示例#1
0
bool SMESH_MesherHelper::IsQuadraticSubMesh(const TopoDS_Shape& aSh)
{
  SMESHDS_Mesh* meshDS = GetMeshDS();
  // we can create quadratic elements only if all elements
  // created on subshapes of given shape are quadratic
  // also we have to fill myNLinkNodeMap
  myCreateQuadratic = true;
  mySeamShapeIds.clear();
  myDegenShapeIds.clear();
  TopAbs_ShapeEnum subType( aSh.ShapeType()==TopAbs_FACE ? TopAbs_EDGE : TopAbs_FACE );
  SMDSAbs_ElementType elemType( subType==TopAbs_FACE ? SMDSAbs_Face : SMDSAbs_Edge );

  int nbOldLinks = myNLinkNodeMap.size();

  TopExp_Explorer exp( aSh, subType );
  for (; exp.More() && myCreateQuadratic; exp.Next()) {
    if ( SMESHDS_SubMesh * subMesh = meshDS->MeshElements( exp.Current() )) {
      if ( SMDS_ElemIteratorPtr it = subMesh->GetElements() ) {
        while(it->more()) {
          const SMDS_MeshElement* e = it->next();
          if ( e->GetType() != elemType || !e->IsQuadratic() ) {
            myCreateQuadratic = false;
            break;
          }
          else {
            // fill NLinkNodeMap
            switch ( e->NbNodes() ) {
            case 3:
              AddNLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(2)); break;
            case 6:
              AddNLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(3));
              AddNLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(4));
              AddNLinkNode(e->GetNode(2),e->GetNode(0),e->GetNode(5)); break;
            case 8:
              AddNLinkNode(e->GetNode(0),e->GetNode(1),e->GetNode(4));
              AddNLinkNode(e->GetNode(1),e->GetNode(2),e->GetNode(5));
              AddNLinkNode(e->GetNode(2),e->GetNode(3),e->GetNode(6));
              AddNLinkNode(e->GetNode(3),e->GetNode(0),e->GetNode(7));
              break;
            default:
              myCreateQuadratic = false;
              break;
            }
          }
        }
      }
    }
  }

  if ( nbOldLinks == myNLinkNodeMap.size() )
    myCreateQuadratic = false;

  if(!myCreateQuadratic) {
    myNLinkNodeMap.clear();
  }
  SetSubShape( aSh );

  return myCreateQuadratic;
}
//=============================================================================
bool NETGENPlugin_Mesher::Compute()
{
#ifdef WNT
  netgen::MeshingParameters& mparams = netgen::GlobalMeshingParameters();
#else
  netgen::MeshingParameters& mparams = netgen::mparam;
#endif  
  MESSAGE("Compute with:\n"
          " max size = " << mparams.maxh << "\n"
          " segments per edge = " << mparams.segmentsperedge);
  MESSAGE("\n"
          " growth rate = " << mparams.grading << "\n"
          " elements per radius = " << mparams.curvaturesafety << "\n"
          " second order = " << mparams.secondorder << "\n"
          " quad allowed = " << mparams.quad);

  SMESH_ComputeErrorPtr error = SMESH_ComputeError::New();
  nglib::Ng_Init();

  // -------------------------
  // Prepare OCC geometry
  // -------------------------

  netgen::OCCGeometry occgeo;
  list< SMESH_subMesh* > meshedSM;
  PrepareOCCgeometry( occgeo, _shape, *_mesh, &meshedSM );

  // -------------------------
  // Generate the mesh
  // -------------------------

  netgen::Mesh *ngMesh = NULL;

  SMESH_Comment comment;
  int err = 0;
  int nbInitNod = 0;
  int nbInitSeg = 0;
  int nbInitFac = 0;
  // vector of nodes in which node index == netgen ID
  vector< SMDS_MeshNode* > nodeVec;
  try
  {
    // ----------------
    // compute 1D mesh
    // ----------------
    // pass 1D simple parameters to NETGEN
    if ( _simpleHyp ) {
      if ( int nbSeg = _simpleHyp->GetNumberOfSegments() ) {
        // nb of segments
        mparams.segmentsperedge = nbSeg + 0.1;
        mparams.maxh = occgeo.boundingbox.Diam();
        mparams.grading = 0.01;
      }
      else {
        // segment length
        mparams.segmentsperedge = 1;
        mparams.maxh = _simpleHyp->GetLocalLength();
      }
    }
    // let netgen create ngMesh and calculate element size on not meshed shapes
    char *optstr = 0;
    int startWith = netgen::MESHCONST_ANALYSE;
    int endWith   = netgen::MESHCONST_ANALYSE;
    err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr);
    if (err) comment << "Error in netgen::OCCGenerateMesh() at MESHCONST_ANALYSE step";

    // fill ngMesh with nodes and elements of computed submeshes
    err = ! fillNgMesh(occgeo, *ngMesh, nodeVec, meshedSM);
    nbInitNod = ngMesh->GetNP();
    nbInitSeg = ngMesh->GetNSeg();
    nbInitFac = ngMesh->GetNSE();

    // compute mesh
    if (!err)
    {
      startWith = endWith = netgen::MESHCONST_MESHEDGES;
      err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr);
      if (err) comment << "Error in netgen::OCCGenerateMesh() at 1D mesh generation";
    }
    // ---------------------
    // compute surface mesh
    // ---------------------
    if (!err)
    {
      // pass 2D simple parameters to NETGEN
      if ( _simpleHyp ) {
        if ( double area = _simpleHyp->GetMaxElementArea() ) {
          // face area
          mparams.maxh = sqrt(2. * area/sqrt(3.0));
          mparams.grading = 0.4; // moderate size growth
        }
        else {
          // length from edges
          double length = 0;
          TopTools_MapOfShape tmpMap;
          for ( TopExp_Explorer exp( _shape, TopAbs_EDGE ); exp.More(); exp.Next() )
            if( tmpMap.Add(exp.Current()) )
              length += SMESH_Algo::EdgeLength( TopoDS::Edge( exp.Current() ));

          if ( ngMesh->GetNSeg() ) {
            // we have to multiply length by 2 since for each TopoDS_Edge there
            // are double set of NETGEN edges or, in other words, we have to
            // divide ngMesh->GetNSeg() on 2.
            mparams.maxh = 2*length / ngMesh->GetNSeg();
          }
          else
            mparams.maxh = 1000;
          mparams.grading = 0.2; // slow size growth
        }
        mparams.maxh = min( mparams.maxh, occgeo.boundingbox.Diam()/2 );
        ngMesh->SetGlobalH (mparams.maxh);
        netgen::Box<3> bb = occgeo.GetBoundingBox();
        bb.Increase (bb.Diam()/20);
        ngMesh->SetLocalH (bb.PMin(), bb.PMax(), mparams.grading);
      }
      // let netgen compute 2D mesh
      startWith = netgen::MESHCONST_MESHSURFACE;
      endWith = _optimize ? netgen::MESHCONST_OPTSURFACE : netgen::MESHCONST_MESHSURFACE;
      err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr);
      if (err) comment << "Error in netgen::OCCGenerateMesh() at surface mesh generation";
    }
    // ---------------------
    // generate volume mesh
    // ---------------------
    if (!err && _isVolume)
    {
      // add ng face descriptors of meshed faces
      std::map< int, std::pair<int,int> >::iterator fId_soIds = _faceDescriptors.begin();
      for ( ; fId_soIds != _faceDescriptors.end(); ++fId_soIds ) {
        int faceID   = fId_soIds->first;
        int solidID1 = fId_soIds->second.first;
        int solidID2 = fId_soIds->second.second;
        ngMesh->AddFaceDescriptor (netgen::FaceDescriptor(faceID, solidID1, solidID2, 0));
      }
      // pass 3D simple parameters to NETGEN
      const NETGENPlugin_SimpleHypothesis_3D* simple3d =
        dynamic_cast< const NETGENPlugin_SimpleHypothesis_3D* > ( _simpleHyp );
      if ( simple3d ) {
        if ( double vol = simple3d->GetMaxElementVolume() ) {
          // max volume
          mparams.maxh = pow( 72, 1/6. ) * pow( vol, 1/3. );
          mparams.maxh = min( mparams.maxh, occgeo.boundingbox.Diam()/2 );
        }
        else {
          // length from faces
          mparams.maxh = ngMesh->AverageH();
        }
//      netgen::ARRAY<double> maxhdom;
//      maxhdom.SetSize (occgeo.NrSolids());
//      maxhdom = mparams.maxh;
//      ngMesh->SetMaxHDomain (maxhdom);
        ngMesh->SetGlobalH (mparams.maxh);
        mparams.grading = 0.4;
        ngMesh->CalcLocalH();
      }
      // let netgen compute 3D mesh
      startWith = netgen::MESHCONST_MESHVOLUME;
      endWith = _optimize ? netgen::MESHCONST_OPTVOLUME : netgen::MESHCONST_MESHVOLUME;
      err = netgen::OCCGenerateMesh(occgeo, ngMesh, startWith, endWith, optstr);
      if (err) comment << "Error in netgen::OCCGenerateMesh()";
    }
    if (!err && mparams.secondorder > 0)
    {
      netgen::OCCRefinementSurfaces ref (occgeo);
      ref.MakeSecondOrder (*ngMesh);
    }
  }
  catch (netgen::NgException exc)
  {
    error->myName = err = COMPERR_ALGO_FAILED;
    comment << exc.What();
  }

  int nbNod = ngMesh->GetNP();
  int nbSeg = ngMesh->GetNSeg();
  int nbFac = ngMesh->GetNSE();
  int nbVol = ngMesh->GetNE();

  MESSAGE((err ? "Mesh Generation failure" : "End of Mesh Generation") <<
          ", nb nodes: " << nbNod <<
          ", nb segments: " << nbSeg <<
          ", nb faces: " << nbFac <<
          ", nb volumes: " << nbVol);

  // -----------------------------------------------------------
  // Feed back the SMESHDS with the generated Nodes and Elements
  // -----------------------------------------------------------

