示例#1
0
ImportDescriptor* Nitf::NitfImporterShell::getImportDescriptor(const string& filename, ossim_uint32 imageSegment,
                                                               const Nitf::OssimFileResource& pFile,
                                                               const ossimNitfFileHeaderV2_X* pFileHeader,
                                                               const ossimNitfImageHeaderV2_X* pImageSubheader)
{
   if (pImageSubheader == NULL)
   {
      return NULL;
   }

   EncodingType dataType = ossimImageHeaderToEncodingType(pImageSubheader);
   if (dataType.isValid() == false)
   {
      return NULL;
   }

   stringstream imageNameStream;
   imageNameStream << "I" << imageSegment + 1;
   string imageName = imageNameStream.str();

   ImportDescriptorResource pImportDescriptor(filename + "-" + imageName,
      TypeConverter::toString<RasterElement>(), NULL);
   VERIFYRV(pImportDescriptor.get() != NULL, NULL);
   pImportDescriptor->setImported(pImageSubheader->getRepresentation() != "NODISPLY");

   RasterDataDescriptor* pDescriptor = dynamic_cast<RasterDataDescriptor*>(pImportDescriptor->getDataDescriptor());
   VERIFYRV(pDescriptor != NULL, NULL);

   vector<DimensionDescriptor> bands =  RasterUtilities::generateDimensionVector(pImageSubheader->getNumberOfBands(),
      true, false, true);
   pDescriptor->setBands(bands);

   vector<DimensionDescriptor> rows = RasterUtilities::generateDimensionVector(pImageSubheader->getNumberOfRows(),
      true, false, true);
   pDescriptor->setRows(rows);

   vector<DimensionDescriptor> cols = RasterUtilities::generateDimensionVector(pImageSubheader->getNumberOfCols(),
      true, false, true);
   pDescriptor->setColumns(cols);

   if (pImageSubheader->getIMode() == "P")
   {
      pDescriptor->setInterleaveFormat(BIP);
   }
   else if (pImageSubheader->getIMode() == "R")
   {
      pDescriptor->setInterleaveFormat(BIL);
   }
   else
   {
      pDescriptor->setInterleaveFormat(BSQ);
   }

   pDescriptor->setDataType(dataType);
   pDescriptor->setValidDataTypes(vector<EncodingType>(1, dataType));
   pDescriptor->setProcessingLocation(IN_MEMORY);

   map<string, TrePlugInResource> parsers;
   string errorMessage;

   // Set the file descriptor
   RasterFileDescriptor* pFileDescriptor = dynamic_cast<RasterFileDescriptor*>(
      RasterUtilities::generateAndSetFileDescriptor(pDescriptor, filename, imageName, LITTLE_ENDIAN_ORDER));
   if (pFileDescriptor == NULL)
   {
      return NULL;
   }

   // Set the bits per element, which may be different than the data type in the data descriptor,
   // using NBPP instead of ABPP as is done in ossimNitfTileSource.cpp.
   unsigned int bitsPerPixel = static_cast<unsigned int>(pImageSubheader->getBitsPerPixelPerBand());
   pFileDescriptor->setBitsPerElement(bitsPerPixel);

   // Populate the metadata and set applicable values in the data descriptor
   if (Nitf::importMetadata(imageSegment + 1, pFile, pFileHeader, pImageSubheader, pDescriptor, parsers,
      errorMessage) == true)
   {
      // Populate specific fields in the data descriptor or file descriptor from the TREs
      const DynamicObject* pMetadata = pDescriptor->getMetadata();
      VERIFYRV(pMetadata, NULL);

      // Pixel size - This info is contained in multiple TREs, but there is no documentation on which
      // TRE contains the more precise value if multiple TREs containing the info are present.  Choosing
      // the order ACFTA, BANDSA, ACFTB, and BANDSB where the later "B" TREs will overwrite the values
      // contained in the earlier "A" TREs.  The BANDSB TRE contains GSD values for each band, which is
      // currently not supported, so only set the pixel size if the values in all bands are the same.
      double xGsd = 1.0;
      double yGsd = 1.0;

