/** Returns true if basic block appears to be a function call. If the target address is known and is a single value then it is * stored in the @p target_va argument, otherwise we store the maximum 64-bit address. If the return address for the function * call is known then it is stored in the @p return_va argument, otherwise @p return_va will contain the maximum 64-bit * address. The return address is usually the fall-through address of the basic block. * * Note: Use this function in preference to SgAsmInstruction::is_function_call() because the latter is intended to be used by * the Partitioner before an AST is created and might not be as accurate. */ bool SgAsmBlock::is_function_call(rose_addr_t &target_va, rose_addr_t &return_va) { static const rose_addr_t INVALID_ADDR = (rose_addr_t)(-1); target_va = return_va = INVALID_ADDR;; if (!is_basic_block()) return false; std::vector<SgAsmInstruction*> insns = SageInterface::querySubTree<SgAsmInstruction>(this); assert(!insns.empty()); // basic blocks must have instructions // Check that all the successors point to functions entry addresses (other functions or this block's function). There // might be one edge that points to the fall-through address of this block, and that's ok. SgAsmFunction *func = SageInterface::getEnclosingNode<SgAsmFunction>(this); SgAsmInterpretation *interp = SageInterface::getEnclosingNode<SgAsmInterpretation>(func); std::set<rose_addr_t> callee_vas; if (interp) { const InstructionMap &imap = interp->get_instruction_map(); const SgAsmIntegerValuePtrList &successors = get_successors(); for (SgAsmIntegerValuePtrList::const_iterator si=successors.begin(); si!=successors.end(); ++si) { rose_addr_t successor_va = (*si)->get_absolute_value(); if (SgAsmInstruction *target_insn = imap.get_value_or(successor_va, NULL)) { SgAsmFunction *target_func = SageInterface::getEnclosingNode<SgAsmFunction>(target_insn); if (successor_va==target_func->get_entry_va()) { callee_vas.insert(successor_va); // branches to a function entry point } else if (return_va!=INVALID_ADDR) { target_va = return_va = INVALID_ADDR; return false; // multiple function-local CFG edges that are not this function's entry point } else { return_va = successor_va; // possible return address } } } } // Now for the architecture-dependent determination. This will not update target_va or return_va if they cannot be // determined or are ambiguous; so we must reset them to INVALID_ADDR if we're about to return false. bool retval = insns.front()->is_function_call(insns, &target_va, &return_va); if (!retval) { target_va = return_va = INVALID_ADDR; } else if (INVALID_ADDR==target_va && 1==callee_vas.size()) { target_va = *callee_vas.begin(); } return retval; }
// see base class bool SgAsmX86Instruction::isFunctionCallSlow(const std::vector<SgAsmInstruction*>& insns, rose_addr_t *target, rose_addr_t *return_va) { if (isFunctionCallFast(insns, target, return_va)) return true; // The following stuff works only if we have a relatively complete AST. static const size_t EXECUTION_LIMIT = 10; // max size of basic blocks for expensive analyses if (insns.empty()) return false; SgAsmX86Instruction *last = isSgAsmX86Instruction(insns.back()); if (!last) return false; SgAsmFunction *func = SageInterface::getEnclosingNode<SgAsmFunction>(last); SgAsmInterpretation *interp = SageInterface::getEnclosingNode<SgAsmInterpretation>(func); // Slow method: Emulate the instructions and then look at the EIP and stack. If the EIP points outside the current // function and the top of the stack holds an address of an instruction within the current function, then this must be a // function call. if (interp && insns.size()<=EXECUTION_LIMIT) { using namespace Rose::BinaryAnalysis; using namespace Rose::BinaryAnalysis::InstructionSemantics2; using namespace Rose::BinaryAnalysis::InstructionSemantics2::SymbolicSemantics; const InstructionMap &imap = interp->get_instruction_map(); const RegisterDictionary *regdict = RegisterDictionary::dictionary_for_isa(interp); SmtSolverPtr solver = SmtSolver::instance(Rose::CommandLine::genericSwitchArgs.smtSolver); BaseSemantics::RiscOperatorsPtr ops = RiscOperators::instance(regdict, solver); ASSERT_not_null(ops); const RegisterDescriptor SP = regdict->findLargestRegister(x86_regclass_gpr, x86_gpr_sp); DispatcherX86Ptr dispatcher = DispatcherX86::instance(ops, SP.get_nbits()); SValuePtr orig_esp = SValue::promote(ops->readRegister(dispatcher->REG_anySP)); try { for (size_t i=0; i<insns.size(); ++i) dispatcher->processInstruction(insns[i]); } catch (const BaseSemantics::Exception &e) { return false; } // If the next instruction address is concrete but does not point to a function entry point, then this is not a call. SValuePtr eip = SValue::promote(ops->readRegister(dispatcher->REG_anyIP)); if (eip->is_number()) { rose_addr_t target_va = eip->get_number(); SgAsmFunction *target_func = SageInterface::getEnclosingNode<SgAsmFunction>(imap.get_value_or(target_va, NULL)); if (!target_func || target_va!