  SMESHDS_Mesh* meshDS = _mesh->GetMeshDS();
  bool isOK = ( !err && (_isVolume ? (nbVol > 0) : (nbFac > 0)) );
  if ( true /*isOK*/ ) // get whatever built
  {
    // map of nodes assigned to submeshes
    NCollection_Map<int> pindMap;
    // create and insert nodes into nodeVec
    nodeVec.resize( nbNod + 1 );
    int i;
    for (i = nbInitNod+1; i <= nbNod /*&& isOK*/; ++i )
    {
      const netgen::MeshPoint& ngPoint = ngMesh->Point(i);
      SMDS_MeshNode* node = NULL;
      bool newNodeOnVertex = false;
      TopoDS_Vertex aVert;
      if (i-nbInitNod <= occgeo.vmap.Extent())
      {
        // point on vertex
        aVert = TopoDS::Vertex(occgeo.vmap(i-nbInitNod));
        SMESHDS_SubMesh * submesh = meshDS->MeshElements(aVert);
        if (submesh)
        {
          SMDS_NodeIteratorPtr it = submesh->GetNodes();
          if (it->more())
          {
            node = const_cast<SMDS_MeshNode*> (it->next());
            pindMap.Add(i);
          }
        }
        if (!node)
          newNodeOnVertex = true;
      }
      if (!node)
        node = meshDS->AddNode(ngPoint.X(), ngPoint.Y(), ngPoint.Z());
      if (!node)
      {
        MESSAGE("Cannot create a mesh node");
        if ( !comment.size() ) comment << "Cannot create a mesh node";
        nbSeg = nbFac = nbVol = isOK = 0;
        break;
      }
      nodeVec.at(i) = node;
      if (newNodeOnVertex)
      {
        // point on vertex
        meshDS->SetNodeOnVertex(node, aVert);
        pindMap.Add(i);
      }
    }

    // create mesh segments along geometric edges
    NCollection_Map<Link> linkMap;
    for (i = nbInitSeg+1; i <= nbSeg/* && isOK*/; ++i )
    {
      const netgen::Segment& seg = ngMesh->LineSegment(i);
      Link link(seg.p1, seg.p2);
      if (linkMap.Contains(link))
        continue;
      linkMap.Add(link);
      TopoDS_Edge aEdge;
      int pinds[3] = { seg.p1, seg.p2, seg.pmid };
      int nbp = 0;
      double param2 = 0;
      for (int j=0; j < 3; ++j)
      {
        int pind = pinds[j];
        if (pind <= 0) continue;
        ++nbp;
        double param;
        if (j < 2)
        {
          if (aEdge.IsNull())
          {
            int aGeomEdgeInd = seg.epgeominfo[j].edgenr;
            if (aGeomEdgeInd > 0 && aGeomEdgeInd <= occgeo.emap.Extent())
              aEdge = TopoDS::Edge(occgeo.emap(aGeomEdgeInd));
          }
          param = seg.epgeominfo[j].dist;
          param2 += param;
        }
        else
          param = param2 * 0.5;
        if (pind <= nbInitNod || pindMap.Contains(pind))
          continue;
        if (!aEdge.IsNull())
        {
          meshDS->SetNodeOnEdge(nodeVec.at(pind), aEdge, param);
          pindMap.Add(pind);
        }
      }
      SMDS_MeshEdge* edge;
      if (nbp < 3) // second order ?
        edge = meshDS->AddEdge(nodeVec.at(pinds[0]), nodeVec.at(pinds[1]));
      else
        edge = meshDS->AddEdge(nodeVec.at(pinds[0]), nodeVec.at(pinds[1]),
                                nodeVec.at(pinds[2]));
      if (!edge)
      {
        if ( !comment.size() ) comment << "Cannot create a mesh edge";
        MESSAGE("Cannot create a mesh edge");
        nbSeg = nbFac = nbVol = isOK = 0;
        break;
      }
      if (!aEdge.IsNull())
        meshDS->SetMeshElementOnShape(edge, aEdge);
    }

    // create mesh faces along geometric faces
    for (i = nbInitFac+1; i <= nbFac/* && isOK*/; ++i )
    {
      const netgen::Element2d& elem = ngMesh->SurfaceElement(i);
      int aGeomFaceInd = elem.GetIndex();
      TopoDS_Face aFace;
      if (aGeomFaceInd > 0 && aGeomFaceInd <= occgeo.fmap.Extent())
        aFace = TopoDS::Face(occgeo.fmap(aGeomFaceInd));
      vector<SMDS_MeshNode*> nodes;
      for (int j=1; j <= elem.GetNP(); ++j)
      {
        int pind = elem.PNum(j);
        SMDS_MeshNode* node = nodeVec.at(pind);
        nodes.push_back(node);
        if (pind <= nbInitNod || pindMap.Contains(pind))
          continue;
        if (!aFace.IsNull())
        {
          const netgen::PointGeomInfo& pgi = elem.GeomInfoPi(j);
          meshDS->SetNodeOnFace(node, aFace, pgi.u, pgi.v);
          pindMap.Add(pind);
        }
      }
      SMDS_MeshFace* face = NULL;
      switch (elem.GetType())
      {
      case netgen::TRIG:
        face = meshDS->AddFace(nodes[0],nodes[1],nodes[2]);
        break;
      case netgen::QUAD:
        face = meshDS->AddFace(nodes[0],nodes[1],nodes[2],nodes[3]);
        break;
      case netgen::TRIG6:
        face = meshDS->AddFace(nodes[0],nodes[1],nodes[2],nodes[5],nodes[3],nodes[4]);
        break;
      case netgen::QUAD8:
        face = meshDS->AddFace(nodes[0],nodes[1],nodes[2],nodes[3],
                               nodes[4],nodes[7],nodes[5],nodes[6]);
        break;
      default:
        MESSAGE("NETGEN created a face of unexpected type, ignoring");
        continue;
      }
      if (!face)
      {
        if ( !comment.size() ) comment << "Cannot create a mesh face";
        MESSAGE("Cannot create a mesh face");
        nbSeg = nbFac = nbVol = isOK = 0;
        break;
      }
      if (!aFace.IsNull())
        meshDS->SetMeshElementOnShape(face, aFace);
    }

    // create tetrahedra
    for (i = 1; i <= nbVol/* && isOK*/; ++i)
    {
      const netgen::Element& elem = ngMesh->VolumeElement(i);      
      int aSolidInd = elem.GetIndex();
      TopoDS_Solid aSolid;
      if (aSolidInd > 0 && aSolidInd <= occgeo.somap.Extent())
        aSolid = TopoDS::Solid(occgeo.somap(aSolidInd));
      vector<SMDS_MeshNode*> nodes;
      for (int j=1; j <= elem.GetNP(); ++j)
      {
        int pind = elem.PNum(j);
        SMDS_MeshNode* node = nodeVec.at(pind);
        nodes.push_back(node);
        if (pind <= nbInitNod || pindMap.Contains(pind))
          continue;
        if (!aSolid.IsNull())
        {
          // point in solid
          meshDS->SetNodeInVolume(node, aSolid);
          pindMap.Add(pind);
        }
      }
      SMDS_MeshVolume* vol = NULL;
      switch (elem.GetType())
      {
      case netgen::TET:
        vol = meshDS->AddVolume(nodes[0],nodes[1],nodes[2],nodes[3]);
        break;
      case netgen::TET10:
        vol = meshDS->AddVolume(nodes[0],nodes[1],nodes[2],nodes[3],
                                nodes[4],nodes[7],nodes[5],nodes[6],nodes[8],nodes[9]);
        break;
      default:
        MESSAGE("NETGEN created a volume of unexpected type, ignoring");
        continue;
      }
      if (!vol)
      {
        if ( !comment.size() ) comment << "Cannot create a mesh volume";
        MESSAGE("Cannot create a mesh volume");
        nbSeg = nbFac = nbVol = isOK = 0;
        break;
      }
      if (!aSolid.IsNull())
        meshDS->SetMeshElementOnShape(vol, aSolid);
    }
  }

  if ( error->IsOK() && ( !isOK || comment.size() > 0 ))
    error->myName = COMPERR_ALGO_FAILED;
  if ( !comment.empty() )
    error->myComment = comment;

  // set bad compute error to subshapes of all failed subshapes shapes
  if ( !error->IsOK() && err )
  {
    for (int i = 1; i <= occgeo.fmap.Extent(); i++) {
      int status = occgeo.facemeshstatus[i-1];
      if (status == 1 ) continue;
      if ( SMESH_subMesh* sm = _mesh->GetSubMeshContaining( occgeo.fmap( i ))) {
        SMESH_ComputeErrorPtr& smError = sm->GetComputeError();
        if ( !smError || smError->IsOK() ) {
          if ( status == -1 )
            smError.reset( new SMESH_ComputeError( error->myName, error->myComment ));
          else
            smError.reset( new SMESH_ComputeError( COMPERR_ALGO_FAILED, "Ignored" ));
        }
      }
    }
  }

  nglib::Ng_DeleteMesh((nglib::Ng_Mesh*)ngMesh);
  nglib::Ng_Exit();

  RemoveTmpFiles();

  return error->IsOK();
}
示例#3
0
bool NETGENPlugin_NETGEN_3D::Compute(SMESH_Mesh&         aMesh,
                                     const TopoDS_Shape& aShape)
{
    MESSAGE("NETGENPlugin_NETGEN_3D::Compute with maxElmentsize = " << _maxElementVolume);

    SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();

    const int invalid_ID = -1;

    SMESH::Controls::Area areaControl;
    SMESH::Controls::TSequenceOfXYZ nodesCoords;

    // -------------------------------------------------------------------
    // get triangles on aShell and make a map of nodes to Netgen node IDs
    // -------------------------------------------------------------------

    SMESH_MesherHelper helper(aMesh);
    SMESH_MesherHelper* myTool = &helper;
    bool _quadraticMesh = myTool->IsQuadraticSubMesh(aShape);

    typedef map< const SMDS_MeshNode*, int, TIDCompare > TNodeToIDMap;
    TNodeToIDMap nodeToNetgenID;
    list< const SMDS_MeshElement* > triangles;
    list< bool >                    isReversed; // orientation of triangles

    TopAbs_ShapeEnum mainType = aMesh.GetShapeToMesh().ShapeType();
    bool checkReverse = ( mainType == TopAbs_COMPOUND || mainType == TopAbs_COMPSOLID );

    // for the degeneraged edge: ignore all but one node on it;
    // map storing ids of degen edges and vertices and their netgen id:
    map< int, int* > degenShapeIdToPtrNgId;
    map< int, int* >::iterator shId_ngId;
    list< int > degenNgIds;

    StdMeshers_QuadToTriaAdaptor Adaptor;
    Adaptor.Compute(aMesh,aShape);

    for (TopExp_Explorer exp(aShape,TopAbs_FACE); exp.More(); exp.Next())
    {
        const TopoDS_Shape& aShapeFace = exp.Current();
        const SMESHDS_SubMesh * aSubMeshDSFace = meshDS->MeshElements( aShapeFace );
        if ( aSubMeshDSFace )
        {
            bool isRev = false;
            if ( checkReverse && helper.NbAncestors(aShapeFace, aMesh, aShape.ShapeType()) > 1 )
                // IsReversedSubMesh() can work wrong on strongly curved faces,
                // so we use it as less as possible
                isRev = SMESH_Algo::IsReversedSubMesh( TopoDS::Face(aShapeFace), meshDS );