      const string acrftaPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "ACFTA",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pAcrftA = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(acrftaPath));
      if (pAcrftA != NULL)
      {
         // The ACFTA spec calls out specific spacing units for "SAR" and "EO-IR" data, but does not indicate how
         // this is determined.  It seems to be related to the ACFTB SENSOR_ID_TYPE field, but that field is not
         // present in the ACFTA TRE.  So just check for "SAR" data from the ICAT field in the image subheader
         // and assume every other data type is "EO-IR" data.
         const string imageCategory = pImageSubheader->getCategory().trim();

         const DataVariant& rowSpacing = pAcrftA->getAttribute(Nitf::TRE::ACFTA::ROW_SPACING);
         if (rowSpacing.isValid() == true)
         {
            if (imageCategory == "SAR")
            {
               yGsd = getGsd(rowSpacing, "f");     // Feet
            }
            else
            {
               yGsd = getGsd(rowSpacing, "r");     // Micro-radians
            }
         }

         const DataVariant& columnSpacing = pAcrftA->getAttribute(Nitf::TRE::ACFTA::COL_SPACING);
         if (columnSpacing.isValid() == true)
         {
            if (imageCategory == "SAR")
            {
               xGsd = getGsd(columnSpacing, "f");  // Feet
            }
            else
            {
               xGsd = getGsd(columnSpacing, "r");  // Micro-radians
            }
         }
      }

      const string bandsaPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "BANDSA",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pBandsA = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(bandsaPath));
      if (pBandsA != NULL)
      {
         const DataVariant& rowSpacing = pBandsA->getAttribute(Nitf::TRE::BANDSA::ROW_SPACING);
         if (rowSpacing.isValid() == true)
         {
            const DataVariant& rowSpacingUnits = pBandsA->getAttribute(Nitf::TRE::BANDSA::ROW_SPACING_UNITS);
            if (rowSpacingUnits.isValid() == true)
            {
               yGsd = getGsd(rowSpacing, rowSpacingUnits.toXmlString());
            }
         }

         const DataVariant& columnSpacing = pBandsA->getAttribute(Nitf::TRE::BANDSA::COL_SPACING);
         if (columnSpacing.isValid() == true)
         {
            const DataVariant& columnSpacingUnits = pBandsA->getAttribute(Nitf::TRE::BANDSA::COL_SPACING_UNITS);
            if (columnSpacingUnits.isValid() == true)
            {
               xGsd = getGsd(columnSpacing, columnSpacingUnits.toXmlString());
            }
         }
      }

      const string acrftbPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "ACFTB",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pAcrftB = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(acrftbPath));
      if (pAcrftB != NULL)
      {
         const DataVariant& rowSpacing = pAcrftB->getAttribute(Nitf::TRE::ACFTB::ROW_SPACING);
         if (rowSpacing.isValid() == true)
         {
            const DataVariant& rowSpacingUnits = pAcrftB->getAttribute(Nitf::TRE::ACFTB::ROW_SPACING_UNITS);
            if (rowSpacingUnits.isValid() == true)
            {
               yGsd = getGsd(rowSpacing, rowSpacingUnits.toXmlString());
            }
         }

         const DataVariant& columnSpacing = pAcrftB->getAttribute(Nitf::TRE::ACFTB::COL_SPACING);
         if (columnSpacing.isValid() == true)
         {
            const DataVariant& columnSpacingUnits = pAcrftB->getAttribute(Nitf::TRE::ACFTB::COL_SPACING_UNITS);
            if (columnSpacingUnits.isValid() == true)
            {
               xGsd = getGsd(columnSpacing, columnSpacingUnits.toXmlString());
            }
         }
      }

      const string bandsbPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "BANDSB",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pBandsB = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(bandsbPath));
      if (pBandsB != NULL)
      {
         bool validRowGsd = false;

         const DataVariant& rowGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD);
         if (rowGsd.isValid() == true)
         {
            const DataVariant& rowGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD_UNIT);
            if (rowGsdUnits.isValid() == true)
            {
               yGsd = getGsd(rowGsd, rowGsdUnits.toXmlString());
               validRowGsd = true;
            }
         }

         if (validRowGsd == false)
         {
            if (pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD + "#0").isValid())
            {
               double commonYGsd = -1.0;

               unsigned int numBands = pDescriptor->getBandCount();
               for (unsigned int i = 0; i < numBands; ++i)
               {
                  double bandYGsd = -1.0;
                  string bandPostfix = "#" + StringUtilities::toDisplayString(i);

