/// Returns a generated guard statement that checks whether the given lhs and /// rhs expressions are equal. If not equal, the else block for the guard /// returns false. /// \p C The AST context. /// \p lhsExpr The first expression to compare for equality. /// \p rhsExpr The second expression to compare for equality. static GuardStmt *returnIfNotEqualGuard(ASTContext &C, Expr *lhsExpr, Expr *rhsExpr) { SmallVector<StmtConditionElement, 1> conditions; SmallVector<ASTNode, 1> statements; // First, generate the statement for the body of the guard. // return false auto falseExpr = new (C) BooleanLiteralExpr(false, SourceLoc(), /*Implicit*/true); auto returnStmt = new (C) ReturnStmt(SourceLoc(), falseExpr); statements.emplace_back(ASTNode(returnStmt)); // Next, generate the condition being checked. // lhs == rhs auto cmpFuncExpr = new (C) UnresolvedDeclRefExpr( DeclName(C.getIdentifier("==")), DeclRefKind::BinaryOperator, DeclNameLoc()); auto cmpArgsTuple = TupleExpr::create(C, SourceLoc(), { lhsExpr, rhsExpr }, { }, { }, SourceLoc(), /*HasTrailingClosure*/false, /*Implicit*/true); auto cmpExpr = new (C) BinaryExpr(cmpFuncExpr, cmpArgsTuple, /*Implicit*/true); conditions.emplace_back(cmpExpr); // Build and return the complete guard statement. // guard lhs == rhs else { return false } auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc()); return new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conditions), body); }
bool IRTranslator::translateCall(const CallInst &CI) { auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo(); const Function &F = *CI.getCalledFunction(); Intrinsic::ID ID = F.getIntrinsicID(); if (TII && ID == Intrinsic::not_intrinsic) ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(&F)); assert(ID != Intrinsic::not_intrinsic && "FIXME: support real calls"); // Need types (starting with return) & args. SmallVector<LLT, 4> Tys; Tys.emplace_back(*CI.getType()); for (auto &Arg : CI.arg_operands()) Tys.emplace_back(*Arg->getType()); unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(Tys, ID, Res, !CI.doesNotAccessMemory()); for (auto &Arg : CI.arg_operands()) { if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) MIB.addImm(CI->getSExtValue()); else MIB.addUse(getOrCreateVReg(*Arg)); } return true; }
/// Emit column labels for the table in the index. static void emitColumnLabelsForIndex(raw_ostream &OS) { SmallVector<std::string, 4> Columns; Columns.emplace_back(tag("td", "Filename", "column-entry-left")); for (const char *Label : {"Function Coverage", "Instantiation Coverage", "Line Coverage", "Region Coverage"}) Columns.emplace_back(tag("td", Label, "column-entry")); OS << tag("tr", join(Columns.begin(), Columns.end(), "")); }
/// Render a file coverage summary (\p FCS) in a table row. If \p IsTotals is /// false, link the summary to \p SF. void CoveragePrinterHTML::emitFileSummary(raw_ostream &OS, StringRef SF, const FileCoverageSummary &FCS, bool IsTotals) const { SmallVector<std::string, 8> Columns; // Format a coverage triple and add the result to the list of columns. auto AddCoverageTripleToColumn = [&Columns](unsigned Hit, unsigned Total, float Pctg) { std::string S; { raw_string_ostream RSO{S}; if (Total) RSO << format("%*.2f", 7, Pctg) << "% "; else RSO << "- "; RSO << '(' << Hit << '/' << Total << ')'; } const char *CellClass = "column-entry-yellow"; if (Hit == Total) CellClass = "column-entry-green"; else if (Pctg < 80.0) CellClass = "column-entry-red"; Columns.emplace_back(tag("td", tag("pre", S), CellClass)); }; // Simplify the display file path, and wrap it in a link if requested. std::string Filename; if (IsTotals) { Filename = SF; } else { Filename = buildLinkToFile(SF, FCS); } Columns.emplace_back(tag("td", tag("pre", Filename))); AddCoverageTripleToColumn(FCS.FunctionCoverage.getExecuted(), FCS.FunctionCoverage.getNumFunctions(), FCS.FunctionCoverage.getPercentCovered()); if (Opts.ShowInstantiationSummary) AddCoverageTripleToColumn(FCS.InstantiationCoverage.getExecuted(), FCS.InstantiationCoverage.getNumFunctions(), FCS.InstantiationCoverage.getPercentCovered()); AddCoverageTripleToColumn(FCS.LineCoverage.getCovered(), FCS.LineCoverage.getNumLines(), FCS.LineCoverage.getPercentCovered()); if (Opts.ShowRegionSummary) AddCoverageTripleToColumn(FCS.RegionCoverage.getCovered(), FCS.RegionCoverage.getNumRegions(), FCS.RegionCoverage.getPercentCovered()); if (IsTotals) OS << tag("tr", join(Columns.begin(), Columns.end(), ""), "light-row-bold"); else OS << tag("tr", join(Columns.begin(), Columns.end(), ""), "light-row"); }
void InstructionTables::run() { ArrayRef<uint64_t> Masks = IB.getProcResourceMasks(); SmallVector<std::pair<ResourceRef, double>, 4> UsedResources; // Create an instruction descriptor for every instruction in the sequence. while (S.hasNext()) { UsedResources.clear(); SourceRef SR = S.peekNext(); std::unique_ptr<Instruction> Inst = IB.createInstruction(*SR.second); const InstrDesc &Desc = Inst->getDesc(); // Now identify the resources consumed by this instruction. for (const std::pair<uint64_t, ResourceUsage> Resource : Desc.Resources) { // Skip zero-cycle resources (i.e. unused resources). if (!Resource.second.size()) continue; double Cycles = static_cast<double>(Resource.second.size()); unsigned Index = std::distance(Masks.begin(), std::find(Masks.begin(), Masks.end(), Resource.first)); const MCProcResourceDesc &ProcResource = *SM.getProcResource(Index); unsigned NumUnits = ProcResource.NumUnits; if (!ProcResource.SubUnitsIdxBegin) { // The number of cycles consumed by each unit. Cycles /= NumUnits; for (unsigned I = 0, E = NumUnits; I < E; ++I) { ResourceRef ResourceUnit = std::make_pair(Index, 1U << I); UsedResources.emplace_back(std::make_pair(ResourceUnit, Cycles)); } continue; } // This is a group. Obtain the set of resources contained in this // group. Some of these resources may implement multiple units. // Uniformly distribute Cycles across all of the units. for (unsigned I1 = 0; I1 < NumUnits; ++I1) { unsigned SubUnitIdx = ProcResource.SubUnitsIdxBegin[I1]; const MCProcResourceDesc &SubUnit = *SM.getProcResource(SubUnitIdx); // Compute the number of cycles consumed by each resource unit. double RUCycles = Cycles / (NumUnits * SubUnit.NumUnits); for (unsigned I2 = 0, E2 = SubUnit.NumUnits; I2 < E2; ++I2) { ResourceRef ResourceUnit = std::make_pair(SubUnitIdx, 1U << I2); UsedResources.emplace_back(std::make_pair(ResourceUnit, RUCycles)); } } } // Now send a fake instruction issued event to all the views. InstRef IR(SR.first, Inst.get()); HWInstructionIssuedEvent Event(IR, UsedResources); for (std::unique_ptr<View> &Listener : Views) Listener->onInstructionEvent(Event); S.updateNext(); } }
/// Render a file coverage summary (\p FCS) in a table row. If \p IsTotals is /// false, link the summary to \p SF. void CoveragePrinterHTML::emitFileSummary(raw_ostream &OS, StringRef SF, const FileCoverageSummary &FCS, bool IsTotals) const { SmallVector<std::string, 8> Columns; // Format a coverage triple and add the result to the list of columns. auto AddCoverageTripleToColumn = [&Columns](unsigned Hit, unsigned Total, float Pctg) { std::string S; { raw_string_ostream RSO{S}; if (Total) RSO << format("%*.2f", 7, Pctg) << "% "; else RSO << "- "; RSO << '(' << Hit << '/' << Total << ')'; } const char *CellClass = "column-entry-yellow"; if (Hit == Total) CellClass = "column-entry-green"; else if (Pctg < 80.0) CellClass = "column-entry-red"; Columns.emplace_back(tag("td", tag("pre", S), CellClass)); }; // Simplify