
      }
   }

   return false;
}
QWidget* RasterElementImporterShell::getPreview(const DataDescriptor* pDescriptor, Progress* pProgress)
{
   if (pDescriptor == NULL)
   {
      return NULL;
   }

   // Create a copy of the descriptor to change the loading parameters
   string previewName = string("Preview: ") + pDescriptor->getName();

   RasterDataDescriptor* pLoadDescriptor = dynamic_cast<RasterDataDescriptor*>(pDescriptor->copy(previewName, NULL));
   if (pLoadDescriptor == NULL)
   {
      return NULL;
   }

   // Set the active row and column numbers
   vector<DimensionDescriptor> newRows = pLoadDescriptor->getRows();
   for (unsigned int i = 0; i < newRows.size(); ++i)
   {
      newRows[i].setActiveNumber(i);
   }
   pLoadDescriptor->setRows(newRows);

   vector<DimensionDescriptor> newColumns = pLoadDescriptor->getColumns();
   for (unsigned int i = 0; i < newColumns.size(); ++i)
   {
      newColumns[i].setActiveNumber(i);
   }
   pLoadDescriptor->setColumns(newColumns);

   // Set the bands to load to just the first band and display it in grayscale mode
   const vector<DimensionDescriptor>& bands = pLoadDescriptor->getBands();
   if (bands.empty() == false)
   {
      DimensionDescriptor displayBand = bands.front();
      displayBand.setActiveNumber(0);

      vector<DimensionDescriptor> newBands;
      newBands.push_back(displayBand);

      pLoadDescriptor->setBands(newBands);
      pLoadDescriptor->setDisplayMode(GRAYSCALE_MODE);
      pLoadDescriptor->setDisplayBand(GRAY, displayBand);
   }

   // Set the processing location to load on-disk read-only
   pLoadDescriptor->setProcessingLocation(ON_DISK_READ_ONLY);

   // Do not georeference
   GeoreferenceDescriptor* pLoadGeorefDescriptor = pLoadDescriptor->getGeoreferenceDescriptor();
   if (pLoadGeorefDescriptor != NULL)
   {
      pLoadGeorefDescriptor->setGeoreferenceOnImport(false);
   }

   // Validate the preview
   string errorMessage;
   bool bValidPreview = validate(pLoadDescriptor, vector<const DataDescriptor*>(), errorMessage);
   if (bValidPreview == false)
   {
      // Try an in-memory preview
      pLoadDescriptor->setProcessingLocation(IN_MEMORY);
      bValidPreview = validate(pLoadDescriptor, vector<const DataDescriptor*>(), errorMessage);
   }

   QWidget* pPreviewWidget = NULL;
   if (bValidPreview == true)
   {
      // Create the model element
      RasterElement* pRasterElement = static_cast<RasterElement*>(mpModel->createElement(pLoadDescriptor));
      if (pRasterElement != NULL)
      {
         // Add the progress and raster element to an input arg list
         PlugInArgList* pInArgList = NULL;
         bool bSuccess = getInputSpecification(pInArgList);
         if ((bSuccess == true) && (pInArgList != NULL))
         {
            bSuccess = pInArgList->setPlugInArgValue(Executable::ProgressArg(), pProgress);
            if (bSuccess)
            {
               bSuccess = pInArgList->setPlugInArgValue(Importer::ImportElementArg(), pRasterElement);
            }
         }

         // Load the data in batch mode
         bool bBatch = isBatch();
         setBatch();

         bSuccess = execute(pInArgList, NULL);

         // Restore to interactive mode if necessary
         if (bBatch == false)
         {
            setInteractive();
         }

         // Create the spatial data view
         if (bSuccess == true)
         {
            string name = pRasterElement->getName();

            SpatialDataView* pView = static_cast<SpatialDataView*>(mpDesktop->createView(name, SPATIAL_DATA_VIEW));
            if (pView != NULL)
            {
               // Set the spatial data in the view
               pView->setPrimaryRasterElement(pRasterElement);

               // Add the cube layer
               RasterLayer* pLayer = static_cast<RasterLayer*>(pView->createLayer(RASTER, pRasterElement));
               if (pLayer != NULL)
               {
                  // Get the widget from the view
                  pPreviewWidget = pView->getWidget();
               }
               else
               {
                  string message = "Could not create the cube layer!";
                  if (pProgress != NULL)
                  {
                     pProgress->updateProgress(message, 0, ERRORS);
                  }

                  mpModel->destroyElement(pRasterElement);
               }
            }
            else
            {
               string message = "Could not create the view!";
               if (pProgress != NULL)
               {
                  pProgress->updateProgress(message, 0, ERRORS);
               }

               mpModel->destroyElement(pRasterElement);
            }
         }
         else
         {
            mpModel->destroyElement(pRasterElement);
         }
      }
   }

   // Delete the data descriptor copy
   mpModel->destroyDataDescriptor(pLoadDescriptor);

   return pPreviewWidget;
}
示例#5
0
ImportDescriptor* Nitf::NitfImporterShell::getImportDescriptor(const string& filename, ossim_uint32 imageSegment,
                                                               const Nitf::OssimFileResource& pFile,
                                                               const ossimNitfFileHeaderV2_X* pFileHeader,
                                                               const ossimNitfImageHeaderV2_X* pImageSubheader)
{
   if (pImageSubheader == NULL)
   {
      return NULL;
   }