                  const DataVariant& bandRowGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD + bandPostfix);
                  if (bandRowGsd.isValid() == true)
                  {
                     const DataVariant& bandRowGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::ROW_GSD_UNIT +
                        bandPostfix);
                     if (bandRowGsdUnits.isValid() == true)
                     {
                        bandYGsd = getGsd(bandRowGsd, bandRowGsdUnits.toXmlString());
                     }
                  }

                  if (bandYGsd == commonYGsd)
                  {
                     continue;
                  }

                  if (commonYGsd != -1.0)
                  {
                     commonYGsd = -1.0;
                     break;
                  }

                  commonYGsd = bandYGsd;
               }

               if (commonYGsd != 1.0)
               {
                  yGsd = commonYGsd;
               }
            }
         }

         bool validColumnGsd = false;

         const DataVariant& columnGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD);
         if (columnGsd.isValid() == true)
         {
            const DataVariant& columnGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD_UNITS);
            if (columnGsdUnits.isValid() == true)
            {
               xGsd = getGsd(columnGsd, columnGsdUnits.toXmlString());
               validColumnGsd = true;
            }
         }

         if (validColumnGsd == false)
         {
            if (pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD + "#0").isValid())
            {
               double commonXGsd = -1.0;

               unsigned int numBands = pDescriptor->getBandCount();
               for (unsigned int i = 0; i < numBands; ++i)
               {
                  double bandXGsd = -1.0;
                  string bandPostfix = "#" + StringUtilities::toDisplayString(i);

                  const DataVariant& bandRowGsd = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD + bandPostfix);
                  if (bandRowGsd.isValid() == true)
                  {
                     const DataVariant& bandRowGsdUnits = pBandsB->getAttribute(Nitf::TRE::BANDSB::COL_GSD_UNIT +
                        bandPostfix);
                     if (bandRowGsdUnits.isValid() == true)
                     {
                        bandXGsd = getGsd(bandRowGsd, bandRowGsdUnits.toXmlString());
                     }
                  }

                  if (bandXGsd == commonXGsd)
                  {
                     continue;
                  }

                  if (commonXGsd != -1.0)
                  {
                     commonXGsd = -1.0;
                     break;
                  }

                  commonXGsd = bandXGsd;
               }

               if (commonXGsd != 1.0)
               {
                  xGsd = commonXGsd;
               }
            }
         }
      }

      double magFactor = 1.0;
      ossimString imag = pImageSubheader->getImageMagnification().trim();
      if (imag.empty() == false)
      {
         // Need to multiply the GSD values by the image magnification (IMAG) value in the image subheader
         if (imag[0] == '/')
         {
            ossimString reciprocal = imag.substr(1);
            magFactor = 1.0 / reciprocal.toDouble();
         }
         else
         {
            magFactor = imag.toDouble();
         }

         xGsd *= magFactor;
         yGsd *= magFactor;
      }

      pDescriptor->setXPixelSize(xGsd);
      pDescriptor->setYPixelSize(yGsd);

      // Higher precision GCPs
      const string blockaPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::TRE_METADATA,
         "BLOCKA",
         "0",
         END_METADATA_NAME
      };

      const DynamicObject* pBlockA = dv_cast<DynamicObject>(&pMetadata->getAttributeByPath(blockaPath));
      if (pBlockA != NULL)
      {
         const DataVariant& blockLines = pBlockA->getAttribute(Nitf::TRE::BLOCKA::L_LINES);
         if (blockLines.isValid() == true)
         {
            unsigned int numBlockRows = 0;
            if (blockLines.getValue<unsigned int>(numBlockRows) == true)
            {
               // Need to multiply the number of rows by the image magnification (IMAG) value in the image subheader
               numBlockRows = static_cast<unsigned int>(static_cast<double>(numBlockRows) * magFactor);
               if (numBlockRows == pFileDescriptor->getRowCount())
               {
                  list<GcpPoint> updatedGcps;

                  list<GcpPoint> gcps = pFileDescriptor->getGcps();
                  for (list<GcpPoint>::iterator iter = gcps.begin(); iter != gcps.end(); ++iter)
                  {
                     GcpPoint gcp = *iter;
                     string coordinateText;