            SMDS_ElemIteratorPtr iteratorElem = aSubMeshDSFace->GetElements();
            while ( iteratorElem->more() ) // loop on elements on a face
            {
                // check element
                const SMDS_MeshElement* elem = iteratorElem->next();
                if ( !elem )
                    return error( COMPERR_BAD_INPUT_MESH, "Null element encounters");
                bool isTraingle = ( elem->NbNodes()==3 || (_quadraticMesh && elem->NbNodes()==6 ));
                if ( !isTraingle ) {
                    //return error( COMPERR_BAD_INPUT_MESH,
                    //              SMESH_Comment("Not triangle element ")<<elem->GetID());
                    // using adaptor
                    const list<const SMDS_FaceOfNodes*>* faces = Adaptor.GetTriangles(elem);
                    if(faces==0) {
                        return error( COMPERR_BAD_INPUT_MESH,
                                      SMESH_Comment("Not triangles in adaptor for element ")<<elem->GetID());
                    }
                    list<const SMDS_FaceOfNodes*>::const_iterator itf = faces->begin();
                    for(; itf!=faces->end(); itf++ ) {
                        triangles.push_back( (*itf) );
                        isReversed.push_back( isRev );
                        // put triange's nodes to nodeToNetgenID map
                        SMDS_ElemIteratorPtr triangleNodesIt = (*itf)->nodesIterator();
                        while ( triangleNodesIt->more() ) {
                            const SMDS_MeshNode * node =
                                static_cast<const SMDS_MeshNode *>(triangleNodesIt->next());
                            if(myTool->IsMedium(node))
                                continue;
                            nodeToNetgenID.insert( make_pair( node, invalid_ID ));
                        }
                    }
                }
                else {
                    // keep a triangle
                    triangles.push_back( elem );
                    isReversed.push_back( isRev );
                    // put elem nodes to nodeToNetgenID map
                    SMDS_ElemIteratorPtr triangleNodesIt = elem->nodesIterator();
                    while ( triangleNodesIt->more() ) {
                        const SMDS_MeshNode * node =
                            static_cast<const SMDS_MeshNode *>(triangleNodesIt->next());
                        if(myTool->IsMedium(node))
                            continue;
                        nodeToNetgenID.insert( make_pair( node, invalid_ID ));
                    }
                }
#ifdef _DEBUG_
                // check if a trainge is degenerated
                areaControl.GetPoints( elem, nodesCoords );
                double area = areaControl.GetValue( nodesCoords );
                if ( area <= DBL_MIN ) {
                    MESSAGE( "Warning: Degenerated " << elem );
                }
#endif
            }
            // look for degeneraged edges and vetices
            for (TopExp_Explorer expE(aShapeFace,TopAbs_EDGE); expE.More(); expE.Next())
            {
                TopoDS_Edge aShapeEdge = TopoDS::Edge( expE.Current() );
                if ( BRep_Tool::Degenerated( aShapeEdge ))
                {
                    degenNgIds.push_back( invalid_ID );
                    int* ptrIdOnEdge = & degenNgIds.back();
                    // remember edge id
                    int edgeID = meshDS->ShapeToIndex( aShapeEdge );
                    degenShapeIdToPtrNgId.insert( make_pair( edgeID, ptrIdOnEdge ));
                    // remember vertex id
                    int vertexID = meshDS->ShapeToIndex( TopExp::FirstVertex( aShapeEdge ));
                    degenShapeIdToPtrNgId.insert( make_pair( vertexID, ptrIdOnEdge ));
                }
            }
        }
    }
    // ---------------------------------
    // Feed the Netgen with surface mesh
    // ---------------------------------

    int Netgen_NbOfNodes = 0;
    int Netgen_param2ndOrder = 0;
    double Netgen_paramFine = 1.;
    double Netgen_paramSize = pow( 72, 1/6. ) * pow( _maxElementVolume, 1/3. );

    double Netgen_point[3];
    int Netgen_triangle[3];
    int Netgen_tetrahedron[4];

    Ng_Init();

    Ng_Mesh * Netgen_mesh = Ng_NewMesh();

    // set nodes and remember thier netgen IDs
    bool isDegen = false, hasDegen = !degenShapeIdToPtrNgId.empty();
    TNodeToIDMap::iterator n_id = nodeToNetgenID.begin();
    for ( ; n_id != nodeToNetgenID.end(); ++n_id )
    {
        const SMDS_MeshNode* node = n_id->first;

        // ignore nodes on degenerated edge
        if ( hasDegen ) {
            int shapeId = node->GetPosition()->GetShapeId();
            shId_ngId = degenShapeIdToPtrNgId.find( shapeId );
            isDegen = ( shId_ngId != degenShapeIdToPtrNgId.end() );
            if ( isDegen && *(shId_ngId->second) != invalid_ID ) {
                n_id->second = *(shId_ngId->second);
                continue;
            }
        }
        Netgen_point [ 0 ] = node->X();
        Netgen_point [ 1 ] = node->Y();
        Netgen_point [ 2 ] = node->Z();
        Ng_AddPoint(Netgen_mesh, Netgen_point);
        n_id->second = ++Netgen_NbOfNodes; // set netgen ID

        if ( isDegen ) // all nodes on a degen edge get one netgen ID
            *(shId_ngId->second) = n_id->second;
    }

    // set triangles
    list< const SMDS_MeshElement* >::iterator tria = triangles.begin();
    list< bool >::iterator                 reverse = isReversed.begin();
    for ( ; tria != triangles.end(); ++tria, ++reverse )
    {
        int i = 0;
        SMDS_ElemIteratorPtr triangleNodesIt = (*tria)->nodesIterator();
        while ( triangleNodesIt->more() ) {
            const SMDS_MeshNode * node =
                static_cast<const SMDS_MeshNode *>(triangleNodesIt->next());
            if(myTool->IsMedium(node))
                continue;
            Netgen_triangle[ *reverse ? 2 - i : i ] = nodeToNetgenID[ node ];
            ++i;
        }
        if ( !hasDegen ||
                // ignore degenerated triangles, they have 2 or 3 same ids
                (Netgen_triangle[0] != Netgen_triangle[1] &&
                 Netgen_triangle[0] != Netgen_triangle[2] &&
                 Netgen_triangle[2] != Netgen_triangle[1] ))
        {
            Ng_AddSurfaceElement(Netgen_mesh, NG_TRIG, Netgen_triangle);
        }
    }

    // -------------------------
    // Generate the volume mesh
    // -------------------------

    Ng_Meshing_Parameters Netgen_param;

    Netgen_param.secondorder = Netgen_param2ndOrder;
    Netgen_param.fineness = Netgen_paramFine;
    Netgen_param.maxh = Netgen_paramSize;

    Ng_Result status;

    try {
#if (OCC_VERSION_MAJOR << 16 | OCC_VERSION_MINOR << 8 | OCC_VERSION_MAINTENANCE) > 0x060100
        OCC_CATCH_SIGNALS;
#endif
        status = Ng_GenerateVolumeMesh(Netgen_mesh, &Netgen_param);
    }
    catch (Standard_Failure& exc) {
        error(COMPERR_OCC_EXCEPTION, exc.GetMessageString());
        status = NG_VOLUME_FAILURE;
    }
    catch (...) {
        error("Exception in Ng_GenerateVolumeMesh()");
        status = NG_VOLUME_FAILURE;
    }
    if ( GetComputeError()->IsOK() ) {
        switch ( status ) {
        case NG_SURFACE_INPUT_ERROR:
            error( status, "NG_SURFACE_INPUT_ERROR");
        case NG_VOLUME_FAILURE:
            error( status, "NG_VOLUME_FAILURE");
        case NG_STL_INPUT_ERROR:
            error( status, "NG_STL_INPUT_ERROR");
        case NG_SURFACE_FAILURE:
            error( status, "NG_SURFACE_FAILURE");
        case NG_FILE_NOT_FOUND:
            error( status, "NG_FILE_NOT_FOUND");
        };
    }

    int Netgen_NbOfNodesNew = Ng_GetNP(Netgen_mesh);

    int Netgen_NbOfTetra = Ng_GetNE(Netgen_mesh);

    MESSAGE("End of Volume Mesh Generation. status=" << status <<
            ", nb new nodes: " << Netgen_NbOfNodesNew - Netgen_NbOfNodes <<
            ", nb tetra: " << Netgen_NbOfTetra);

    // -------------------------------------------------------------------
    // Feed back the SMESHDS with the generated Nodes and Volume Elements
    // -------------------------------------------------------------------

    bool isOK = ( /*status == NG_OK &&*/ Netgen_NbOfTetra > 0 );// get whatever built
    if ( isOK )
    {
        // vector of nodes in which node index == netgen ID
        vector< const SMDS_MeshNode* > nodeVec ( Netgen_NbOfNodesNew + 1 );
        // insert old nodes into nodeVec
        for ( n_id = nodeToNetgenID.begin(); n_id != nodeToNetgenID.end(); ++n_id ) {
            nodeVec.at( n_id->second ) = n_id->first;
        }
        // create and insert new nodes into nodeVec
        int nodeIndex = Netgen_NbOfNodes + 1;
        int shapeID = meshDS->ShapeToIndex( aShape );
        for ( ; nodeIndex <= Netgen_NbOfNodesNew; ++nodeIndex )
        {
            Ng_GetPoint( Netgen_mesh, nodeIndex, Netgen_point );
            SMDS_MeshNode * node = meshDS->AddNode(Netgen_point[0],
                                                   Netgen_point[1],
                                                   Netgen_point[2]);
            meshDS->SetNodeInVolume(node, shapeID);
            nodeVec.at(nodeIndex) = node;
        }

        // create tetrahedrons
        for ( int elemIndex = 1; elemIndex <= Netgen_NbOfTetra; ++elemIndex )
        {
            Ng_GetVolumeElement(Netgen_mesh, elemIndex, Netgen_tetrahedron);
            SMDS_MeshVolume * elt = myTool->AddVolume (nodeVec.at( Netgen_tetrahedron[0] ),
                                    nodeVec.at( Netgen_tetrahedron[1] ),
                                    nodeVec.at( Netgen_tetrahedron[2] ),
                                    nodeVec.at( Netgen_tetrahedron[3] ));
            meshDS->SetMeshElementOnShape(elt, shapeID );
        }
    }

    Ng_DeleteMesh(Netgen_mesh);
    Ng_Exit();