the display file path, and wrap it in a link if requested. std::string Filename; if (IsTotals) { Filename = "TOTALS"; } else { SmallString<128> LinkTextStr(sys::path::relative_path(FCS.Name)); sys::path::remove_dots(LinkTextStr, /*remove_dot_dots=*/true); sys::path::native(LinkTextStr); std::string LinkText = escape(LinkTextStr, Opts); std::string LinkTarget = escape(getOutputPath(SF, "html", /*InToplevel=*/false), Opts); Filename = a(LinkTarget, LinkText); } Columns.emplace_back(tag("td", tag("pre", Filename))); AddCoverageTripleToColumn(FCS.FunctionCoverage.Executed, FCS.FunctionCoverage.NumFunctions, FCS.FunctionCoverage.getPercentCovered()); AddCoverageTripleToColumn(FCS.InstantiationCoverage.Executed, FCS.InstantiationCoverage.NumFunctions, FCS.InstantiationCoverage.getPercentCovered()); AddCoverageTripleToColumn(FCS.LineCoverage.Covered, FCS.LineCoverage.NumLines, FCS.LineCoverage.getPercentCovered()); AddCoverageTripleToColumn(FCS.RegionCoverage.Covered, FCS.RegionCoverage.NumRegions, FCS.RegionCoverage.getPercentCovered()); OS << tag("tr", join(Columns.begin(), Columns.end(), ""), "light-row"); }
TEST(FileSpecificDiagnosticConsumer, ErrorsInUnaffiliatedFilesGoToEveryConsumer) { SourceManager sourceMgr; // 01234 unsigned bufferA = sourceMgr.addMemBufferCopy("abcde", "A"); unsigned bufferB = sourceMgr.addMemBufferCopy("vwxyz", "B"); SourceLoc frontOfA = sourceMgr.getLocForOffset(bufferA, 0); SourceLoc middleOfA = sourceMgr.getLocForOffset(bufferA, 2); SourceLoc backOfA = sourceMgr.getLocForOffset(bufferA, 4); SourceLoc frontOfB = sourceMgr.getLocForOffset(bufferB, 0); SourceLoc middleOfB = sourceMgr.getLocForOffset(bufferB, 2); SourceLoc backOfB = sourceMgr.getLocForOffset(bufferB, 4); ExpectedDiagnostic expectedA[] = { {frontOfA, "front"}, {frontOfB, "front"}, {middleOfA, "middle"}, {middleOfB, "middle"}, {backOfA, "back"}, {backOfB, "back"} }; ExpectedDiagnostic expectedUnaffiliated[] = { {frontOfB, "front"}, {middleOfB, "middle"}, {backOfB, "back"} }; auto consumerA = llvm::make_unique<ExpectationDiagnosticConsumer>( nullptr, expectedA); auto consumerUnaffiliated = llvm::make_unique<ExpectationDiagnosticConsumer>( consumerA.get(), expectedUnaffiliated); SmallVector<FileSpecificDiagnosticConsumer::Subconsumer, 2> consumers; consumers.emplace_back("A", std::move(consumerA)); consumers.emplace_back("", std::move(consumerUnaffiliated)); auto topConsumer = FileSpecificDiagnosticConsumer::consolidateSubconsumers(consumers); topConsumer->handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Error, "front", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfB, DiagnosticKind::Error, "front", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, middleOfA, DiagnosticKind::Error, "middle", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, middleOfB, DiagnosticKind::Error, "middle", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, backOfA, DiagnosticKind::Error, "back", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, backOfB, DiagnosticKind::Error, "back", {}, DiagnosticInfo(), SourceLoc()); topConsumer->finishProcessing(); }
/// Emit column labels for the table in the index. static void emitColumnLabelsForIndex(raw_ostream &OS, const CoverageViewOptions &Opts) { SmallVector<std::string, 4> Columns; Columns.emplace_back(tag("td", "Filename", "column-entry-left")); Columns.emplace_back(tag("td", "Function Coverage", "column-entry")); if (Opts.ShowInstantiationSummary) Columns.emplace_back(tag("td", "Instantiation Coverage", "column-entry")); Columns.emplace_back(tag("td", "Line Coverage", "column-entry")); if (Opts.ShowRegionSummary) Columns.emplace_back(tag("td", "Region Coverage", "column-entry")); OS << tag("tr", join(Columns.begin(), Columns.end(), "")); }