                     list<GcpPoint>::size_type index = updatedGcps.size();
                     if (index == 0)
                     {
                        const DataVariant& gcp1 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::FRFC_LOC);
                        if (gcp1.isValid() == true)
                        {
                           coordinateText = gcp1.toXmlString();
                        }
                     }
                     else if (index == 1)
                     {
                        const DataVariant& gcp2 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::FRLC_LOC);
                        if (gcp2.isValid() == true)
                        {
                           coordinateText = gcp2.toXmlString();
                        }
                     }
                     else if (index == 2)
                     {
                        const DataVariant& gcp3 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::LRLC_LOC);
                        if (gcp3.isValid() == true)
                        {
                           coordinateText = gcp3.toXmlString();
                        }
                     }
                     else if (index == 3)
                     {
                        const DataVariant& gcp4 = pBlockA->getAttribute(Nitf::TRE::BLOCKA::LRFC_LOC);
                        if (gcp4.isValid() == true)
                        {
                           coordinateText = gcp4.toXmlString();
                        }
                     }

                     if (StringUtilities::isAllBlank(coordinateText) == false)
                     {
                        coordinateText.insert(10, ", ");
                        LatLonPoint latLon(coordinateText);
                        gcp.mCoordinate = latLon.getCoordinates();
                     }

                     updatedGcps.push_back(gcp);
                  }

                  pFileDescriptor->setGcps(updatedGcps);
               }
            }
         }
      }

      // This only checks the first BANDSB. It is possible to have multiple BANDSB TREs.
      // If someone runs across real data where the bad band info is in another BANDSB TRE
      // this code will need to be modified.
      if (pBandsB != NULL && pBandsB->getAttribute(Nitf::TRE::BANDSB::BAD_BAND + "#0").isValid())
      {
         const vector<DimensionDescriptor>& curBands = pDescriptor->getBands();
         vector<DimensionDescriptor> newBands;
         for (size_t idx = 0; idx < curBands.size(); ++idx)
         {
            const int* pVal = dv_cast<int>(&pBandsB->getAttribute(
               Nitf::TRE::BANDSB::BAD_BAND + "#" + StringUtilities::toDisplayString(idx)));
            if (pVal == NULL || *pVal == 1) // 0 == invalid or suspect band, 1 = valid band
            {
               newBands.push_back(curBands[idx]);
            }
         }
         pDescriptor->setBands(newBands);
      }

      // Bad values
      if (pImageSubheader->hasTransparentCode() == true)
      {
         vector<int> badValues;
         badValues.push_back(static_cast<int>(pImageSubheader->getTransparentCode()));
         pDescriptor->setBadValues(badValues);
      }

      // If red, green, OR blue bands are valid, set the display mode to RGB.
      if (pDescriptor->getDisplayBand(RED).isValid() == true ||
         pDescriptor->getDisplayBand(GREEN).isValid() == true ||
         pDescriptor->getDisplayBand(BLUE).isValid() == true)
      {
         pDescriptor->setDisplayMode(RGB_MODE);
      }
      // Otherwise, if the gray band is valid, set the display mode to GRAYSCALE.
      else if (pDescriptor->getDisplayBand(GRAY).isValid() == true)
      {
         pDescriptor->setDisplayMode(GRAYSCALE_MODE);
      }
      // Otherwise, if at least 3 bands are available, set the display mode to RGB,
      // and set the first three bands to red, green, and blue respectively.
      else if (bands.size() >= 3)
      {
         pDescriptor->setDisplayBand(RED, bands[0]);
         pDescriptor->setDisplayBand(GREEN, bands[1]);
         pDescriptor->setDisplayBand(BLUE, bands[2]);
         pDescriptor->setDisplayMode(RGB_MODE);
      }
      // Otherwise, if at least 1 band is available, set the display mode to GRAYSCALE,
      // and set the first band to GRAY.
      else if (bands.empty() == false)
      {
         pDescriptor->setDisplayBand(GRAY, bands[0]);
         pDescriptor->setDisplayMode(GRAYSCALE_MODE);
      }
      else
      {
         return NULL;
      }