    NETGENPlugin_Mesher::RemoveTmpFiles();

    return (status == NG_OK);
}
void SMESHDS_GroupOnGeom::SetShape( const TopoDS_Shape& theShape)
{
  SMESHDS_Mesh* aMesh = const_cast<SMESHDS_Mesh*>( GetMesh() );
  mySubMesh = aMesh->MeshElements( aMesh->AddCompoundSubmesh( theShape ));
  myShape   = theShape;
}
bool StdMeshers_RadialPrism_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
{
  TopExp_Explorer exp;
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  myHelper = new SMESH_MesherHelper( aMesh );
  myHelper->IsQuadraticSubMesh( aShape );
  // to delete helper at exit from Compute()
  std::auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );

  // get 2 shells
  TopoDS_Solid solid = TopoDS::Solid( aShape );
  TopoDS_Shell outerShell = BRepClass3d::OuterShell( solid );
  TopoDS_Shape innerShell;
  int nbShells = 0;
  for ( TopoDS_Iterator It (solid); It.More(); It.Next(), ++nbShells )
    if ( !outerShell.IsSame( It.Value() ))
      innerShell = It.Value();
  if ( nbShells != 2 )
    return error(COMPERR_BAD_SHAPE, SMESH_Comment("Must be 2 shells but not ")<<nbShells);

  // ----------------------------------
  // Associate sub-shapes of the shells
  // ----------------------------------

  ProjectionUtils::TShapeShapeMap shape2ShapeMaps[2];
  bool mapOk1 = ProjectionUtils::FindSubShapeAssociation( innerShell, &aMesh,
                                                          outerShell, &aMesh,
                                                          shape2ShapeMaps[0]);
  bool mapOk2 = ProjectionUtils::FindSubShapeAssociation( innerShell.Reversed(), &aMesh,
                                                          outerShell, &aMesh,
                                                          shape2ShapeMaps[1]);
  if ( !mapOk1 && !mapOk2 )
    return error(COMPERR_BAD_SHAPE,"Topology of inner and outer shells seems different" );

  int iMap;
  if ( shape2ShapeMaps[0].Extent() == shape2ShapeMaps[1].Extent() )
  {
    // choose an assiciation by shortest distance between VERTEXes
    double dist1 = 0, dist2 = 0;
    TopTools_DataMapIteratorOfDataMapOfShapeShape ssIt( shape2ShapeMaps[0]._map1to2 );
    for (; ssIt.More(); ssIt.Next() )
    {
      if ( ssIt.Key().ShapeType() != TopAbs_VERTEX ) continue;
      gp_Pnt pIn   = BRep_Tool::Pnt( TopoDS::Vertex( ssIt.Key() ));
      gp_Pnt pOut1 = BRep_Tool::Pnt( TopoDS::Vertex( ssIt.Value() ));
      gp_Pnt pOut2 = BRep_Tool::Pnt( TopoDS::Vertex( shape2ShapeMaps[1]( ssIt.Key() )));
      dist1 += pIn.SquareDistance( pOut1 );
      dist2 += pIn.SquareDistance( pOut2 );
    }
    iMap = ( dist1 < dist2 ) ? 0 : 1;
  }
  else
  {
    iMap = ( shape2ShapeMaps[0].Extent() > shape2ShapeMaps[1].Extent() ) ? 0 : 1;
  }
  ProjectionUtils::TShapeShapeMap& shape2ShapeMap = shape2ShapeMaps[iMap];

  // ------------------
  // Make mesh
  // ------------------

  TNode2ColumnMap node2columnMap;
  myLayerPositions.clear();

  for ( exp.Init( outerShell, TopAbs_FACE ); exp.More(); exp.Next() )
  {
    // Corresponding sub-shapes
    TopoDS_Face outFace = TopoDS::Face( exp.Current() );
    TopoDS_Face inFace;
    if ( !shape2ShapeMap.IsBound( outFace, /*isOut=*/true )) {
      return error(SMESH_Comment("Corresponding inner face not found for face #" )
                   << meshDS->ShapeToIndex( outFace ));
    } else {
      inFace = TopoDS::Face( shape2ShapeMap( outFace, /*isOut=*/true ));
    }

    // Find matching nodes of in and out faces
    ProjectionUtils::TNodeNodeMap nodeIn2OutMap;
    if ( ! ProjectionUtils::FindMatchingNodesOnFaces( inFace, &aMesh, outFace, &aMesh,
                                                      shape2ShapeMap, nodeIn2OutMap ))
      return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Mesh on faces #")
                   << meshDS->ShapeToIndex( outFace ) << " and "
                   << meshDS->ShapeToIndex( inFace ) << " seems different" );

    // Create volumes

    SMDS_ElemIteratorPtr faceIt = meshDS->MeshElements( inFace )->GetElements();
    while ( faceIt->more() ) // loop on faces on inFace
    {
      const SMDS_MeshElement* face = faceIt->next();
      if ( !face || face->GetType() != SMDSAbs_Face )
        continue;
      int nbNodes = face->NbNodes();
      if ( face->IsQuadratic() )
        nbNodes /= 2;

      // find node columns for each node
      vector< const TNodeColumn* > columns( nbNodes );
      for ( int i = 0; i < nbNodes; ++i )
      {
        const SMDS_MeshNode* nIn = face->GetNode( i );
        TNode2ColumnMap::iterator n_col = node2columnMap.find( nIn );
        if ( n_col != node2columnMap.end() ) {
          columns[ i ] = & n_col->second;
        }
        else {
          TNodeNodeMap::iterator nInOut = nodeIn2OutMap.find( nIn );
          if ( nInOut == nodeIn2OutMap.end() )
            RETURN_BAD_RESULT("No matching node for "<< nIn->GetID() <<
                              " in face "<< face->GetID());
          columns[ i ] = makeNodeColumn( node2columnMap, nIn, nInOut->second );
        }
      }

      StdMeshers_Prism_3D::AddPrisms( columns, myHelper );
    }
  } // loop on faces of out shell

  return true;
}
bool StdMeshers_RadialPrism_3D::Compute(SMESH_Mesh& aMesh, const TopoDS_Shape& aShape)
{
  TopExp_Explorer exp;
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  myHelper = new SMESH_MesherHelper( aMesh );
  myHelper->IsQuadraticSubMesh( aShape );
  // to delete helper at exit from Compute()
  std::auto_ptr<SMESH_MesherHelper> helperDeleter( myHelper );

  // get 2 shells
  TopoDS_Solid solid = TopoDS::Solid( aShape );
  TopoDS_Shell outerShell = BRepClass3d::OuterShell( solid );
  TopoDS_Shape innerShell;
  int nbShells = 0;
  for ( TopoDS_Iterator It (solid); It.More(); It.Next(), ++nbShells )
    if ( !outerShell.IsSame( It.Value() ))
      innerShell = It.Value();
  if ( nbShells != 2 )
    return error(COMPERR_BAD_SHAPE, SMESH_Comment("Must be 2 shells but not ")<<nbShells);

  // ----------------------------------
  // Associate subshapes of the shells
  // ----------------------------------

  TAssocTool::TShapeShapeMap shape2ShapeMap;
  if ( !TAssocTool::FindSubShapeAssociation( outerShell, &aMesh,
                                             innerShell, &aMesh,
                                             shape2ShapeMap) )
    return error(COMPERR_BAD_SHAPE,"Topology of inner and outer shells seems different" );

  // ------------------
  // Make mesh
  // ------------------

  TNode2ColumnMap node2columnMap;
  myLayerPositions.clear();

  for ( exp.Init( outerShell, TopAbs_FACE ); exp.More(); exp.Next() )
  {
    // Corresponding subshapes
    TopoDS_Face outFace = TopoDS::Face( exp.Current() );
    TopoDS_Face inFace;
    if ( !shape2ShapeMap.IsBound( outFace )) {
      return error(SMESH_Comment("Corresponding inner face not found for face #" )
                   << meshDS->ShapeToIndex( outFace ));
    } else {
      inFace = TopoDS::Face( shape2ShapeMap( outFace ));
    }

    // Find matching nodes of in and out faces
    TNodeNodeMap nodeIn2OutMap;
    if ( ! TAssocTool::FindMatchingNodesOnFaces( inFace, &aMesh, outFace, &aMesh,
                                                 shape2ShapeMap, nodeIn2OutMap ))
      return error(COMPERR_BAD_INPUT_MESH,SMESH_Comment("Mesh on faces #")
                   << meshDS->ShapeToIndex( outFace ) << " and "
                   << meshDS->ShapeToIndex( inFace ) << " seems different" );

    // Create volumes

    SMDS_ElemIteratorPtr faceIt = meshDS->MeshElements( inFace )->GetElements();
    while ( faceIt->more() ) // loop on faces on inFace
    {
      const SMDS_MeshElement* face = faceIt->next();
      if ( !face || face->GetType() != SMDSAbs_Face )
        continue;
      int nbNodes = face->NbNodes();
      if ( face->IsQuadratic() )
        nbNodes /= 2;

      // find node columns for each node
      vector< const TNodeColumn* > columns( nbNodes );
      for ( int i = 0; i < nbNodes; ++i )
      {
        const SMDS_MeshNode* nIn = face->GetNode( i );
        TNode2ColumnMap::iterator n_col = node2columnMap.find( nIn );
        if ( n_col != node2columnMap.end() ) {
          columns[ i ] = & n_col->second;
        }
        else {
          TNodeNodeMap::iterator nInOut = nodeIn2OutMap.find( nIn );
          if ( nInOut == nodeIn2OutMap.end() )
            RETURN_BAD_RESULT("No matching node for "<< nIn->GetID() <<
                              " in face "<< face->GetID());
          columns[ i ] = makeNodeColumn( node2columnMap, nIn, nInOut->second );
        }
      }

      StdMeshers_Prism_3D::AddPrisms( columns, myHelper );
    }
  } // loop on faces of out shell

  return true;
}
bool NETGENPlugin_NETGEN_2D_ONLY::Compute(SMESH_Mesh&         aMesh,
        const TopoDS_Shape& aShape)
{
    netgen::multithread.terminate = 0;
    //netgen::multithread.task = "Surface meshing";

    SMESHDS_Mesh* meshDS = aMesh.GetMeshDS();
    SMESH_MesherHelper helper(aMesh);
    helper.SetElementsOnShape( true );

    NETGENPlugin_NetgenLibWrapper ngLib;
    ngLib._isComputeOk = false;

    netgen::Mesh   ngMeshNoLocSize;
#if NETGEN_VERSION < 6
    netgen::Mesh * ngMeshes[2] = { (netgen::Mesh*) ngLib._ngMesh,  & ngMeshNoLocSize };
#else
    netgen::Mesh * ngMeshes[2] = { (netgen::Mesh*) ngLib._ngMesh.get(),  & ngMeshNoLocSize };
#endif
    netgen::OCCGeometry occgeoComm;