   EncodingType dataType = ossimImageHeaderToEncodingType(pImageSubheader);
   if (dataType.isValid() == false)
   {
      return NULL;
   }

   stringstream imageNameStream;
   imageNameStream << "I" << imageSegment + 1;
   string imageName = imageNameStream.str();

   ImportDescriptorResource pImportDescriptor(filename + "-" + imageName,
      TypeConverter::toString<RasterElement>(), NULL);
   VERIFYRV(pImportDescriptor.get() != NULL, NULL);
   pImportDescriptor->setImported(pImageSubheader->getRepresentation() != "NODISPLY");

   RasterDataDescriptor* pDescriptor = dynamic_cast<RasterDataDescriptor*>(pImportDescriptor->getDataDescriptor());
   VERIFYRV(pDescriptor != NULL, NULL);

   vector<DimensionDescriptor> bands =  RasterUtilities::generateDimensionVector(pImageSubheader->getNumberOfBands(),
      true, false, true);
   pDescriptor->setBands(bands);

   vector<DimensionDescriptor> rows = RasterUtilities::generateDimensionVector(pImageSubheader->getNumberOfRows(),
      true, false, true);
   pDescriptor->setRows(rows);

   vector<DimensionDescriptor> cols = RasterUtilities::generateDimensionVector(pImageSubheader->getNumberOfCols(),
      true, false, true);
   pDescriptor->setColumns(cols);

   if (pImageSubheader->getIMode() == "P")
   {
      pDescriptor->setInterleaveFormat(BIP);
   }
   else if (pImageSubheader->getIMode() == "R")
   {
      pDescriptor->setInterleaveFormat(BIL);
   }
   else
   {
      pDescriptor->setInterleaveFormat(BSQ);
   }

   pDescriptor->setDataType(dataType);
   pDescriptor->setValidDataTypes(vector<EncodingType>(1, dataType));
   pDescriptor->setProcessingLocation(IN_MEMORY);

   map<string, TrePlugInResource> parsers;
   string errorMessage;

   // Set the file descriptor
   RasterFileDescriptor* pFileDescriptor = dynamic_cast<RasterFileDescriptor*>(
      RasterUtilities::generateAndSetFileDescriptor(pDescriptor, filename, imageName, LITTLE_ENDIAN_ORDER));
   if (pFileDescriptor == NULL)
   {
      return NULL;
   }

   // Set the bits per element, which may be different than the data type in the data descriptor,
   // using NBPP instead of ABPP as is done in ossimNitfTileSource.cpp.
   unsigned int bitsPerPixel = static_cast<unsigned int>(pImageSubheader->getBitsPerPixelPerBand());
   pFileDescriptor->setBitsPerElement(bitsPerPixel);

   // Populate the metadata and set applicable values in the data descriptor
   if (Nitf::importMetadata(imageSegment + 1, pFile, pFileHeader, pImageSubheader, pDescriptor, parsers,
      errorMessage) == true)
   {
      // Populate specific fields in the data descriptor or file descriptor from the TREs
      const DynamicObject* pMetadata = pDescriptor->getMetadata();
      VERIFYRV(pMetadata, NULL);

      // Pixel size - This info is contained in multiple TREs, but there is no documentation on which
      // TRE contains the more precise value if multiple TREs containing the info are present.  Choosing
      // the order ACFTA, BANDSA, ACFTB, and BANDSB where the later "B" TREs will overwrite the values
      // contained in the earlier "A" TREs.  The BANDSB TRE contains GSD values for each band, which is
      // currently not supported, so only set the pixel size if the values in all bands are the same.
      double xGsd = 1.0;
      double yGsd = 1.0;

      const string acrftaPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "ACFTA",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pAcrftA = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(acrftaPath));
      if (pAcrftA != NULL)
      {
         // The ACFTA spec calls out specific spacing units for "SAR" and "EO-IR" data, but does not indicate how
         // this is determined.  It seems to be related to the ACFTB SENSOR_ID_TYPE field, but that field is not
         // present in the ACFTA TRE.  So just check for "SAR" data from the ICAT field in the image subheader
         // and assume every other data type is "EO-IR" data.
         const string imageCategory = pImageSubheader->getCategory().trim();

         const DataVariant& rowSpacing = pAcrftA->getAttribute(Nitf::TRE::ACFTA::ROW_SPACING);
         if (rowSpacing.isValid() == true)
         {
            if (imageCategory == "SAR")
            {
               yGsd = getGsd(rowSpacing, "f");     // Feet
            }
            else
            {
               yGsd = getGsd(rowSpacing, "r");     // Micro-radians
            }
         }

         const DataVariant& columnSpacing = pAcrftA->getAttribute(Nitf::TRE::ACFTA::COL_SPACING);
         if (columnSpacing.isValid() == true)
         {
            if (imageCategory == "SAR")
            {
               xGsd = getGsd(columnSpacing, "f");  // Feet
            }
            else
            {
               xGsd = getGsd(columnSpacing, "r");  // Micro-radians
            }
         }
      }