      // Special initialization for J2K compressed image segments
      const string compressionPath[] =
      {
         Nitf::NITF_METADATA,
         Nitf::IMAGE_SUBHEADER,
         Nitf::ImageSubheaderFieldNames::COMPRESSION,
         END_METADATA_NAME
      };

      string imageCompression = pMetadata->getAttributeByPath(compressionPath).toDisplayString();
      if ((imageCompression == Nitf::ImageSubheaderFieldValues::IC_C8) ||
         (imageCompression == Nitf::ImageSubheaderFieldValues::IC_M8))
      {
         // Per Section 8.1 of the BIIF Profile for JPEG 2000 Version 01.10 (BPJ2K01.10),
         // if the values in the J2K data differ from the values in the image subheader,
         // the J2K values are given precedence.
         opj_image_t* pImage = getImageInfo(filename, imageSegment, OPJ_CODEC_J2K);
         if (pImage == NULL)
         {
            pImage = getImageInfo(filename, imageSegment, OPJ_CODEC_JP2);
         }

         if (pImage != NULL)
         {
            // Bits per element
            unsigned int bitsPerElement = pImage->comps->prec;
            if (bitsPerElement != pFileDescriptor->getBitsPerElement())
            {
               pFileDescriptor->setBitsPerElement(bitsPerElement);
            }

            // Data type
            EncodingType dataType = INT1UBYTE;
            if (bitsPerElement <= 8)
            {
               if (pImage->comps->sgnd)
               {
                  dataType = INT1SBYTE;
               }
               else
               {
                  dataType = INT1UBYTE;
               }
            }
            else if (bitsPerElement <= 16)
            {
               if (pImage->comps->sgnd)
               {
                  dataType = INT2SBYTES;
               }
               else
               {
                  dataType = INT2UBYTES;
               }
            }
            else if (bitsPerElement <= 32)
            {
               if (pImage->comps->sgnd)
               {
                  dataType = INT4SBYTES;
               }
               else
               {
                  dataType = INT4UBYTES;
               }
            }
            else if (bitsPerElement <= 64)
            {
               dataType = FLT8BYTES;
            }

            if (dataType != pDescriptor->getDataType())
            {
               pDescriptor->setDataType(dataType);
            }

            // Rows
            unsigned int numRows = pImage->comps->h;
            if (numRows != pFileDescriptor->getRowCount())
            {
               vector<DimensionDescriptor> rows = RasterUtilities::generateDimensionVector(numRows, true, false, true);
               pDescriptor->setRows(rows);
               pFileDescriptor->setRows(rows);
            }

            // Columns
            unsigned int numColumns = pImage->comps->w;
            if (numColumns != pFileDescriptor->getColumnCount())
            {
               vector<DimensionDescriptor> columns = RasterUtilities::generateDimensionVector(numColumns, true, false,
                  true);
               pDescriptor->setColumns(columns);
               pFileDescriptor->setColumns(columns);
            }

            // Bands
            unsigned int numBands = pImage->numcomps;
            if (numBands != pFileDescriptor->getBandCount())
            {
               vector<DimensionDescriptor> bands = RasterUtilities::generateDimensionVector(numBands, true, false,
                  true);
               pDescriptor->setBands(bands);
               pFileDescriptor->setBands(bands);
            }

            // Cleanup
            opj_image_destroy(pImage);
         }

         // Set the interleave format as BIP, which is the interleave format for J2K data
         pDescriptor->setInterleaveFormat(BIP);
         pFileDescriptor->setInterleaveFormat(BIP);
      }

      mParseMessages[imageSegment] = errorMessage;
   }

   return pImportDescriptor.release();
}
示例#2
0
bool EditDataDescriptor::execute(PlugInArgList* pInArgList, PlugInArgList* pOutArgList)
{
   StepResource pStep("Execute Wizard Item", "app", "055486F4-A9DB-4FDA-9AA7-75D1917E2C87");
   pStep->addProperty("Item", getName());
   mpStep = pStep.get();

   if (extractInputArgs(pInArgList) == false)
   {
      return false;
   }

   // Set the values in the data descriptor
   VERIFY(mpDescriptor != NULL);

   // File descriptor
   if (mpFileDescriptor != NULL)
   {
      mpDescriptor->setFileDescriptor(mpFileDescriptor);
   }

   // Processing location
   if (mpProcessingLocation != NULL)
   {
      mpDescriptor->setProcessingLocation(*mpProcessingLocation);
   }