    // min / max sizes are set as follows:
    // if ( _hypParameters )
    //    min and max are defined by the user
    // else if ( _hypLengthFromEdges )
    //    min = aMesher.GetDefaultMinSize()
    //    max = average segment len of a FACE
    // else if ( _hypMaxElementArea )
    //    min = aMesher.GetDefaultMinSize()
    //    max = f( _hypMaxElementArea )
    // else
    //    min = aMesher.GetDefaultMinSize()
    //    max = max segment len of a FACE

    NETGENPlugin_Mesher aMesher( &aMesh, aShape, /*isVolume=*/false);
    aMesher.SetParameters( _hypParameters ); // _hypParameters -> netgen::mparam
    const bool toOptimize = _hypParameters ? _hypParameters->GetOptimize() : true;
    if ( _hypMaxElementArea )
    {
        netgen::mparam.maxh = sqrt( 2. * _hypMaxElementArea->GetMaxArea() / sqrt(3.0) );
    }
    if ( _hypQuadranglePreference )
        netgen::mparam.quad = true;

    // local size is common for all FACEs in aShape?
    const bool isCommonLocalSize = ( !_hypLengthFromEdges && !_hypMaxElementArea && netgen::mparam.uselocalh );
    const bool isDefaultHyp = ( !_hypLengthFromEdges && !_hypMaxElementArea && !_hypParameters );

    if ( isCommonLocalSize ) // compute common local size in ngMeshes[0]
    {
        //list< SMESH_subMesh* > meshedSM[4]; --> all sub-shapes are added to occgeoComm
        aMesher.PrepareOCCgeometry( occgeoComm, aShape, aMesh );//, meshedSM );

        // local size set at MESHCONST_ANALYSE step depends on
        // minh, face_maxh, grading and curvaturesafety; find minh if not set by the user
        if ( !_hypParameters || netgen::mparam.minh < DBL_MIN )
        {
            if ( !_hypParameters )
                netgen::mparam.maxh = occgeoComm.GetBoundingBox().Diam() / 3.;
            netgen::mparam.minh = aMesher.GetDefaultMinSize( aShape, netgen::mparam.maxh );
        }
        // set local size depending on curvature and NOT closeness of EDGEs
        netgen::occparam.resthcloseedgeenable = false;
        //netgen::occparam.resthcloseedgefac = 1.0 + netgen::mparam.grading;
        occgeoComm.face_maxh = netgen::mparam.maxh;
        netgen::OCCSetLocalMeshSize( occgeoComm, *ngMeshes[0] );
        occgeoComm.emap.Clear();
        occgeoComm.vmap.Clear();

        // set local size according to size of existing segments
        const double factor = netgen::occparam.resthcloseedgefac;
        TopTools_IndexedMapOfShape edgeMap;
        TopExp::MapShapes( aMesh.GetShapeToMesh(), TopAbs_EDGE, edgeMap );
        for ( int iE = 1; iE <= edgeMap.Extent(); ++iE )
        {
            const TopoDS_Shape& edge = edgeMap( iE );
            if ( SMESH_Algo::isDegenerated( TopoDS::Edge( edge ))/* ||
           helper.IsSubShape( edge, aShape )*/)
                continue;
            SMESHDS_SubMesh* smDS = meshDS->MeshElements( edge );
            if ( !smDS ) continue;
            SMDS_ElemIteratorPtr segIt = smDS->GetElements();
            while ( segIt->more() )
            {
                const SMDS_MeshElement* seg = segIt->next();
                SMESH_TNodeXYZ n1 = seg->GetNode(0);
                SMESH_TNodeXYZ n2 = seg->GetNode(1);
                gp_XYZ p = 0.5 * ( n1 + n2 );
                netgen::Point3d pi(p.X(), p.Y(), p.Z());
                ngMeshes[0]->RestrictLocalH( pi, factor * ( n1 - n2 ).Modulus() );
            }
        }
    }
    netgen::mparam.uselocalh = toOptimize; // restore as it is used at surface optimization

    // ==================
    // Loop on all FACEs
    // ==================

    vector< const SMDS_MeshNode* > nodeVec;

    TopExp_Explorer fExp( aShape, TopAbs_FACE );
    for ( int iF = 0; fExp.More(); fExp.Next(), ++iF )
    {
        TopoDS_Face F = TopoDS::Face( fExp.Current() /*.Oriented( TopAbs_FORWARD )*/);
        int    faceID = meshDS->ShapeToIndex( F );
        SMESH_ComputeErrorPtr& faceErr = aMesh.GetSubMesh( F )->GetComputeError();

        _quadraticMesh = helper.IsQuadraticSubMesh( F );
        const bool ignoreMediumNodes = _quadraticMesh;

        // build viscous layers if required
        if ( F.Orientation() != TopAbs_FORWARD &&
                F.Orientation() != TopAbs_REVERSED )
            F.Orientation( TopAbs_FORWARD ); // avoid pb with TopAbs_INTERNAL
        SMESH_ProxyMesh::Ptr proxyMesh = StdMeshers_ViscousLayers2D::Compute( aMesh, F );
        if ( !proxyMesh )
            continue;

        // ------------------------
        // get all EDGEs of a FACE
        // ------------------------
        TSideVector wires =
            StdMeshers_FaceSide::GetFaceWires( F, aMesh, ignoreMediumNodes, faceErr, proxyMesh );
        if ( faceErr && !faceErr->IsOK() )
            continue;
        int nbWires = wires.size();
        if ( nbWires == 0 )
        {
            faceErr.reset
            ( new SMESH_ComputeError
              ( COMPERR_ALGO_FAILED, "Problem in StdMeshers_FaceSide::GetFaceWires()" ));
            continue;
        }
        if ( wires[0]->NbSegments() < 3 ) // ex: a circle with 2 segments
        {
            faceErr.reset
            ( new SMESH_ComputeError
              ( COMPERR_BAD_INPUT_MESH, SMESH_Comment("Too few segments: ")<<wires[0]->NbSegments()) );
            continue;
        }

        // ----------------------
        // compute maxh of a FACE
        // ----------------------

        if ( !_hypParameters )
        {
            double edgeLength = 0;
            if (_hypLengthFromEdges )
            {
                // compute edgeLength as an average segment length
                int nbSegments = 0;
                for ( int iW = 0; iW < nbWires; ++iW )
                {
                    edgeLength += wires[ iW ]->Length();
                    nbSegments += wires[ iW ]->NbSegments();
                }
                if ( nbSegments )
                    edgeLength /= nbSegments;
                netgen::mparam.maxh = edgeLength;
            }
            else if ( isDefaultHyp )
            {
                // set edgeLength by a longest segment
                double maxSeg2 = 0;
                for ( int iW = 0; iW < nbWires; ++iW )
                {
                    const UVPtStructVec& points = wires[ iW ]->GetUVPtStruct();
                    if ( points.empty() )
                        return error( COMPERR_BAD_INPUT_MESH );
                    gp_Pnt pPrev = SMESH_TNodeXYZ( points[0].node );
                    for ( size_t i = 1; i < points.size(); ++i )
                    {
                        gp_Pnt p = SMESH_TNodeXYZ( points[i].node );
                        maxSeg2 = Max( maxSeg2, p.SquareDistance( pPrev ));
                        pPrev = p;
                    }
                }
                edgeLength = sqrt( maxSeg2 ) * 1.05;
                netgen::mparam.maxh = edgeLength;
            }
            if ( netgen::mparam.maxh < DBL_MIN )
                netgen::mparam.maxh = occgeoComm.GetBoundingBox().Diam();

            if ( !isCommonLocalSize )
            {
                netgen::mparam.minh = aMesher.GetDefaultMinSize( F, netgen::mparam.maxh );
            }
        }

        // prepare occgeom
        netgen::OCCGeometry occgeom;
        occgeom.shape = F;
        occgeom.fmap.Add( F );
        occgeom.CalcBoundingBox();
        occgeom.facemeshstatus.SetSize(1);
        occgeom.facemeshstatus = 0;
        occgeom.face_maxh_modified.SetSize(1);
        occgeom.face_maxh_modified = 0;
        occgeom.face_maxh.SetSize(1);
        occgeom.face_maxh = netgen::mparam.maxh;

        // -------------------------
        // Fill netgen mesh
        // -------------------------

        // MESHCONST_ANALYSE step may lead to a failure, so we make an attempt
        // w/o MESHCONST_ANALYSE at the second loop
        int err = 0;
        enum { LOC_SIZE, NO_LOC_SIZE };
        int iLoop = isCommonLocalSize ? 0 : 1;
        for ( ; iLoop < 2; iLoop++ )
        {
            //bool isMESHCONST_ANALYSE = false;
            InitComputeError();

            netgen::Mesh * ngMesh = ngMeshes[ iLoop ];
            ngMesh->DeleteMesh();

            if ( iLoop == NO_LOC_SIZE )
            {
                ngMesh->SetGlobalH ( mparam.maxh );
                ngMesh->SetMinimalH( mparam.minh );
                Box<3> bb = occgeom.GetBoundingBox();
                bb.Increase (bb.Diam()/10);
                ngMesh->SetLocalH (bb.PMin(), bb.PMax(), mparam.grading);
            }

            nodeVec.clear();
            faceErr = aMesher.AddSegmentsToMesh( *ngMesh, occgeom, wires, helper, nodeVec,
                                                 /*overrideMinH=*/!_hypParameters);
            if ( faceErr && !faceErr->IsOK() )
                break;

            //if ( !isCommonLocalSize )
            //limitSize( ngMesh, mparam.maxh * 0.8);

            // -------------------------
            // Generate surface mesh
            // -------------------------

            const int startWith = MESHCONST_MESHSURFACE;
            const int endWith   = toOptimize ? MESHCONST_OPTSURFACE : MESHCONST_MESHSURFACE;

            SMESH_Comment str;
            try {
                OCC_CATCH_SIGNALS;