TEST(FileSpecificDiagnosticConsumer, NotesWithInvalidLocsAreStillAttachedToErrors) { SourceManager sourceMgr; // 01234 unsigned bufferA = sourceMgr.addMemBufferCopy("abcde", "A"); unsigned bufferB = sourceMgr.addMemBufferCopy("vwxyz", "B"); SourceLoc frontOfA = sourceMgr.getLocForBufferStart(bufferA); SourceLoc frontOfB = sourceMgr.getLocForBufferStart(bufferB); ExpectedDiagnostic expectedA[] = { {frontOfA, "error"}, {SourceLoc(), "note"}, {frontOfB, "error"}, {SourceLoc(), "note"}, {frontOfA, "error"}, {SourceLoc(), "note"}, }; ExpectedDiagnostic expectedUnaffiliated[] = { {frontOfB, "error"}, {SourceLoc(), "note"}, }; auto consumerA = llvm::make_unique<ExpectationDiagnosticConsumer>( nullptr, expectedA); auto consumerUnaffiliated = llvm::make_unique<ExpectationDiagnosticConsumer>( consumerA.get(), expectedUnaffiliated); SmallVector<FileSpecificDiagnosticConsumer::Subconsumer, 2> consumers; consumers.emplace_back("A", std::move(consumerA)); consumers.emplace_back("", std::move(consumerUnaffiliated)); auto topConsumer = FileSpecificDiagnosticConsumer::consolidateSubconsumers(consumers); topConsumer->handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Error, "error", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, SourceLoc(), DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfB, DiagnosticKind::Error, "error", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, SourceLoc(), DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Error, "error", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, SourceLoc(), DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->finishProcessing(); }
/// Hack to deal with the fact that Sema/CodeSynthesis.cpp creates ParamDecls /// containing contextual types. Type ParameterList::getInterfaceType(DeclContext *DC) const { auto &C = DC->getASTContext(); if (size() == 0) return TupleType::getEmpty(C); SmallVector<TupleTypeElt, 8> argumentInfo; for (auto P : *this) { assert(P->hasType()); Type type; if (P->hasInterfaceType()) type = P->getInterfaceType(); else if (!P->getTypeLoc().hasLocation()) type = ArchetypeBuilder::mapTypeOutOfContext(DC, P->getType()); else type = P->getType(); assert(!type->hasArchetype()); argumentInfo.emplace_back( type, P->getArgumentName(), ParameterTypeFlags::fromParameterType(type, P->isVariadic())); } return TupleType::get(argumentInfo, C); }
TEST(FileSpecificDiagnosticConsumer, NotesAreAttachedToErrorsEvenAcrossFiles) { SourceManager sourceMgr; // 01234 unsigned bufferA = sourceMgr.addMemBufferCopy("abcde", "A"); unsigned bufferB = sourceMgr.addMemBufferCopy("vwxyz", "B"); SourceLoc frontOfA = sourceMgr.getLocForOffset(bufferA, 0); SourceLoc middleOfA = sourceMgr.getLocForOffset(bufferA, 2); SourceLoc backOfA = sourceMgr.getLocForOffset(bufferA, 4); SourceLoc frontOfB = sourceMgr.getLocForOffset(bufferB, 0); SourceLoc middleOfB = sourceMgr.getLocForOffset(bufferB, 2); SourceLoc backOfB = sourceMgr.getLocForOffset(bufferB, 4); ExpectedDiagnostic expectedA[] = { {frontOfA, "error"}, {middleOfB, "note"}, {backOfA, "note"}, {frontOfA, "error"}, {middleOfB, "note"}, {backOfA, "note"}, }; ExpectedDiagnostic expectedB[] = { {frontOfB, "error"}, {middleOfA, "note"}, {backOfB, "note"}, }; auto consumerA = llvm::make_unique<ExpectationDiagnosticConsumer>( nullptr, expectedA); auto consumerB = llvm::make_unique<ExpectationDiagnosticConsumer>( consumerA.get(), expectedB); SmallVector<FileSpecificDiagnosticConsumer::Subconsumer, 2> consumers; consumers.emplace_back("A", std::move(consumerA)); consumers.emplace_back("B", std::move(consumerB)); auto topConsumer = FileSpecificDiagnosticConsumer::consolidateSubconsumers(consumers); topConsumer->handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Error, "error", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, middleOfB, DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, backOfA, DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfB, DiagnosticKind::Error, "error", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, middleOfA, DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, backOfB, DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Error, "error", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, middleOfB, DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, backOfA, DiagnosticKind::Note, "note", {}, DiagnosticInfo(), SourceLoc()); topConsumer->finishProcessing(); }
TEST(FileSpecificDiagnosticConsumer, SubConsumersFinishInOrder) { SourceManager sourceMgr; (void)sourceMgr.addMemBufferCopy("abcde", "A"); (void)sourceMgr.addMemBufferCopy("vwxyz", "B"); auto consumerA = llvm::make_unique<ExpectationDiagnosticConsumer>( nullptr, None); auto consumerUnaffiliated = llvm::make_unique<ExpectationDiagnosticConsumer>( consumerA.get(), None); SmallVector<FileSpecificDiagnosticConsumer::ConsumerPair, 2> consumers; consumers.emplace_back("A", std::move(consumerA)); consumers.emplace_back("", std::move(consumerUnaffiliated)); FileSpecificDiagnosticConsumer topConsumer(consumers); topConsumer.finishProcessing(); }
static SmallVector<StringRef, 2> getNames(const DWARFDie &DIE, bool IncludeLinkageName = true) { SmallVector<StringRef, 2> Result; if (const char *Str = DIE.getName(DINameKind::ShortName)) Result.emplace_back(Str); else if (DIE.getTag() == dwarf::DW_TAG_namespace) Result.emplace_back("(anonymous namespace)"); if (IncludeLinkageName) { if (const char *Str = DIE.getName(DINameKind::LinkageName)) { if (Result.empty() || Result[0] != Str) Result.emplace_back(Str); } } return Result; }
// For WinEH exception representation backend need to know what funclet coro.end // belongs to. That information is passed in a funclet bundle. static SmallVector<llvm::OperandBundleDef, 1> getBundlesForCoroEnd(CodeGenFunction &CGF) { SmallVector<llvm::OperandBundleDef, 1> BundleList; if (llvm::Instruction *EHPad = CGF.CurrentFuncletPad) BundleList.emplace_back("funclet", EHPad); return BundleList; }
TEST(FileSpecificDiagnosticConsumer, InvalidLocDiagsGoToEveryConsumer) { SourceManager sourceMgr; (void)sourceMgr.addMemBufferCopy("abcde", "A"); (void)sourceMgr.addMemBufferCopy("vwxyz", "B"); ExpectedDiagnostic expected[] = { {SourceLoc(), "dummy"} }; auto consumerA = llvm::make_unique<ExpectationDiagnosticConsumer>( nullptr, expected); auto consumerUnaffiliated = llvm::make_unique<ExpectationDiagnosticConsumer>( consumerA.get(), expected); SmallVector<FileSpecificDiagnosticConsumer::ConsumerPair, 2> consumers; consumers.emplace_back("A", std::move(consumerA)); consumers.emplace_back("", std::move(consumerUnaffiliated)); FileSpecificDiagnosticConsumer topConsumer(consumers); topConsumer.handleDiagnostic(sourceMgr, SourceLoc(), DiagnosticKind::Error, "dummy", {}, DiagnosticInfo()); topConsumer.finishProcessing(); }
bool HandleBinding(StoreManager &SMgr, Store S, const MemRegion *Region, SVal Val) override { if (!isa<GlobalsSpaceRegion>(Region->getMemorySpace())) return true; const MemRegion *VR = Val.getAsRegion(); if (VR && isa<StackSpaceRegion>(VR->getMemorySpace()) && !isArcManagedBlock(VR, Ctx) && !isNotInCurrentFrame(VR, Ctx)) V.emplace_back(Region, VR); return true; }