   RasterDataDescriptor* pRasterDescriptor = dynamic_cast<RasterDataDescriptor*>(mpDescriptor);
   RasterFileDescriptor* pRasterFileDescriptor = dynamic_cast<RasterFileDescriptor*>(mpFileDescriptor);
   SignatureDataDescriptor* pSignatureDescriptor = dynamic_cast<SignatureDataDescriptor*>(mpDescriptor);
   SignatureFileDescriptor* pSignatureFileDescriptor = dynamic_cast<SignatureFileDescriptor*>(mpFileDescriptor);

   if (pRasterDescriptor != NULL)
   {
      if (pRasterFileDescriptor != NULL)
      {
         // Set the rows and columns to match the rows and columns in the file descriptor before creating the subset
         const vector<DimensionDescriptor>& rows = pRasterFileDescriptor->getRows();
         pRasterDescriptor->setRows(rows);

         const vector<DimensionDescriptor>& columns = pRasterFileDescriptor->getColumns();
         pRasterDescriptor->setColumns(columns);

         const vector<DimensionDescriptor>& bands = pRasterFileDescriptor->getBands();
         pRasterDescriptor->setBands(bands);
      }

      // Data type
      if (mpDataType != NULL)
      {
         pRasterDescriptor->setDataType(*mpDataType);
      }

      // InterleaveFormat
      if (mpInterleave != NULL)
      {
         pRasterDescriptor->setInterleaveFormat(*mpInterleave);
      }

      // Bad values
      if (mpBadValues != NULL)
      {
         pRasterDescriptor->setBadValues(*mpBadValues);
      }

      // Rows
      if ((mpStartRow != NULL) || (mpEndRow != NULL) || (mpRowSkipFactor != NULL))
      {
         // We need to obtain this origRows from the FileDescriptor if present since an importer
         // may generate a subset by default in which case the DataDescriptor will not contain all
         // the rows and subsetting will not work correctly. We
         // can't just set mpFileDescriptor = pRasterDescriptor->getFileDescriptor() since we only
         // want to replace the DataDescriptor's row list if one of the subset options is specified
         const RasterFileDescriptor* pFileDesc(pRasterFileDescriptor);
         if (pFileDesc == NULL)
         {
            pFileDesc = dynamic_cast<const RasterFileDescriptor*>(pRasterDescriptor->getFileDescriptor());
         }
         const vector<DimensionDescriptor>& origRows = (pFileDesc != NULL) ?
            pFileDesc->getRows() : pRasterDescriptor->getRows();
         unsigned int startRow = 0;
         if (mpStartRow != NULL)
         {
            startRow = *mpStartRow;
         }
         else if (origRows.empty() == false)
         {
            startRow = origRows.front().getOriginalNumber() + 1;
         }

         unsigned int endRow = 0;
         if (mpEndRow != NULL)
         {
            endRow = *mpEndRow;
         }
         else if (origRows.empty() == false)
         {
            endRow = origRows.back().getOriginalNumber() + 1;
         }

         unsigned int rowSkip = 0;
         if (mpRowSkipFactor != NULL)
         {
            rowSkip = *mpRowSkipFactor;
         }

         vector<DimensionDescriptor> rows;
         for (unsigned int i = 0; i < origRows.size(); ++i)
         {
            DimensionDescriptor rowDim = origRows[i];
            unsigned int originalNumber = rowDim.getOriginalNumber() + 1;
            if ((originalNumber >= startRow) && (originalNumber <= endRow))
            {
               rows.push_back(rowDim);
               i += rowSkip;
            }
         }

         pRasterDescriptor->setRows(rows);
      }

      // Columns
      if ((mpStartColumn != NULL) || (mpEndColumn != NULL) || (mpColumnSkipFactor != NULL))
      {
         // We need to obtain this origColumns from the FileDescriptor if present since an importer
         // may generate a subset by default in which case the DataDescriptor will not contain all
         // the columns and subsetting will not work correctly. We
         // can't just set mpFileDescriptor = pRasterDescriptor->getFileDescriptor() since we only
         // want to replace the DataDescriptor's column list if one of the subset options is specified
         const RasterFileDescriptor* pFileDesc(pRasterFileDescriptor);
         if (pFileDesc == NULL)
         {
            pFileDesc = dynamic_cast<const RasterFileDescriptor*>(pRasterDescriptor->getFileDescriptor());
         }
         const vector<DimensionDescriptor>& origColumns = (pFileDesc != NULL) ?
            pFileDesc->getColumns() : pRasterDescriptor->getColumns();