      const string bandsaPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "BANDSA",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pBandsA = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(bandsaPath));
      if (pBandsA != NULL)
      {
         const DataVariant& rowSpacing = pBandsA->getAttribute(Nitf::TRE::BANDSA::ROW_SPACING);
         if (rowSpacing.isValid() == true)
         {
            const DataVariant& rowSpacingUnits = pBandsA->getAttribute(Nitf::TRE::BANDSA::ROW_SPACING_UNITS);
            if (rowSpacingUnits.isValid() == true)
            {
               yGsd = getGsd(rowSpacing, rowSpacingUnits.toXmlString());
            }
         }

         const DataVariant& columnSpacing = pBandsA->getAttribute(Nitf::TRE::BANDSA::COL_SPACING);
         if (columnSpacing.isValid() == true)
         {
            const DataVariant& columnSpacingUnits = pBandsA->getAttribute(Nitf::TRE::BANDSA::COL_SPACING_UNITS);
            if (columnSpacingUnits.isValid() == true)
            {
               xGsd = getGsd(columnSpacing, columnSpacingUnits.toXmlString());
            }
         }
      }

      const string acrftbPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "ACFTB",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pAcrftB = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(acrftbPath));
      if (pAcrftB != NULL)
      {
         const DataVariant& rowSpacing = pAcrftB->getAttribute(Nitf::TRE::ACFTB::ROW_SPACING);
         if (rowSpacing.isValid() == true)
         {
            const DataVariant& rowSpacingUnits = pAcrftB->getAttribute(Nitf::TRE::ACFTB::ROW_SPACING_UNITS);
            if (rowSpacingUnits.isValid() == true)
            {
               yGsd = getGsd(rowSpacing, rowSpacingUnits.toXmlString());
            }
         }

         const DataVariant& columnSpacing = pAcrftB->getAttribute(Nitf::TRE::ACFTB::COL_SPACING);
         if (columnSpacing.isValid() == true)
         {
            const DataVariant& columnSpacingUnits = pAcrftB->getAttribute(Nitf::TRE::ACFTB::COL_SPACING_UNITS);
            if (columnSpacingUnits.isValid() == true)
            {
               xGsd = getGsd(columnSpacing, columnSpacingUnits.toXmlString());
            }
         }
      }

      const string bandsbPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "BANDSB",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pBandsB = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(bandsbPath));
      if (pBandsB != NULL)
      {
         bool validRowGsd = false;

         const DataVariant& rowGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD);
         if (rowGsd.isValid() == true)
         {
            const DataVariant& rowGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD_UNIT);
            if (rowGsdUnits.isValid() == true)
            {
               yGsd = getGsd(rowGsd, rowGsdUnits.toXmlString());
               validRowGsd = true;
            }
         }

         if (validRowGsd == false)
         {
            if (pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD + "#0").isValid())
            {
               double commonYGsd = -1.0;

               unsigned int numBands = pDescriptor->getBandCount();
               for (unsigned int i = 0; i < numBands; ++i)
               {
                  double bandYGsd = -1.0;
                  string bandPostfix = "#" + StringUtilities::toDisplayString(i);

                  const DataVariant& bandRowGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD + bandPostfix);
                  if (bandRowGsd.isValid() == true)
                  {
                     const DataVariant& bandRowGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD_UNIT +
                        bandPostfix);
                     if (bandRowGsdUnits.isValid() == true)
                     {
                        bandYGsd = getGsd(bandRowGsd, bandRowGsdUnits.toXmlString());
                     }
                  }

                  if (bandYGsd == commonYGsd)
                  {
                     continue;
                  }

                  if (commonYGsd != -1.0)
                  {
                     commonYGsd = -1.0;
                     break;
                  }

                  commonYGsd = bandYGsd;
               }

               if (commonYGsd != 1.0)
               {
                  yGsd = commonYGsd;
               }
            }
         }

         bool validColumnGsd = false;

         const DataVariant& columnGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD);
         if (columnGsd.isValid() == true)
         {
            const DataVariant& columnGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD_UNITS);
            if (columnGsdUnits.isValid() == true)
            {
               xGsd = getGsd(columnGsd, columnGsdUnits.toXmlString());
               validColumnGsd = true;
            }
         }

         if (validColumnGsd == false)
         {
            if (pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD + "#0").isValid())
            {
               double commonXGsd = -1.0;

               unsigned int numBands = pDescriptor->getBandCount();
               for (unsigned int i = 0; i < numBands; ++i)
               {
                  double bandXGsd = -1.0;
                  string bandPostfix = "#" + StringUtilities::toDisplayString(i);

                  const DataVariant& bandRowGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD + bandPostfix);
                  if (bandRowGsd.isValid() == true)
                  {
                     const DataVariant& bandRowGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD_UNIT +
                        bandPostfix);
                     if (bandRowGsdUnits.isValid() == true)
                     {
                        bandXGsd = getGsd(bandRowGsd, bandRowGsdUnits.toXmlString());
                     }
                  }