#if NETGEN_VERSION >=6
                std::shared_ptr<netgen::Mesh> mesh_ptr(ngMesh,  [](netgen::Mesh*) {});
                err = netgen::OCCGenerateMesh(occgeom, mesh_ptr, netgen::mparam, startWith, endWith);
#elif NETGEN_VERSION > 4
                err = netgen::OCCGenerateMesh(occgeom, ngMesh, netgen::mparam, startWith, endWith);
#else
                char *optstr = 0;
                err = netgen::OCCGenerateMesh(occgeom, ngMesh, startWith, endWith, optstr);
#endif
                if ( netgen::multithread.terminate )
                    return false;
                if ( err )
                    str << "Error in netgen::OCCGenerateMesh() at " << netgen::multithread.task;
            }
            catch (Standard_Failure& ex)
            {
                err = 1;
                str << "Exception in  netgen::OCCGenerateMesh()"
                    << " at " << netgen::multithread.task
                    << ": " << ex.DynamicType()->Name();
                if ( ex.GetMessageString() && strlen( ex.GetMessageString() ))
                    str << ": " << ex.GetMessageString();
            }
            catch (...) {
                err = 1;
                str << "Exception in  netgen::OCCGenerateMesh()"
                    << " at " << netgen::multithread.task;
            }
            if ( err )
            {
                if ( aMesher.FixFaceMesh( occgeom, *ngMesh, 1 ))
                    break;
                if ( iLoop == LOC_SIZE )
                {
                    netgen::mparam.minh = netgen::mparam.maxh;
                    netgen::mparam.maxh = 0;
                    for ( int iW = 0; iW < wires.size(); ++iW )
                    {
                        StdMeshers_FaceSidePtr wire = wires[ iW ];
                        const vector<UVPtStruct>& uvPtVec = wire->GetUVPtStruct();
                        for ( size_t iP = 1; iP < uvPtVec.size(); ++iP )
                        {
                            SMESH_TNodeXYZ   p( uvPtVec[ iP ].node );
                            netgen::Point3d np( p.X(),p.Y(),p.Z());
                            double segLen = p.Distance( uvPtVec[ iP-1 ].node );
                            double   size = ngMesh->GetH( np );
                            netgen::mparam.minh = Min( netgen::mparam.minh, size );
                            netgen::mparam.maxh = Max( netgen::mparam.maxh, segLen );
                        }
                    }
                    //cerr << "min " << netgen::mparam.minh << " max " << netgen::mparam.maxh << endl;
                    netgen::mparam.minh *= 0.9;
                    netgen::mparam.maxh *= 1.1;
                    continue;
                }
                else
                {
                    faceErr.reset( new SMESH_ComputeError( COMPERR_ALGO_FAILED, str ));
                }
            }


            // ----------------------------------------------------
            // Fill the SMESHDS with the generated nodes and faces
            // ----------------------------------------------------

            int nbNodes = ngMesh->GetNP();
            int nbFaces = ngMesh->GetNSE();

            int nbInputNodes = nodeVec.size()-1;
            nodeVec.resize( nbNodes+1, 0 );

            // add nodes
            for ( int ngID = nbInputNodes + 1; ngID <= nbNodes; ++ngID )
            {
                const MeshPoint& ngPoint = ngMesh->Point( ngID );
                SMDS_MeshNode * node = meshDS->AddNode(ngPoint(0), ngPoint(1), ngPoint(2));
                nodeVec[ ngID ] = node;
            }

            // create faces
            int i,j;
            vector<const SMDS_MeshNode*> nodes;
            for ( i = 1; i <= nbFaces ; ++i )
            {
                const Element2d& elem = ngMesh->SurfaceElement(i);
                nodes.resize( elem.GetNP() );
                for (j=1; j <= elem.GetNP(); ++j)
                {
                    int pind = elem.PNum(j);
                    if ( pind < 1 )
                        break;
                    nodes[ j-1 ] = nodeVec[ pind ];
                    if ( nodes[ j-1 ]->GetPosition()->GetTypeOfPosition() == SMDS_TOP_3DSPACE )
                    {
                        const PointGeomInfo& pgi = elem.GeomInfoPi(j);
                        meshDS->SetNodeOnFace( nodes[ j-1 ], faceID, pgi.u, pgi.v);
                    }
                }
                if ( j > elem.GetNP() )
                {
                    SMDS_MeshFace* face = 0;
                    if ( elem.GetType() == TRIG )
                        face = helper.AddFace(nodes[0],nodes[1],nodes[2]);
                    else
                        face = helper.AddFace(nodes[0],nodes[1],nodes[2],nodes[3]);
                }
            }

            break;
        } // two attempts
    } // loop on FACEs

    return true;
}
示例#8
0
StdMeshers_FaceSide::StdMeshers_FaceSide(const TopoDS_Face& theFace,
                                         list<TopoDS_Edge>& theEdges,
                                         SMESH_Mesh*        theMesh,
                                         const bool         theIsForward,
                                         const bool         theIgnoreMediumNodes)
{
  int nbEdges = theEdges.size();
  myEdge.resize( nbEdges );
  myC2d.resize( nbEdges );
  myFirst.resize( nbEdges );
  myLast.resize( nbEdges );
  myNormPar.resize( nbEdges );
  myLength = 0;
  myNbPonits = myNbSegments = 0;
  myMesh = theMesh;
  myMissingVertexNodes = false;
  myIgnoreMediumNodes = theIgnoreMediumNodes;
  if ( nbEdges == 0 ) return;

  SMESHDS_Mesh* meshDS = theMesh->GetMeshDS();
  vector<double> len( nbEdges );

  int nbDegen = 0;
  list<TopoDS_Edge>::iterator edge = theEdges.begin();
  for ( int index = 0; edge != theEdges.end(); ++index, ++edge )
  {
    int i = theIsForward ? index : nbEdges - index - 1;
    len[i] = SMESH_Algo::EdgeLength( *edge );
    if ( len[i] < DBL_MIN ) nbDegen++;
    myLength += len[i];
    myEdge[i] = *edge;
    if ( !theIsForward ) myEdge[i].Reverse();

    if ( theFace.IsNull() )
      BRep_Tool::Range( *edge, myFirst[i], myLast[i] );
    else
      myC2d[i] = BRep_Tool::CurveOnSurface( *edge, theFace, myFirst[i], myLast[i] );
    if ( myEdge[i].Orientation() == TopAbs_REVERSED )
      std::swap( myFirst[i], myLast[i] );

    if ( SMESHDS_SubMesh* sm = meshDS->MeshElements( *edge )) {
      int nbN = sm->NbNodes();
      if ( theIgnoreMediumNodes ) {
        SMDS_ElemIteratorPtr elemIt = sm->GetElements();
        if ( elemIt->more() && elemIt->next()->IsQuadratic() )
          nbN -= sm->NbElements();
      }
      myNbPonits += nbN;
      myNbSegments += sm->NbElements();
    }
    if ( SMESH_Algo::VertexNode( TopExp::FirstVertex( *edge, 1), meshDS ))
      myNbPonits += 1; // for the first end
    else
      myMissingVertexNodes = true;
  }
  if ( SMESH_Algo::VertexNode( TopExp::LastVertex( theEdges.back(), 1), meshDS ))
    myNbPonits++; // for the last end
  else
    myMissingVertexNodes = true;

  if ( nbEdges > 1 && myLength > DBL_MIN ) {
    const double degenNormLen = 1.e-5;
    double totLength = myLength;
    if ( nbDegen )
      totLength += myLength * degenNormLen * nbDegen;
    double prevNormPar = 0;
    for ( int i = 0; i < nbEdges; ++i ) {
      if ( len[ i ] < DBL_MIN )
        len[ i ] = myLength * degenNormLen;
      myNormPar[ i ] = prevNormPar + len[i]/totLength;
      prevNormPar = myNormPar[ i ];
    }
  }
  myNormPar[nbEdges-1] = 1.;
  //dump();
}
示例#9
0
const vector<UVPtStruct>& StdMeshers_FaceSide::GetUVPtStruct(bool   isXConst,
                                                             double constValue) const
{
  if ( myPoints.empty() ) {

    if ( NbEdges() == 0 ) return myPoints;

    SMESHDS_Mesh* meshDS = myMesh->GetMeshDS();

    // sort nodes of all edges putting them into a map

    map< double, const SMDS_MeshNode*> u2node;
    //int nbOnDegen = 0;
    for ( int i = 0; i < myEdge.size(); ++i )
    {
      // put 1st vertex node
      TopoDS_Vertex VFirst, VLast;
      TopExp::Vertices( myEdge[i], VFirst, VLast, true);
      const SMDS_MeshNode* node = SMESH_Algo::VertexNode( VFirst, meshDS );
      double prevNormPar = ( i == 0 ? 0 : myNormPar[ i-1 ]); // normalized param
      if ( node ) { // internal nodes may be missing
        u2node.insert( make_pair( prevNormPar, node ));
      } else if ( i == 0 ) {
        MESSAGE(" NO NODE on VERTEX" );
        return myPoints;
      }

      // put 2nd vertex node for a last edge
      if ( i+1 == myEdge.size() ) {
        node = SMESH_Algo::VertexNode( VLast, meshDS );
        if ( !node ) {
          MESSAGE(" NO NODE on VERTEX" );
          return myPoints;
        }
        u2node.insert( make_pair( 1., node ));
      }

      // put internal nodes
      SMESHDS_SubMesh* sm = meshDS->MeshElements( myEdge[i] );
      if ( !sm ) continue;
      SMDS_NodeIteratorPtr nItr = sm->GetNodes();
      double paramSize = myLast[i] - myFirst[i], r = myNormPar[i] - prevNormPar;
      while ( nItr->more() ) {
        const SMDS_MeshNode* node = nItr->next();
        if ( myIgnoreMediumNodes && SMESH_MeshEditor::IsMedium( node, SMDSAbs_Edge ))
          continue;
        const SMDS_EdgePosition* epos =
          static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
        double u = epos->GetUParameter();
        // paramSize is signed so orientation is taken into account
        double normPar = prevNormPar + r * ( u - myFirst[i] ) / paramSize;
#ifdef _DEBUG_
        if ( normPar > 1 || normPar < 0) {
          dump("DEBUG");
          MESSAGE ( "WRONG normPar: "<<normPar<< " prevNormPar="<<prevNormPar
                    << " u="<<u << " myFirst[i]="<<myFirst[i]<< " myLast[i]="<<myLast[i]
                    << " paramSize="<<paramSize );
        }
#endif
        u2node.insert( make_pair( normPar, node ));
      }
    }
    if ( u2node.size() != myNbPonits ) {
      MESSAGE("Wrong node parameters on edges, u2node.size():"
              <<u2node.size()<<" !=  myNbPonits:"<<myNbPonits);
      return myPoints;
    }