         unsigned int startColumn = 0;
         if (mpStartColumn != NULL)
         {
            startColumn = *mpStartColumn;
         }
         else if (origColumns.empty() == false)
         {
            startColumn = origColumns.front().getOriginalNumber() + 1;
         }

         unsigned int endColumn = 0;
         if (mpEndColumn != NULL)
         {
            endColumn = *mpEndColumn;
         }
         else if (origColumns.empty() == false)
         {
            endColumn = origColumns.back().getOriginalNumber() + 1;
         }

         unsigned int columnSkip = 0;
         if (mpColumnSkipFactor != NULL)
         {
            columnSkip = *mpColumnSkipFactor;
         }

         vector<DimensionDescriptor> columns;
         for (unsigned int i = 0; i < origColumns.size(); ++i)
         {
            DimensionDescriptor columnDim = origColumns[i];
            unsigned int originalNumber = columnDim.getOriginalNumber() + 1;
            if ((originalNumber >= startColumn) && (originalNumber <= endColumn))
            {
               columns.push_back(columnDim);
               i += columnSkip;
            }
         }

         pRasterDescriptor->setColumns(columns);
      }

      // Bands
      if ((mpStartBand != NULL) || (mpEndBand != NULL) || (mpBandSkipFactor != NULL) || (mpBadBandsFile != NULL))
      {
         // We need to obtain this origBands from the FileDescriptor if present since an importer
         // may generate a subset by default in which case the DataDescriptor will not contain all
         // the bands and subsetting (especially by bad band file) will not work correctly. We
         // can't just set mpFileDescriptor = pRasterDescriptor->getFileDescriptor() since we only
         // want to replace the DataDescriptor's band list if one of the subset options is specified
         const RasterFileDescriptor* pFileDesc(pRasterFileDescriptor);
         if (pFileDesc == NULL)
         {
            pFileDesc = dynamic_cast<const RasterFileDescriptor*>(pRasterDescriptor->getFileDescriptor());
         }
         const vector<DimensionDescriptor>& origBands = (pFileDesc != NULL) ?
            pFileDesc->getBands() : pRasterDescriptor->getBands();

         unsigned int startBand = 0;
         if (mpStartBand != NULL)
         {
            startBand = *mpStartBand;
         }
         else if (origBands.empty() == false)
         {
            startBand = origBands.front().getOriginalNumber() + 1;
         }

         unsigned int endBand = 0;
         if (mpEndBand != NULL)
         {
            endBand = *mpEndBand;
         }
         else if (origBands.empty() == false)
         {
            endBand = origBands.back().getOriginalNumber() + 1;
         }

         unsigned int bandSkip = 0;
         if (mpBandSkipFactor != NULL)
         {
            bandSkip = *mpBandSkipFactor;
         }

         // Get the bad bands from the file
         vector<unsigned int> badBands;
         if (mpBadBandsFile != NULL)
         {
            string filename = *mpBadBandsFile;
            if (filename.empty() == false)
            {
               FILE* pFile = fopen(filename.c_str(), "rb");
               if (pFile != NULL)
               {
                  char line[1024];
                  while (fgets(line, 1024, pFile) != NULL)
                  {
                     unsigned int bandNumber = 0;

                     int iValues = sscanf(line, "%u", &bandNumber);
                     if (iValues == 1)
                     {
                        badBands.push_back(bandNumber);
                     }
                  }

                  fclose(pFile);
               }
            }
         }

         vector<DimensionDescriptor> bands;
         for (unsigned int i = 0; i < origBands.size(); ++i)
         {
            DimensionDescriptor bandDim = origBands[i];
            unsigned int originalNumber = bandDim.getOriginalNumber() + 1;
            if ((originalNumber >= startBand) && (originalNumber <= endBand))
            {
               bool bBad = false;
               for (unsigned int j = 0; j < badBands.size(); ++j)
               {
                  unsigned int badBandNumber = badBands[j];
                  if (originalNumber == badBandNumber)
                  {
                     bBad = true;
                     break;
                  }
               }

               if (bBad == false)
               {
                  bands.push_back(bandDim);
                  i += bandSkip;
               }
            }
         }

         pRasterDescriptor->setBands(bands);
      }

      // X pixel size
      if (mpPixelSizeX != NULL)
      {
         pRasterDescriptor->setXPixelSize(*mpPixelSizeX);
      }