                  if (bandXGsd == commonXGsd)
                  {
                     continue;
                  }

                  if (commonXGsd != -1.0)
                  {
                     commonXGsd = -1.0;
                     break;
                  }

                  commonXGsd = bandXGsd;
               }

               if (commonXGsd != 1.0)
               {
                  xGsd = commonXGsd;
               }
            }
         }
      }

      double magFactor = 1.0;
      ossimString imag = pImageSubheader->getImageMagnification().trim();
      if (imag.empty() == false)
      {
         // Need to multiply the GSD values by the image magnification (IMAG) value in the image subheader
         if (imag[0] == '/')
         {
            ossimString reciprocal = imag.substr(1);
            magFactor = 1.0 / reciprocal.toDouble();
         }
         else
         {
            magFactor = imag.toDouble();
         }

         xGsd *= magFactor;
         yGsd *= magFactor;
      }

      pDescriptor->setXPixelSize(xGsd);
      pDescriptor->setYPixelSize(yGsd);

      // Higher precision GCPs
      const string blockaPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "BLOCKA",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pBlockA = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(blockaPath));
      if (pBlockA != NULL)
      {
         const DataVariant& blockLines = pBlockA->getAttribute(Nitf::TRE::BLOCKA::L_LINES);
         if (blockLines.isValid() == true)
         {
            unsigned int numBlockRows = 0;
            if (blockLines.getValue<unsigned int>(numBlockRows) == true)
            {
               // Need to multiply the number of rows by the image magnification (IMAG) value in the image subheader
               numBlockRows = static_cast<unsigned int>(static_cast<double>(numBlockRows) * magFactor);
               if (numBlockRows == pFileDescriptor->getRowCount())
               {
                  list<GcpPoint> updatedGcps;

                  list<GcpPoint> gcps = pFileDescriptor->getGcps();
                  for (list<GcpPoint>::iterator iter = gcps.begin(); iter != gcps.end(); ++iter)
                  {
                     GcpPoint gcp = *iter;
                     string coordinateText;

                     list<GcpPoint>::size_type index = updatedGcps.size();
                     if (index == 0)
                     {
                        const DataVariant& gcp1 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::FRFC_LOC);
                        if (gcp1.isValid() == true)
                        {
                           coordinateText = gcp1.toXmlString();
                        }
                     }
                     else if (index == 1)
                     {
                        const DataVariant& gcp2 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::FRLC_LOC);
                        if (gcp2.isValid() == true)
                        {
                           coordinateText = gcp2.toXmlString();
                        }
                     }
                     else if (index == 2)
                     {
                        const DataVariant& gcp3 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::LRLC_LOC);
                        if (gcp3.isValid() == true)
                        {
                           coordinateText = gcp3.toXmlString();
                        }
                     }
                     else if (index == 3)
                     {
                        const DataVariant& gcp4 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::LRFC_LOC);
                        if (gcp4.isValid() == true)
                        {
                           coordinateText = gcp4.toXmlString();
                        }
                     }

                     if (StringUtilities::isAllBlank(coordinateText) == false)
                     {
                        coordinateText.insert(10, ", ");
                        LatLonPoint latLon(coordinateText);
                        gcp.mCoordinate = latLon.getCoordinates();
                     }

                     updatedGcps.push_back(gcp);
                  }

                  pFileDescriptor->setGcps(updatedGcps);
               }
            }
         }
      }

      // This only checks the first BANDSB. It is possible to have multiple BANDSB TREs.
      // If someone runs across real data where the bad band info is in another BANDSB TRE
      // this code will need to be modified.
      if (pBandsB != NULL && pBandsB->getAttribute(Nitf::TRE::BANDSB::BAD_BAND + "#0").isValid())
      {
         const vector<DimensionDescriptor>& curBands = pDescriptor->getBands();
         vector<DimensionDescriptor> newBands;
         for (size_t idx = 0; idx < curBands.size(); ++idx)
         {
            const int* pVal = dv_cast<int>(&pBandsB->getAttribute(
               Nitf::TRE::BANDSB::BAD_BAND + "#" + StringUtilities::toDisplayString(idx)));
            if (pVal == NULL || *pVal == 1) // 0 == invalid or suspect band, 1 = valid band
            {
               newBands.push_back(curBands[idx]);
            }
         }
         pDescriptor->setBands(newBands);
      }

      // Bad values
      if (pImageSubheader->hasTransparentCode() == true)
      {
         vector<int> badValues;
         badValues.push_back(static_cast<int>(pImageSubheader->getTransparentCode()));
         pDescriptor->setBadValues(badValues);
      }