=target_func->get_entry_va()) return false; } // If nothing was pushed onto the stack, then this isn't a function call. const size_t spWidth = dispatcher->REG_anySP.get_nbits(); SValuePtr esp = SValue::promote(ops->readRegister(dispatcher->REG_anySP)); SValuePtr stack_delta = SValue::promote(ops->add(esp, ops->negate(orig_esp))); SValuePtr stack_delta_sign = SValue::promote(ops->extract(stack_delta, spWidth-1, spWidth)); if (stack_delta_sign->is_number() && 0==stack_delta_sign->get_number()) return false; // If the top of the stack does not contain a concrete value or the top of the stack does not point to an instruction // in this basic block's function, then this is not a function call. const size_t ipWidth = dispatcher->REG_anyIP.get_nbits(); SValuePtr top = SValue::promote(ops->readMemory(dispatcher->REG_SS, esp, esp->undefined_(ipWidth), esp->boolean_(true))); if (top->is_number()) { rose_addr_t va = top->get_number(); SgAsmFunction *return_func = SageInterface::getEnclosingNode<SgAsmFunction>(imap.get_value_or(va, NULL)); if (!return_func || return_func!=func) { return false; } } else { return false; } // Since EIP might point to a function entry address and since the top of the stack contains a pointer to an // instruction in this function, we assume that this is a function call. if (target && eip->is_number()) *target = eip->get_number(); if (return_va && top->is_number()) *return_va = top->get_number(); return true; } // Similar to the above method, but works when all we have is the basic block (e.g., this case gets hit quite a bit from // the Partitioner). Returns true if, after executing the basic block, the top of the stack contains the fall-through // address of the basic block. We depend on our caller to figure out if EIP is reasonably a function entry address. if (!interp && insns.size()<=EXECUTION_LIMIT) { using namespace Rose::BinaryAnalysis; using namespace Rose::BinaryAnalysis::InstructionSemantics2; using namespace Rose::BinaryAnalysis::InstructionSemantics2::SymbolicSemantics; SmtSolverPtr solver = SmtSolver::instance(Rose::CommandLine::genericSwitchArgs.smtSolver); SgAsmX86Instruction *x86insn = isSgAsmX86Instruction(insns.front()); ASSERT_not_null(x86insn); #if 1 // [Robb P. Matzke 2015-03-03]: FIXME[Robb P. Matzke 2015-03-03]: not ready yet; x86-64 semantics still under construction if (x86insn->get_addressSize() != x86_insnsize_32) return false; #endif const RegisterDictionary *regdict = registersForInstructionSize(x86insn->get_addressSize()); const RegisterDescriptor SP = regdict->findLargestRegister(x86_regclass_gpr, x86_gpr_sp); BaseSemantics::RiscOperatorsPtr ops = RiscOperators::instance(regdict, solver); DispatcherX86Ptr dispatcher = DispatcherX86::instance(ops, SP.get_nbits()); try { for (size_t i=0; i<insns.size(); ++i) dispatcher->processInstruction(insns[i]); } catch (const BaseSemantics::Exception &e) { return false; } // Look at the top of the stack const size_t ipWidth = dispatcher->REG_anyIP.get_nbits(); SValuePtr top = SValue::promote(ops->readMemory(dispatcher->REG_SS, ops->readRegister(SP), ops->protoval()->undefined_(ipWidth), ops->protoval()->boolean_(true))); if (top->is_number() && top->get_number() == last->get_address()+last->get_size()) { if (target) { SValuePtr eip = SValue::promote(ops->readRegister(dispatcher->REG_anyIP)); if (eip->is_number()) *target = eip->get_number(); } if (return_va) *return_va = top->get_number(); return true; } } return false; }