      // Y pixel size
      if (mpPixelSizeY != NULL)
      {
         pRasterDescriptor->setYPixelSize(*mpPixelSizeY);
      }

      // Units
      if ((mpUnitsName != NULL) || (mpUnitsType != NULL) ||
         (mpUnitsScale != NULL) || (mpUnitsRangeMin != NULL) || (mpUnitsRangeMax != NULL))
      {
         const Units* pOrigUnits = pRasterDescriptor->getUnits();

         FactoryResource<Units> pUnits;
         VERIFY(pUnits.get() != NULL);

         // Name
         if (mpUnitsName != NULL)
         {
            pUnits->setUnitName(*mpUnitsName);
         }
         else if (pOrigUnits != NULL)
         {
            pUnits->setUnitName(pOrigUnits->getUnitName());
         }

         // Type
         if (mpUnitsType != NULL)
         {
            pUnits->setUnitType(*mpUnitsType);
         }
         else if (pOrigUnits != NULL)
         {
            pUnits->setUnitType(pOrigUnits->getUnitType());
         }

         // Scale
         if (mpUnitsScale != NULL)
         {
            pUnits->setScaleFromStandard(*mpUnitsScale);
         }
         else if (pOrigUnits != NULL)
         {
            pUnits->setScaleFromStandard(pOrigUnits->getScaleFromStandard());
         }

         // Range minimum
         if (mpUnitsRangeMin != NULL)
         {
            pUnits->setRangeMin(*mpUnitsRangeMin);
         }
         else if (pOrigUnits != NULL)
         {
            pUnits->setRangeMin(pOrigUnits->getRangeMin());
         }

         // Range maximum
         if (mpUnitsRangeMax != NULL)
         {
            pUnits->setRangeMax(*mpUnitsRangeMax);
         }
         else if (pOrigUnits != NULL)
         {
            pUnits->setRangeMax(pOrigUnits->getRangeMax());
         }

         pRasterDescriptor->setUnits(pUnits.get());
      }

      // Display mode
      if (mpDisplayMode != NULL)
      {
         pRasterDescriptor->setDisplayMode(*mpDisplayMode);
      }

      // Display bands
      // Gray
      if (mpGrayBand != NULL)
      {
         DimensionDescriptor band = pRasterDescriptor->getOriginalBand(*mpGrayBand - 1);
         pRasterDescriptor->setDisplayBand(GRAY, band);
      }

      // Red
      if (mpRedBand != NULL)
      {
         DimensionDescriptor band = pRasterDescriptor->getOriginalBand(*mpRedBand - 1);
         pRasterDescriptor->setDisplayBand(RED, band);
      }

      // Green
      if (mpGreenBand != NULL)
      {
         DimensionDescriptor band = pRasterDescriptor->getOriginalBand(*mpGreenBand - 1);
         pRasterDescriptor->setDisplayBand(GREEN, band);
      }

      // Blue
      if (mpBlueBand != NULL)
      {
         DimensionDescriptor band = pRasterDescriptor->getOriginalBand(*mpBlueBand - 1);
         pRasterDescriptor->setDisplayBand(BLUE, band);
      }
   }
   else if (pSignatureDescriptor != NULL)
   {
      if (mpComponentName != NULL)
      {
         const Units* pOrigUnits = pSignatureDescriptor->getUnits(*mpComponentName);
         FactoryResource<Units> pUnits;
         if (pOrigUnits != NULL)
         {
            *pUnits = *pOrigUnits;
         }
         if (mpUnitsName != NULL)
         {
            pUnits->setUnitName(*mpUnitsName);
         }
         if (mpUnitsType != NULL)
         {
            pUnits->setUnitType(*mpUnitsType);
         }
         if (mpUnitsScale != NULL)
         {
            pUnits->setScaleFromStandard(*mpUnitsScale);
         }
         if (mpUnitsRangeMin != NULL)
         {
            pUnits->setRangeMin(*mpUnitsRangeMin);
         }
         if (mpUnitsRangeMax != NULL)
         {
            pUnits->setRangeMax(*mpUnitsRangeMax);
         }
         pSignatureDescriptor->setUnits(*mpComponentName, pUnits.get());
      }
   }

   reportComplete();
   return true;
}