      // If red, green, OR blue bands are valid, set the display mode to RGB.
      if (pDescriptor->getDisplayBand(RED).isValid() == true ||
         pDescriptor->getDisplayBand(GREEN).isValid() == true ||
         pDescriptor->getDisplayBand(BLUE).isValid() == true)
      {
         pDescriptor->setDisplayMode(RGB_MODE);
      }
      // Otherwise, if the gray band is valid, set the display mode to GRAYSCALE.
      else if (pDescriptor->getDisplayBand(GRAY).isValid() == true)
      {
         pDescriptor->setDisplayMode(GRAYSCALE_MODE);
      }
      // Otherwise, if at least 3 bands are available, set the display mode to RGB,
      // and set the first three bands to red, green, and blue respectively.
      else if (bands.size() >= 3)
      {
         pDescriptor->setDisplayBand(RED, bands[0]);
         pDescriptor->setDisplayBand(GREEN, bands[1]);
         pDescriptor->setDisplayBand(BLUE, bands[2]);
         pDescriptor->setDisplayMode(RGB_MODE);
      }
      // Otherwise, if at least 1 band is available, set the display mode to GRAYSCALE,
      // and set the first band to GRAY.
      else if (bands.empty() == false)
      {
         pDescriptor->setDisplayBand(GRAY, bands[0]);
         pDescriptor->setDisplayMode(GRAYSCALE_MODE);
      }
      else
      {
         return NULL;
      }

      // Special initialization for J2K compressed image segments
      const string compressionPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::IMAGE_SUBHEADER,
         Nitf::ImageSubheaderFieldNames::COMPRESSION,
         END_METADATA_NAME
      };

      string imageCompression = pMetadata->getAttributeByPath(compressionPath).toDisplayString();
      if ((imageCompression == Nitf::ImageSubheaderFieldValues::IC_C8) ||
         (imageCompression == Nitf::ImageSubheaderFieldValues::IC_M8))
      {
         // Per Section 8.1 of the BIIF Profile for JPEG 2000 Version 01.10 (BPJ2K01.10),
         // if the values in the J2K data differ from the values in the image subheader,
         // the J2K values are given precedence.
         opj_image_t* pImage = getImageInfo(filename, imageSegment, OPJ_CODEC_J2K);
         if (pImage == NULL)
         {
            pImage = getImageInfo(filename, imageSegment, OPJ_CODEC_JP2);
         }

         if (pImage != NULL)
         {
            // Bits per element
            unsigned int bitsPerElement = pImage->comps->prec;
            if (bitsPerElement != pFileDescriptor->getBitsPerElement())
            {
               pFileDescriptor->setBitsPerElement(bitsPerElement);
            }

            // Data type
            EncodingType dataType = INT1UBYTE;
            if (bitsPerElement <= 8)
            {
               if (pImage->comps->sgnd)
               {
                  dataType = INT1SBYTE;
               }
               else
               {
                  dataType = INT1UBYTE;
               }
            }
            else if (bitsPerElement <= 16)
            {
               if (pImage->comps->sgnd)
               {
                  dataType = INT2SBYTES;
               }
               else
               {
                  dataType = INT2UBYTES;
               }
            }
            else if (bitsPerElement <= 32)
            {
               if (pImage->comps->sgnd)
               {
                  dataType = INT4SBYTES;
               }
               else
               {
                  dataType = INT4UBYTES;
               }
            }
            else if (bitsPerElement <= 64)
            {
               dataType = FLT8BYTES;
            }

            if (dataType != pDescriptor->getDataType())
            {
               pDescriptor->setDataType(dataType);
            }

            // Rows
            unsigned int numRows = pImage->comps->h;
            if (numRows != pFileDescriptor->getRowCount())
            {
               vector<DimensionDescriptor> rows = RasterUtilities::generateDimensionVector(numRows, true, false, true);
               pDescriptor->setRows(rows);
               pFileDescriptor->setRows(rows);
            }

            // Columns
            unsigned int numColumns = pImage->comps->w;
            if (numColumns != pFileDescriptor->getColumnCount())
            {
               vector<DimensionDescriptor> columns = RasterUtilities::generateDimensionVector(numColumns, true, false,
                  true);
               pDescriptor->setColumns(columns);
               pFileDescriptor->setColumns(columns);
            }

            // Bands
            unsigned int numBands = pImage->numcomps;
            if (numBands != pFileDescriptor->getBandCount())
            {
               vector<DimensionDescriptor> bands = RasterUtilities::generateDimensionVector(numBands, true, false,
                  true);
               pDescriptor->setBands(bands);
               pFileDescriptor->setBands(bands);
            }

            // Cleanup
            opj_image_destroy(pImage);
         }

         // Set the interleave format as BIP, which is the interleave format for J2K data
         pDescriptor->setInterleaveFormat(BIP);
         pFileDescriptor->setInterleaveFormat(BIP);
      }

      mParseMessages[imageSegment] = errorMessage;
   }

   return pImportDescriptor.release();
}
示例#6
0
vector<ImportDescriptor*> Nitf::NitfImporterShell::getImportDescriptors(const string &filename)
{
   vector<ImportDescriptor*> retval;

   if (filename.empty())
   {
      return retval;
   }

   Nitf::OssimFileResource pFile(filename);
   if (pFile.get() == NULL)
   {
      return retval;
   }

   Nitf::OssimImageHandlerResource pHandler(filename);
   if (pHandler.get() == NULL || pHandler->canCastTo("ossimNitfTileSource") == false)
   {
      return retval;
   }

   ossimNitfFileHeaderV2_X* pFileHeader =
      PTR_CAST(ossimNitfFileHeaderV2_X, pFile->getHeader().get());
   if (pFileHeader == NULL)
   {
      return retval;
   }