    // fill array of UVPtStruct

    vector<uvPtStruct>* points = const_cast<vector<uvPtStruct>*>( &myPoints );
    points->resize( myNbPonits );

    int EdgeIndex = 0;
    double prevNormPar = 0, paramSize = myNormPar[ EdgeIndex ];
    map< double, const SMDS_MeshNode*>::iterator u_node = u2node.begin();
    for (int i = 0 ; u_node != u2node.end(); ++u_node, ++i ) {
      UVPtStruct & uvPt = (*points)[i];
      uvPt.node = u_node->second;
      uvPt.x = uvPt.y = uvPt.normParam = u_node->first;
      if ( isXConst ) uvPt.x = constValue;
      else            uvPt.y = constValue;
      if ( myNormPar[ EdgeIndex ] < uvPt.normParam ) {
        prevNormPar = myNormPar[ EdgeIndex ];
        ++EdgeIndex;
#ifdef _DEBUG_
        if ( EdgeIndex >= myEdge.size() ) {
          dump("DEBUG");
          MESSAGE ( "WRONg EdgeIndex " << 1+EdgeIndex
                    << " myNormPar.size()="<<myNormPar.size()
                    << " myNormPar["<< EdgeIndex<<"]="<< myNormPar[ EdgeIndex ]
                    << " uvPt.normParam="<<uvPt.normParam );
        }
#endif
        paramSize = myNormPar[ EdgeIndex ] - prevNormPar;
      }
      const SMDS_EdgePosition* epos =
        dynamic_cast<const SMDS_EdgePosition*>(uvPt.node->GetPosition().get());
      if ( epos ) {
        uvPt.param = epos->GetUParameter();
      }
      else {
        double r = ( uvPt.normParam - prevNormPar )/ paramSize;
//         uvPt.param = myFirst[EdgeIndex] * ( 1 - r ) + myLast[EdgeIndex] * r;
        uvPt.param = ( r > 0.5 ? myLast[EdgeIndex] : myFirst[EdgeIndex] );
      }
      if ( !myC2d[ EdgeIndex ].IsNull() ) {
        gp_Pnt2d p = myC2d[ EdgeIndex ]->Value( uvPt.param );
        uvPt.u = p.X();
        uvPt.v = p.Y();
      }
      else {
        uvPt.u = uvPt.v = 1e+100;
      }
    }
  }
  return myPoints;
}
bool StdMeshers_Hexa_3D::Compute(SMESH_Mesh &         aMesh,
                                 const TopoDS_Shape & aShape)// throw(SALOME_Exception)
{
  // PAL14921. Enable catching std::bad_alloc and Standard_OutOfMemory outside
  //Unexpect aCatch(SalomeException);
  MESSAGE("StdMeshers_Hexa_3D::Compute");
  SMESHDS_Mesh * meshDS = aMesh.GetMeshDS();

  // 0.  - shape and face mesh verification
  // 0.1 - shape must be a solid (or a shell) with 6 faces

  vector < SMESH_subMesh * >meshFaces;
  for (TopExp_Explorer exp(aShape, TopAbs_FACE); exp.More(); exp.Next()) {
    SMESH_subMesh *aSubMesh = aMesh.GetSubMeshContaining(exp.Current());
    ASSERT(aSubMesh);
    meshFaces.push_back(aSubMesh);
  }
  if (meshFaces.size() != 6) {
    //return error(COMPERR_BAD_SHAPE, TComm(meshFaces.size())<<" instead of 6 faces in a block");
    static StdMeshers_CompositeHexa_3D compositeHexa(-10, 0, aMesh.GetGen());
    if ( !compositeHexa.Compute( aMesh, aShape ))
      return error( compositeHexa.GetComputeError() );
    return true;
  }

  // 0.2 - is each face meshed with Quadrangle_2D? (so, with a wire of 4 edges)

  // tool for working with quadratic elements
  SMESH_MesherHelper aTool (aMesh);
  _quadraticMesh = aTool.IsQuadraticSubMesh(aShape);

  // cube structure
  typedef struct cubeStruct
  {
    TopoDS_Vertex V000;
    TopoDS_Vertex V001;
    TopoDS_Vertex V010;
    TopoDS_Vertex V011;
    TopoDS_Vertex V100;
    TopoDS_Vertex V101;
    TopoDS_Vertex V110;
    TopoDS_Vertex V111;
    faceQuadStruct* quad_X0;
    faceQuadStruct* quad_X1;
    faceQuadStruct* quad_Y0;
    faceQuadStruct* quad_Y1;
    faceQuadStruct* quad_Z0;
    faceQuadStruct* quad_Z1;
    Point3DStruct* np; // normalised 3D coordinates
  } CubeStruct;

  CubeStruct aCube;

  // bounding faces
  FaceQuadStruct* aQuads[6];
  for (int i = 0; i < 6; i++)
    aQuads[i] = 0;

  for (int i = 0; i < 6; i++)
  {
    TopoDS_Shape aFace = meshFaces[i]->GetSubShape();
    SMESH_Algo *algo = _gen->GetAlgo(aMesh, aFace);
    string algoName = algo->GetName();
    bool isAllQuad = false;
    if (algoName == "Quadrangle_2D") {
      SMESHDS_SubMesh * sm = meshDS->MeshElements( aFace );
      if ( sm ) {
        isAllQuad = true;
        SMDS_ElemIteratorPtr eIt = sm->GetElements();
        while ( isAllQuad && eIt->more() ) {
          const SMDS_MeshElement* elem =  eIt->next();
          isAllQuad = ( elem->NbNodes()==4 ||(_quadraticMesh && elem->NbNodes()==8) );
        }
      }
    }
    if ( ! isAllQuad ) {
      SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
      return ClearAndReturn( aQuads, error(err));
    }
    StdMeshers_Quadrangle_2D *quadAlgo =
      dynamic_cast < StdMeshers_Quadrangle_2D * >(algo);
    ASSERT(quadAlgo);
    try {
      aQuads[i] = quadAlgo->CheckAnd2Dcompute(aMesh, aFace, _quadraticMesh);
      if(!aQuads[i]) {
        return error( quadAlgo->GetComputeError());
      }
    }
    catch(SALOME_Exception & S_ex) {
      return ClearAndReturn( aQuads, error(COMPERR_SLM_EXCEPTION,TComm(S_ex.what()) <<
                                           " Raised by StdMeshers_Quadrangle_2D "
                                           " on face #" << meshDS->ShapeToIndex( aFace )));
    }

    // 0.2.1 - number of points on the opposite edges must be the same
    if (aQuads[i]->side[0]->NbPoints() != aQuads[i]->side[2]->NbPoints() ||
        aQuads[i]->side[1]->NbPoints() != aQuads[i]->side[3]->NbPoints()
        /*aQuads[i]->side[0]->NbEdges() != 1 ||
        aQuads[i]->side[1]->NbEdges() != 1 ||
        aQuads[i]->side[2]->NbEdges() != 1 ||
        aQuads[i]->side[3]->NbEdges() != 1*/) {
      MESSAGE("different number of points on the opposite edges of face " << i);
      // Try to go into penta algorithm 'cause it has been improved.
      SMESH_ComputeErrorPtr err = ComputePentahedralMesh(aMesh, aShape);
      return ClearAndReturn( aQuads, error(err));
    }
  }

  // 1.  - identify faces and vertices of the "cube"
  // 1.1 - ancestor maps vertex->edges in the cube

//   TopTools_IndexedDataMapOfShapeListOfShape MS;
//   TopExp::MapShapesAndAncestors(aShape, TopAbs_VERTEX, TopAbs_EDGE, MS);

  // 1.2 - first face is choosen as face Y=0 of the unit cube

  const TopoDS_Shape & aFace = meshFaces[0]->GetSubShape();
  //const TopoDS_Face & F = TopoDS::Face(aFace);

  // 1.3 - identify the 4 vertices of the face Y=0: V000, V100, V101, V001

  aCube.V000 = aQuads[0]->side[0]->FirstVertex(); // will be (0,0,0) on the unit cube
  aCube.V100 = aQuads[0]->side[0]->LastVertex();  // will be (1,0,0) on the unit cube
  aCube.V001 = aQuads[0]->side[2]->FirstVertex(); // will be (0,0,1) on the unit cube
  aCube.V101 = aQuads[0]->side[2]->LastVertex();  // will be (1,0,1) on the unit cube

  TopTools_IndexedMapOfShape MV0;
  TopExp::MapShapes(aFace, TopAbs_VERTEX, MV0);

  aCube.V010 = OppositeVertex( aCube.V000, MV0, aQuads);
  aCube.V110 = OppositeVertex( aCube.V100, MV0, aQuads);
  aCube.V011 = OppositeVertex( aCube.V001, MV0, aQuads);
  aCube.V111 = OppositeVertex( aCube.V101, MV0, aQuads);

  // 1.6 - find remaining faces given 4 vertices

  int _indY0 = 0;
  int _indY1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V010, aCube.V011, aCube.V110, aCube.V111);
  int _indZ0 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V000, aCube.V010, aCube.V100, aCube.V110);
  int _indZ1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V001, aCube.V011, aCube.V101, aCube.V111);
  int _indX0 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V000, aCube.V001, aCube.V010, aCube.V011);
  int _indX1 = GetFaceIndex(aMesh, aShape, meshFaces,
                            aCube.V100, aCube.V101, aCube.V110, aCube.V111);

  // IPAL21120: SIGSEGV on Meshing attached Compound with Automatic Hexadralization
  if ( _indY1 < 1 || _indZ0 < 1 || _indZ1 < 1 || _indX0 < 1 || _indX1 < 1 )
    return error(COMPERR_BAD_SHAPE);

  aCube.quad_Y0 = aQuads[_indY0];
  aCube.quad_Y1 = aQuads[_indY1];
  aCube.quad_Z0 = aQuads[_indZ0];
  aCube.quad_Z1 = aQuads[_indZ1];
  aCube.quad_X0 = aQuads[_indX0];
  aCube.quad_X1 = aQuads[_indX1];

  // 1.7 - get convertion coefs from face 2D normalized to 3D normalized

  Conv2DStruct cx0;                     // for face X=0
  Conv2DStruct cx1;                     // for face X=1
  Conv2DStruct cy0;
  Conv2DStruct cy1;
  Conv2DStruct cz0;
  Conv2DStruct cz1;

  GetConv2DCoefs(*aCube.quad_X0, meshFaces[_indX0]->GetSubShape(),
                 aCube.V000, aCube.V010, aCube.V011, aCube.V001, cx0);
  GetConv2DCoefs(*aCube.quad_X1, meshFaces[_indX1]->GetSubShape(),
                 aCube.V100, aCube.V110, aCube.V111, aCube.V101, cx1);
  GetConv2DCoefs(*aCube.quad_Y0, meshFaces[_indY0]->GetSubShape(),
                 aCube.V000, aCube.V100, aCube.V101, aCube.V001, cy0);
  GetConv2DCoefs(*aCube.quad_Y1, meshFaces[_indY1]->GetSubShape(),
                 aCube.V010, aCube.V110, aCube.V111, aCube.V011, cy1);
  GetConv2DCoefs(*aCube.quad_Z0, meshFaces[_indZ0]->GetSubShape(),
                 aCube.V000, aCube.V100, aCube.V110, aCube.V010, cz0);
  GetConv2DCoefs(*aCube.quad_Z1, meshFaces[_indZ1]->GetSubShape(),
                 aCube.V001, aCube.V101, aCube.V111, aCube.V011, cz1);