// see base class; don't modify target_va or return_va if they are not known bool SgAsmM68kInstruction::isFunctionCallSlow(const std::vector<SgAsmInstruction*>& insns, rose_addr_t *target_va, rose_addr_t *return_va) { if (isFunctionCallFast(insns, target_va, return_va)) return true; static const size_t EXECUTION_LIMIT = 25; // max size of basic blocks for expensive analyses if (insns.empty()) return false; SgAsmM68kInstruction *last = isSgAsmM68kInstruction(insns.back()); if (!last) return false; SgAsmFunction *func = SageInterface::getEnclosingNode<SgAsmFunction>(last); SgAsmInterpretation *interp = SageInterface::getEnclosingNode<SgAsmInterpretation>(func); // Slow method: Emulate the instructions and then look at the program counter (PC) and stack (A7). If the PC points // outside the current function and the top of the stack holds an address of an instruction within the current function, // then this must be a function call. if (interp && insns.size()<=EXECUTION_LIMIT) { using namespace Rose::BinaryAnalysis; using namespace Rose::BinaryAnalysis::InstructionSemantics2; using namespace Rose::BinaryAnalysis::InstructionSemantics2::SymbolicSemantics; const InstructionMap &imap = interp->get_instruction_map(); const RegisterDictionary *regdict = RegisterDictionary::dictionary_for_isa(interp); SmtSolverPtr solver = SmtSolver::instance(Rose::CommandLine::genericSwitchArgs.smtSolver); BaseSemantics::RiscOperatorsPtr ops = RiscOperators::instance(regdict, solver); DispatcherM68kPtr dispatcher = DispatcherM68k::instance(ops, 32); SValuePtr orig_sp = SValue::promote(ops->readRegister(dispatcher->REG_A[7])); try { for (size_t i=0; i<insns.size(); ++i) dispatcher->processInstruction(insns[i]); } catch (const BaseSemantics::Exception &e) { return false; } // If the next instruction address is concrete but does not point to a function entry point, then this is not a call. SValuePtr ip = SValue::promote(ops->readRegister(dispatcher->REG_PC)); if (ip->is_number()) { rose_addr_t target_va = ip->get_number(); SgAsmFunction *target_func = SageInterface::getEnclosingNode<SgAsmFunction>(imap.get_value_or(target_va, NULL)); if (!target_func || target_va!=target_func->get_entry_va()) return false; } // If nothing was pushed onto the stack, then this isn't a function call. SValuePtr sp = SValue::promote(ops->readRegister(dispatcher->REG_A[7])); SValuePtr stack_delta = SValue::promote(ops->add(sp, ops->negate(orig_sp))); SValuePtr stack_delta_sign = SValue::promote(ops->extract(stack_delta, 31, 32)); if (stack_delta_sign->is_number() && 0==stack_delta_sign->get_number()) return false; // If the top of the stack does not contain a concrete value or the top of the stack does not point to an instruction // in this basic block's function, then this is not a function call. SValuePtr top = SValue::promote(ops->readMemory(RegisterDescriptor(), sp, sp->undefined_(32), sp->boolean_(true))); if (top->is_number()) { rose_addr_t va = top->get_number(); SgAsmFunction *return_func = SageInterface::getEnclosingNode<SgAsmFunction>(imap.get_value_or(va, NULL)); if (!return_func || return_func!=func) { return false; } } else { return false; } // Since the instruction pointer might point to a function entry address and since the top of the stack contains a // pointer to an instruction in this function, we assume that this is a function call. if (target_va && ip->is_number()) *target_va = ip->get_number(); if (return_va && top->is_number()) *return_va = top->get_number(); return true; } // Similar to the above method, but works when all we have is the basic block (e.g., this case gets hit quite a bit from // the Partitioner). Returns true if, after executing the basic block, the top of the stack contains the fall-through // address of the basic block. We depend on our caller to figure out if the instruction pointer is reasonably a function // entry address. if (!interp && insns.size()<=EXECUTION_LIMIT) { using namespace Rose::BinaryAnalysis; using namespace Rose::BinaryAnalysis::InstructionSemantics2; using namespace Rose::BinaryAnalysis::InstructionSemantics2::SymbolicSemantics; const RegisterDictionary *regdict = RegisterDictionary::dictionary_coldfire_emac(); SmtSolverPtr solver = SmtSolver::instance(Rose::CommandLine::genericSwitchArgs.smtSolver); BaseSemantics::RiscOperatorsPtr ops = RiscOperators::instance(regdict, solver); DispatcherM68kPtr dispatcher = DispatcherM68k::instance(ops, 32); try { for (size_t i=0; i<insns.size(); ++i) dispatcher->processInstruction(insns[i]); } catch (const BaseSemantics::Exception &e) { return false; } // Look at the top of the stack SValuePtr top = SValue::promote(ops->readMemory(RegisterDescriptor(), ops->readRegister(dispatcher->REG_A[7]), ops->protoval()->undefined_(32), ops->protoval()->boolean_(true))); if (top->is_number() && top->get_number() == last->get_address()+last->get_size()) { if (target_va) { SValuePtr ip = SValue::promote(ops->readRegister(dispatcher->REG_PC)); if (ip->is_number()) *target_va = ip->get_number(); } if (return_va) *return_va = top->get_number(); return true; } } return false; }