   // Not all segments are importable.  This is generally due to the segment
   // using an unsupported compression format.  Only generate descriptors
   // for the importable segments.
   vector<ossim_uint32> importableImageSegments;
   pHandler->getEntryList(importableImageSegments);

   // Create map of TRE parsers.
   // The sole purpose of this map is to force DLLs to stay loaded while the metadata is being imported.
   std::map<std::string, TrePlugInResource> parsers;

   for (vector<ossim_uint32>::iterator segmentIter = importableImageSegments.begin();
        segmentIter != importableImageSegments.end(); ++segmentIter)
   {
      // Do not call pHandler->setCurrentEntry as it is a very expensive operation
      // which causes up to a several second delay on files with many large images.
      const ossim_uint32& currentIndex = *segmentIter;
      ossimNitfImageHeaderV2_X* pImgHeader =
         PTR_CAST(ossimNitfImageHeaderV2_X, pFile->getNewImageHeader(currentIndex));
      if (pImgHeader == NULL)
      {
         continue;
      }

      EncodingType dataType = ossimImageHeaderToEncodingType(pImgHeader);
      if (dataType.isValid() == false)
      {
         continue;
      }

      stringstream imageNameStream;
      imageNameStream << "I" << currentIndex + 1;
      string imageName = imageNameStream.str();

      ImportDescriptorResource pImportDescriptor(getImportDescriptor(filename, imageName,
         pFile.get(), pFileHeader, pImgHeader));
      if (pImportDescriptor.get() == NULL)
      {
         continue;
      }

      RasterDataDescriptor* pDd = dynamic_cast<RasterDataDescriptor*>(pImportDescriptor->getDataDescriptor());
      VERIFYRV(pDd != NULL, retval);

      vector<DimensionDescriptor> bands = 
         RasterUtilities::generateDimensionVector(pImgHeader->getNumberOfBands(), true, false, true);
      pDd->setBands(bands);

      vector<DimensionDescriptor> rows = 
         RasterUtilities::generateDimensionVector(pImgHeader->getNumberOfRows(), true, false, true);
      pDd->setRows(rows);

      vector<DimensionDescriptor> cols = 
         RasterUtilities::generateDimensionVector(pImgHeader->getNumberOfCols(), true, false, true);
      pDd->setColumns(cols);

      if (pImgHeader->getIMode() == "P")
      {
         pDd->setInterleaveFormat(BIP);
      }
      else if (pImgHeader->getIMode() == "R")
      {
         pDd->setInterleaveFormat(BIL);
      }
      else
      {
         pDd->setInterleaveFormat(BSQ);
      }

      pDd->setDataType(dataType);
      pDd->setValidDataTypes(vector<EncodingType>(1, dataType));
      pDd->setProcessingLocation(IN_MEMORY);

      RasterFileDescriptor* pFd = dynamic_cast<RasterFileDescriptor*>(
         RasterUtilities::generateAndSetFileDescriptor(pDd, filename, imageName, LITTLE_ENDIAN_ORDER));

      string errorMessage;
      if (Nitf::importMetadata(currentIndex + 1, pFile, pFileHeader, pImgHeader, pDd, parsers, errorMessage) == true)
      {
         if (pImgHeader->hasTransparentCode() == true)
         {
            vector<int> badValues;
            badValues.push_back(static_cast<int>(pImgHeader->getTransparentCode()));
            pDd->setBadValues(badValues);
         }

         // If red, green, OR blue bands are valid, set the display mode to RGB.
         if (pDd->getDisplayBand(RED).isValid() == true ||
             pDd->getDisplayBand(GREEN).isValid() == true ||
             pDd->getDisplayBand(BLUE).isValid() == true)
         {
            pDd->setDisplayMode(RGB_MODE);
         }
         // Otherwise, if the gray band is valid, set the display mode to GRAYSCALE.
         else if (pDd->getDisplayBand(GRAY).isValid() == true)
         {
            pDd->setDisplayMode(GRAYSCALE_MODE);
         }
         // Otherwise, if at least 3 bands are available, set the display mode to RGB,
         // and set the first three bands to red, green, and blue respectively.
         else if (bands.size() >= 3)
         {
            pDd->setDisplayBand(RED, bands[0]);
            pDd->setDisplayBand(GREEN, bands[1]);
            pDd->setDisplayBand(BLUE, bands[2]);
            pDd->setDisplayMode(RGB_MODE);
         }
         // Otherwise, if at least 1 band is available, set the display mode to GRAYSCALE,
         // and set the first band to GRAY.
         else if (bands.empty() == false)
         {
            pDd->setDisplayBand(GRAY, bands[0]);
            pDd->setDisplayMode(GRAYSCALE_MODE);
         }
         else
         {
            continue;
         }

         mParseMessages[imageName] = errorMessage;
         retval.push_back(pImportDescriptor.release());
      }
   }