  // 1.8 - create a 3D structure for normalized values
  
  int nbx = aCube.quad_Z0->side[0]->NbPoints();
  if (cz0.a1 == 0.) nbx = aCube.quad_Z0->side[1]->NbPoints();
 
  int nby = aCube.quad_X0->side[0]->NbPoints();
  if (cx0.a1 == 0.) nby = aCube.quad_X0->side[1]->NbPoints();
 
  int nbz = aCube.quad_Y0->side[0]->NbPoints();
  if (cy0.a1 != 0.) nbz = aCube.quad_Y0->side[1]->NbPoints();

  int i1, j1, nbxyz = nbx * nby * nbz;
  Point3DStruct *np = new Point3DStruct[nbxyz];

  // 1.9 - store node indexes of faces

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX0]->GetSubShape());

    faceQuadStruct *quad = aCube.quad_X0;
    int i = 0;                          // j = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();
                        
    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int j = cx0.ia * i1 + cx0.ib * j1 + cx0.ic;     // j = x/face
        int k = cx0.ja * i1 + cx0.jb * j1 + cx0.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indX1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_X1;
    int i = nbx - 1;            // j = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int j = cx1.ia * i1 + cx1.ib * j1 + cx1.ic;     // j = x/face
        int k = cx1.ja * i1 + cx1.jb * j1 + cx1.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY0]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Y0;
    int j = 0;                          // i = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cy0.ia * i1 + cy0.ib * j1 + cy0.ic;     // i = x/face
        int k = cy0.ja * i1 + cy0.jb * j1 + cy0.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indY1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Y1;
    int j = nby - 1;            // i = x/face , k = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cy1.ia * i1 + cy1.ib * j1 + cy1.ic;     // i = x/face
        int k = cy1.ja * i1 + cy1.jb * j1 + cy1.jc;     // k = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ0]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Z0;
    int k = 0;                          // i = x/face , j = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();

    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cz0.ia * i1 + cz0.ib * j1 + cz0.ic;     // i = x/face
        int j = cz0.ja * i1 + cz0.jb * j1 + cz0.jc;     // j = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  {
    const TopoDS_Face & F = TopoDS::Face(meshFaces[_indZ1]->GetSubShape());

    SMDS_NodeIteratorPtr itf= aMesh.GetSubMesh(F)->GetSubMeshDS()->GetNodes();

    faceQuadStruct *quad = aCube.quad_Z1;
    int k = nbz - 1;            // i = x/face , j = y/face
    int nbdown = quad->side[0]->NbPoints();
    int nbright = quad->side[1]->NbPoints();
    
    while(itf->more()) {
      const SMDS_MeshNode * node = itf->next();
      if(aTool.IsMedium(node))
        continue;
      if ( !findIJ( node, quad, i1, j1 ))
        return ClearAndReturn( aQuads, false );
      int ij1 = j1 * nbdown + i1;
      quad->uv_grid[ij1].node = node;
    }

    for (int i1 = 0; i1 < nbdown; i1++)
      for (int j1 = 0; j1 < nbright; j1++) {
        int ij1 = j1 * nbdown + i1;
        int i = cz1.ia * i1 + cz1.ib * j1 + cz1.ic;     // i = x/face
        int j = cz1.ja * i1 + cz1.jb * j1 + cz1.jc;     // j = y/face
        int ijk = k * nbx * nby + j * nbx + i;
        //MESSAGE(" "<<ij1<<" "<<i<<" "<<j<<" "<<ijk);
        np[ijk].node = quad->uv_grid[ij1].node;
        //SCRUTE(np[ijk].nodeId);
      }
  }

  // 2.0 - for each node of the cube:
  //       - get the 8 points 3D = 8 vertices of the cube
  //       - get the 12 points 3D on the 12 edges of the cube
  //       - get the 6 points 3D on the 6 faces with their ID
  //       - compute the point 3D
  //       - store the point 3D in SMESHDS, store its ID in 3D structure

  int shapeID = meshDS->ShapeToIndex( aShape );

  Pt3 p000, p001, p010, p011, p100, p101, p110, p111;
  Pt3 px00, px01, px10, px11;
  Pt3 p0y0, p0y1, p1y0, p1y1;
  Pt3 p00z, p01z, p10z, p11z;
  Pt3 pxy0, pxy1, px0z, px1z, p0yz, p1yz;

  GetPoint(p000, 0, 0, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p001, 0, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p010, 0, nby - 1, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p011, 0, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p100, nbx - 1, 0, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p101, nbx - 1, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
  GetPoint(p110, nbx - 1, nby - 1, 0, nbx, nby, nbz, np, meshDS);
  GetPoint(p111, nbx - 1, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);

  for (int i = 1; i < nbx - 1; i++) {
    for (int j = 1; j < nby - 1; j++) {
      for (int k = 1; k < nbz - 1; k++) {
        // *** seulement maillage regulier
        // 12 points on edges
        GetPoint(px00, i, 0, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(px01, i, 0, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(px10, i, nby - 1, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(px11, i, nby - 1, nbz - 1, nbx, nby, nbz, np, meshDS);

        GetPoint(p0y0, 0, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(p0y1, 0, j, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(p1y0, nbx - 1, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(p1y1, nbx - 1, j, nbz - 1, nbx, nby, nbz, np, meshDS);

        GetPoint(p00z, 0, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p01z, 0, nby - 1, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p10z, nbx - 1, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p11z, nbx - 1, nby - 1, k, nbx, nby, nbz, np, meshDS);

        // 12 points on faces
        GetPoint(pxy0, i, j, 0, nbx, nby, nbz, np, meshDS);
        GetPoint(pxy1, i, j, nbz - 1, nbx, nby, nbz, np, meshDS);
        GetPoint(px0z, i, 0, k, nbx, nby, nbz, np, meshDS);
        GetPoint(px1z, i, nby - 1, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p0yz, 0, j, k, nbx, nby, nbz, np, meshDS);
        GetPoint(p1yz, nbx - 1, j, k, nbx, nby, nbz, np, meshDS);

        int ijk = k * nbx * nby + j * nbx + i;
        double x = double (i) / double (nbx - 1);       // *** seulement
        double y = double (j) / double (nby - 1);       // *** maillage
        double z = double (k) / double (nbz - 1);       // *** regulier

        Pt3 X;
        for (int i = 0; i < 3; i++) {
          X[i] = (1 - x) * p0yz[i] + x * p1yz[i]
                 + (1 - y) * px0z[i] + y * px1z[i]
                 + (1 - z) * pxy0[i] + z * pxy1[i]
                 - (1 - x) * ((1 - y) * p00z[i] + y * p01z[i])
                 - x * ((1 - y) * p10z[i] + y * p11z[i])
                 - (1 - y) * ((1 - z) * px00[i] + z * px01[i])
                 - y * ((1 - z) * px10[i] + z * px11[i])
                 - (1 - z) * ((1 - x) * p0y0[i] + x * p1y0[i])
                 - z * ((1 - x) * p0y1[i] + x * p1y1[i])
                 + (1 - x) * ((1 - y) * ((1 - z) * p000[i] + z * p001[i])
                 + y * ((1 - z) * p010[i] + z * p011[i]))
                 + x * ((1 - y) * ((1 - z) * p100[i] + z * p101[i])
                 + y * ((1 - z) * p110[i] + z * p111[i]));
        }

        SMDS_MeshNode * node = meshDS->AddNode(X[0], X[1], X[2]);
        np[ijk].node = node;
        meshDS->SetNodeInVolume(node, shapeID);
      }
    }
  }

  // find orientation of furute volumes according to MED convention
  vector< bool > forward( nbx * nby );
  SMDS_VolumeTool vTool;
  for (int i = 0; i < nbx - 1; i++) {
    for (int j = 0; j < nby - 1; j++) {
      int n1 = j * nbx + i;
      int n2 = j * nbx + i + 1;
      int n3 = (j + 1) * nbx + i + 1;
      int n4 = (j + 1) * nbx + i;
      int n5 = nbx * nby + j * nbx + i;
      int n6 = nbx * nby + j * nbx + i + 1;
      int n7 = nbx * nby + (j + 1) * nbx + i + 1;
      int n8 = nbx * nby + (j + 1) * nbx + i;

      SMDS_VolumeOfNodes tmpVol (np[n1].node,np[n2].node,np[n3].node,np[n4].node,
                                 np[n5].node,np[n6].node,np[n7].node,np[n8].node);
      vTool.Set( &tmpVol );
      forward[ n1 ] = vTool.IsForward();
    }
  }

  //2.1 - for each node of the cube (less 3 *1 Faces):
  //      - store hexahedron in SMESHDS
  MESSAGE("Storing hexahedron into the DS");
  for (int i = 0; i < nbx - 1; i++) {
    for (int j = 0; j < nby - 1; j++) {
      bool isForw = forward.at( j * nbx + i );
      for (int k = 0; k < nbz - 1; k++) {
        int n1 = k * nbx * nby + j * nbx + i;
        int n2 = k * nbx * nby + j * nbx + i + 1;
        int n3 = k * nbx * nby + (j + 1) * nbx + i + 1;
        int n4 = k * nbx * nby + (j + 1) * nbx + i;
        int n5 = (k + 1) * nbx * nby + j * nbx + i;
        int n6 = (k + 1) * nbx * nby + j * nbx + i + 1;
        int n7 = (k + 1) * nbx * nby + (j + 1) * nbx + i + 1;
        int n8 = (k + 1) * nbx * nby + (j + 1) * nbx + i;

        SMDS_MeshVolume * elt;
        if ( isForw ) {
          elt = aTool.AddVolume(np[n1].node, np[n2].node,
                                np[n3].node, np[n4].node,
                                np[n5].node, np[n6].node,
                                np[n7].node, np[n8].node);
        }
        else {
          elt = aTool.AddVolume(np[n1].node, np[n4].node,
                                np[n3].node, np[n2].node,
                                np[n5].node, np[n8].node,
                                np[n7].node, np[n6].node);
        }
        
        meshDS->SetMeshElementOnShape(elt, shapeID);
      }
    }
  }
  if ( np ) delete [] np;
  return ClearAndReturn( aQuads, true );
}