   return retval;
}
std::vector<ImportDescriptor*> LandsatGeotiffImporter::createImportDescriptors(const std::string& filename,
   const DynamicObject* pImageMetadata,
   Landsat::LandsatImageType type)
{
   std::string suffix;
   if (type == Landsat::LANDSAT_VNIR)
   {
      suffix = "vnir";
   }
   else if (type == Landsat::LANDSAT_PAN)
   {
      suffix = "pan";
   }
   else if (type == Landsat::LANDSAT_TIR)
   {
      suffix = "tir";
   }
   std::vector<ImportDescriptor*> descriptors;
   std::string spacecraft = dv_cast<std::string>(
      pImageMetadata->getAttributeByPath("LANDSAT_MTL/L1_METADATA_FILE/PRODUCT_METADATA/SPACECRAFT_ID"), "");
   std::vector<std::string> bandNames = Landsat::getSensorBandNames(spacecraft, type);
   if (bandNames.empty())
   {
      //this spacecraft and iamge type
      //isn't meant to have any bands, so terminate early
      //e.g. spacecraft == "Landsat5" && type == Landsat::LANDSAT_PAN
      return descriptors;
   }
   std::vector<unsigned int> validBands;
   std::vector<std::string> bandFiles = Landsat::getGeotiffBandFilenames(
      pImageMetadata, filename, type, validBands);
   if (bandFiles.empty())
   {
      mWarnings.push_back("Unable to locate band files for " + suffix + " product."); 
      return descriptors;
   }
   ImportDescriptorResource pImportDescriptor(filename + "-" + suffix,
      TypeConverter::toString<RasterElement>(), NULL, false);
   if (pImportDescriptor.get() == NULL)
   {
      return descriptors;
   }
   RasterDataDescriptor* pDescriptor = dynamic_cast<RasterDataDescriptor*>(pImportDescriptor->getDataDescriptor());
   if (pDescriptor == NULL)
   {
      return descriptors;
   }
   pDescriptor->setProcessingLocation(ON_DISK);
   DynamicObject* pMetadata = pDescriptor->getMetadata();
   pMetadata->merge(pImageMetadata);
   FactoryResource<RasterFileDescriptor> pFileDescriptorRes;
   pDescriptor->setFileDescriptor(pFileDescriptorRes.get());
   RasterFileDescriptor* pFileDescriptor = dynamic_cast<RasterFileDescriptor*>(pDescriptor->getFileDescriptor());
   pFileDescriptor->setFilename(filename);

   std::string tiffFile = bandFiles[0];
   if (!Landsat::parseBasicsFromTiff(tiffFile, pDescriptor))
   {
      mWarnings.push_back("Unable to parse basic information about image from tiff file for " + suffix + " product.");
      return descriptors;
   }
   if (pDescriptor->getBandCount() != 1 || pDescriptor->getDataType() != INT1UBYTE)
   {
      mWarnings.push_back("Improperly formatted tiff file for " + suffix + " product.");
      return descriptors;
   }
   pDescriptor->setInterleaveFormat(BSQ); //one tiff file per band.
   pFileDescriptor->setInterleaveFormat(BSQ);
   std::vector<DimensionDescriptor> bands = RasterUtilities::generateDimensionVector(
      bandFiles.size(), true, false, true);
   pDescriptor->setBands(bands);
   pFileDescriptor->setBands(bands);
   pDescriptor->setBadValues(std::vector<int>(1, 0));
   pFileDescriptor->setDatasetLocation(suffix);

   //special metadata here
   Landsat::fixMtlMetadata(pMetadata, type, validBands);

   std::vector<std::string> defaultImport = OptionsLandsatImport::getSettingDefaultImport();
   bool fallbackToDn = false;
   descriptors.push_back(pImportDescriptor.release());

   if (type == Landsat::LANDSAT_VNIR)
   {
      //attempt to display true-color
      DimensionDescriptor redBand = RasterUtilities::findBandWavelengthMatch(0.630, 0.690, pDescriptor);
      DimensionDescriptor greenBand = RasterUtilities::findBandWavelengthMatch(0.510, 0.590, pDescriptor);
      DimensionDescriptor blueBand = RasterUtilities::findBandWavelengthMatch(0.410, 0.490, pDescriptor);
      if (redBand.isValid() && greenBand.isValid() && blueBand.isValid())
      {
         pDescriptor->setDisplayMode(RGB_MODE);
         pDescriptor->setDisplayBand(RED, redBand);
         pDescriptor->setDisplayBand(GREEN, greenBand);
         pDescriptor->setDisplayBand(BLUE, blueBand);
      }
   }

   std::vector<std::pair<double, double> > radianceFactors = Landsat::determineRadianceConversionFactors(
      pMetadata, type, validBands);
   bool shouldDefaultImportRadiance =
      std::find(defaultImport.begin(), defaultImport.end(), suffix + "-Radiance") != defaultImport.end();
   if (radianceFactors.size() == bandFiles.size())
   {
      //we have enough to create radiance import descriptor
      RasterDataDescriptor* pRadianceDescriptor = dynamic_cast<RasterDataDescriptor*>(
         pDescriptor->copy(filename + "-" + suffix + "-radiance", NULL));
      if (pRadianceDescriptor != NULL)
      {
         pRadianceDescriptor->setDataType(FLT4BYTES);
         pRadianceDescriptor->setValidDataTypes(std::vector<EncodingType>(1, pRadianceDescriptor->getDataType()));
         pRadianceDescriptor->setBadValues(std::vector<int>(1, -100));
         FactoryResource<Units> pUnits;
         pUnits->setUnitType(RADIANCE);
         pUnits->setUnitName("w/(m^2*sr*um)");
         pUnits->setScaleFromStandard(1.0);
         pRadianceDescriptor->setUnits(pUnits.get());
         FileDescriptor* pRadianceFileDescriptor = pRadianceDescriptor->getFileDescriptor();
         if (pRadianceFileDescriptor != NULL)
         {
            pRadianceFileDescriptor->setDatasetLocation(suffix + "-radiance");
            ImportDescriptorResource pRadianceImportDescriptor(pRadianceDescriptor,
               shouldDefaultImportRadiance);
            descriptors.push_back(pRadianceImportDescriptor.release());
         }
      }
   }
   else if (shouldDefaultImportRadiance)
   {
      fallbackToDn = true;
   }

   std::vector<double> reflectanceFactors = Landsat::determineReflectanceConversionFactors(
      pMetadata, type, validBands);
   bool shouldDefaultImportReflectance =
      std::find(defaultImport.begin(), defaultImport.end(), suffix + "-Reflectance") != defaultImport.end();
   if (radianceFactors.size() == bandFiles.size() && reflectanceFactors.size() == bandFiles.size())
   {
      //we have enough to create reflectance import descriptor
      RasterDataDescriptor* pReflectanceDescriptor = dynamic_cast<RasterDataDescriptor*>(
         pDescriptor->copy(filename + "-" + suffix + "-reflectance", NULL));
      if (pReflectanceDescriptor != NULL)
      {
         pReflectanceDescriptor->setDataType(INT2SBYTES);
         pReflectanceDescriptor->setValidDataTypes(
            std::vector<EncodingType>(1, pReflectanceDescriptor->getDataType()));
         pReflectanceDescriptor->setBadValues(std::vector<int>(1, std::numeric_limits<short>::max()));
         FactoryResource<Units> pUnits;
         pUnits->setUnitType(REFLECTANCE);
         pUnits->setUnitName("Reflectance");
         pUnits->setScaleFromStandard(1/10000.0);
         pReflectanceDescriptor->setUnits(pUnits.get());
         FileDescriptor* pReflectanceFileDescriptor = pReflectanceDescriptor->getFileDescriptor();
         if (pReflectanceFileDescriptor != NULL)
         {
            pReflectanceFileDescriptor->setDatasetLocation(suffix + "-reflectance");
            ImportDescriptorResource pReflectanceImportDescriptor(pReflectanceDescriptor,
               shouldDefaultImportReflectance);
            descriptors.push_back(pReflectanceImportDescriptor.release());
         }
      }
   }
   else if (shouldDefaultImportReflectance)
   {
      fallbackToDn = true;
   }

   double K1 = 0.0;
   double K2 = 0.0;
   bool haveTemperatureFactors = Landsat::getTemperatureConstants(pMetadata, type,
      K1, K2);
   bool shouldDefaultImportTemperature =
      std::find(defaultImport.begin(), defaultImport.end(), suffix + "-Temperature") != defaultImport.end();
   if (radianceFactors.size() == bandFiles.size() && haveTemperatureFactors)
   {
      //we have enough to create temperature import descriptor
      RasterDataDescriptor* pTemperatureDescriptor = dynamic_cast<RasterDataDescriptor*>(
         pDescriptor->copy(filename + "-" + suffix + "-temperature", NULL));
      if (pTemperatureDescriptor != NULL)
      {
         pTemperatureDescriptor->setDataType(FLT4BYTES);
         pTemperatureDescriptor->setValidDataTypes(
            std::vector<EncodingType>(1, pTemperatureDescriptor->getDataType()));
         pTemperatureDescriptor->setBadValues(std::vector<int>(1, -1));
         FactoryResource<Units> pUnits;
         pUnits->setUnitType(EMISSIVITY);
         pUnits->setUnitName("K");
         pUnits->setScaleFromStandard(1.0);
         pTemperatureDescriptor->setUnits(pUnits.get());
         FileDescriptor* pTemperatureFileDescriptor = pTemperatureDescriptor->getFileDescriptor();
         if (pTemperatureFileDescriptor != NULL)
         {
            pTemperatureFileDescriptor->setDatasetLocation(suffix + "-temperature");
            ImportDescriptorResource pTemperatureImportDescriptor(pTemperatureDescriptor,
               shouldDefaultImportTemperature);
            descriptors.push_back(pTemperatureImportDescriptor.release());
         }
      }
   }
   else if (shouldDefaultImportTemperature)
   {
      fallbackToDn = true;
   }

   if (fallbackToDn ||
      std::find(defaultImport.begin(), defaultImport.end(), suffix + "-DN") != defaultImport.end())
   {
      pImportDescriptor->setImported(true);
   }

   return descriptors;
}