TEST(FileSpecificDiagnosticConsumer, WarningsAndRemarksAreTreatedLikeErrors) { SourceManager sourceMgr; // 01234 unsigned bufferA = sourceMgr.addMemBufferCopy("abcde", "A"); unsigned bufferB = sourceMgr.addMemBufferCopy("vwxyz", "B"); SourceLoc frontOfA = sourceMgr.getLocForBufferStart(bufferA); SourceLoc frontOfB = sourceMgr.getLocForBufferStart(bufferB); ExpectedDiagnostic expectedA[] = { {frontOfA, "warning"}, {frontOfB, "warning"}, {frontOfA, "remark"}, {frontOfB, "remark"}, }; ExpectedDiagnostic expectedUnaffiliated[] = { {frontOfB, "warning"}, {frontOfB, "remark"}, }; auto consumerA = llvm::make_unique<ExpectationDiagnosticConsumer>( nullptr, expectedA); auto consumerUnaffiliated = llvm::make_unique<ExpectationDiagnosticConsumer>( consumerA.get(), expectedUnaffiliated); SmallVector<FileSpecificDiagnosticConsumer::Subconsumer, 2> consumers; consumers.emplace_back("A", std::move(consumerA)); consumers.emplace_back("", std::move(consumerUnaffiliated)); auto topConsumer = FileSpecificDiagnosticConsumer::consolidateSubconsumers(consumers); topConsumer->handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Warning, "warning", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfB, DiagnosticKind::Warning, "warning", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Remark, "remark", {}, DiagnosticInfo(), SourceLoc()); topConsumer->handleDiagnostic(sourceMgr, frontOfB, DiagnosticKind::Remark, "remark", {}, DiagnosticInfo(), SourceLoc()); topConsumer->finishProcessing(); }
bool IRTranslator::translateInvoke(const User &U) { const InvokeInst &I = cast<InvokeInst>(U); MachineFunction &MF = MIRBuilder.getMF(); MachineModuleInfo &MMI = MF.getMMI(); const BasicBlock *ReturnBB = I.getSuccessor(0); const BasicBlock *EHPadBB = I.getSuccessor(1); const Value *Callee(I.getCalledValue()); const Function *Fn = dyn_cast<Function>(Callee); if (isa<InlineAsm>(Callee)) return false; // FIXME: support invoking patchpoint and statepoint intrinsics. if (Fn && Fn->isIntrinsic()) return false; // FIXME: support whatever these are. if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) return false; // FIXME: support Windows exception handling. if (!isa<LandingPadInst>(EHPadBB->front())) return false; // Emit the actual call, bracketed by EH_LABELs so that the MMI knows about // the region covered by the try. MCSymbol *BeginSymbol = MMI.getContext().createTempSymbol(); MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); SmallVector<CallLowering::ArgInfo, 8> Args; for (auto &Arg: I.arg_operands()) Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); if (!CLI->lowerCall(MIRBuilder, MachineOperand::CreateGA(Fn, 0), CallLowering::ArgInfo(Res, I.getType()), Args)) return false; MCSymbol *EndSymbol = MMI.getContext().createTempSymbol(); MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); // FIXME: track probabilities. MachineBasicBlock &EHPadMBB = getOrCreateBB(*EHPadBB), &ReturnMBB = getOrCreateBB(*ReturnBB); MMI.addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); MIRBuilder.getMBB().addSuccessor(&ReturnMBB); MIRBuilder.getMBB().addSuccessor(&EHPadMBB); return true; }
TEST(FileSpecificDiagnosticConsumer, ErrorsWithLocationsGoToExpectedConsumers) { SourceManager sourceMgr; // 01234 unsigned bufferA = sourceMgr.addMemBufferCopy("abcde", "A"); unsigned bufferB = sourceMgr.addMemBufferCopy("vwxyz", "B"); SourceLoc frontOfA = sourceMgr.getLocForOffset(bufferA, 0); SourceLoc middleOfA = sourceMgr.getLocForOffset(bufferA, 2); SourceLoc backOfA = sourceMgr.getLocForOffset(bufferA, 4); SourceLoc frontOfB = sourceMgr.getLocForOffset(bufferB, 0); SourceLoc middleOfB = sourceMgr.getLocForOffset(bufferB, 2); SourceLoc backOfB = sourceMgr.getLocForOffset(bufferB, 4); ExpectedDiagnostic expectedA[] = { {frontOfA, "front"}, {middleOfA, "middle"}, {backOfA, "back"}, }; ExpectedDiagnostic expectedB[] = { {frontOfB, "front"}, {middleOfB, "middle"}, {backOfB, "back"} }; auto consumerA = llvm::make_unique<ExpectationDiagnosticConsumer>( nullptr, expectedA); auto consumerB = llvm::make_unique<ExpectationDiagnosticConsumer>( consumerA.get(), expectedB); SmallVector<FileSpecificDiagnosticConsumer::ConsumerPair, 2> consumers; consumers.emplace_back("A", std::move(consumerA)); consumers.emplace_back("B", std::move(consumerB)); FileSpecificDiagnosticConsumer topConsumer(consumers); topConsumer.handleDiagnostic(sourceMgr, frontOfA, DiagnosticKind::Error, "front", {}, DiagnosticInfo()); topConsumer.handleDiagnostic(sourceMgr, frontOfB, DiagnosticKind::Error, "front", {}, DiagnosticInfo()); topConsumer.handleDiagnostic(sourceMgr, middleOfA, DiagnosticKind::Error, "middle", {}, DiagnosticInfo()); topConsumer.handleDiagnostic(sourceMgr, middleOfB, DiagnosticKind::Error, "middle", {}, DiagnosticInfo()); topConsumer.handleDiagnostic(sourceMgr, backOfA, DiagnosticKind::Error, "back", {}, DiagnosticInfo()); topConsumer.handleDiagnostic(sourceMgr, backOfB, DiagnosticKind::Error, "back", {}, DiagnosticInfo()); topConsumer.finishProcessing(); }
/// Create a call instruction with the correct funclet token. Should be used /// instead of calling CallInst::Create directly. static CallInst * createCallInst(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, Instruction *InsertBefore, const DenseMap<BasicBlock *, ColorVector> &BlockColors) { SmallVector<OperandBundleDef, 1> OpBundles; if (!BlockColors.empty()) { const ColorVector &CV = BlockColors.find(InsertBefore->getParent())->second; assert(CV.size() == 1 && "non-unique color for block!"); Instruction *EHPad = CV.front()->getFirstNonPHI(); if (EHPad->isEHPad()) OpBundles.emplace_back("funclet", EHPad); } return CallInst::Create(FTy, Func, Args, OpBundles, NameStr, InsertBefore); }
/// Return a TupleType or ParenType for this parameter list. This returns a /// null type if one of the ParamDecls does not have a type set for it yet. Type ParameterList::getType(const ASTContext &C) const { if (size() == 0) return TupleType::getEmpty(C); SmallVector<TupleTypeElt, 8> argumentInfo; for (auto P : *this) { if (!P->hasType()) return Type(); argumentInfo.emplace_back( P->getType(), P->getArgumentName(), ParameterTypeFlags::fromParameterType(P->getType(), P->isVariadic())); } return TupleType::get(argumentInfo, C); }
bool DispatchStage::checkPRF(const InstRef &IR) { SmallVector<unsigned, 4> RegDefs; for (const std::unique_ptr<WriteState> &RegDef : IR.getInstruction()->getDefs()) RegDefs.emplace_back(RegDef->getRegisterID()); const unsigned RegisterMask = PRF.isAvailable(RegDefs); // A mask with all zeroes means: register files are available. if (RegisterMask) { notifyEvent<HWStallEvent>( HWStallEvent(HWStallEvent::RegisterFileStall, IR)); return false; } return true; }
/// Derive the body for an '==' operator for a struct. static void deriveBodyEquatable_struct_eq(AbstractFunctionDecl *eqDecl) { auto parentDC = eqDecl->getDeclContext(); ASTContext &C = parentDC->getASTContext(); auto args = eqDecl->getParameters(); auto aParam = args->get(0); auto bParam = args->get(1); auto structDecl = cast<StructDecl>(aParam->getType()->getAnyNominal()); SmallVector<ASTNode, 6> statements; auto storedProperties = structDecl->getStoredProperties(/*skipInaccessible=*/true); // For each stored property element, generate a guard statement that returns // false if a property is not pairwise-equal. for (auto propertyDecl : storedProperties) { auto aPropertyRef = new (C) DeclRefExpr(propertyDecl, DeclNameLoc(), /*implicit*/ true); auto aParamRef = new (C) DeclRefExpr(aParam, DeclNameLoc(), /*implicit*/ true); auto aPropertyExpr = new (C) DotSyntaxCallExpr(aPropertyRef, SourceLoc(), aParamRef); auto bPropertyRef = new (C) DeclRefExpr(propertyDecl, DeclNameLoc(), /*implicit*/ true); auto bParamRef = new (C) DeclRefExpr(bParam, DeclNameLoc(), /*implicit*/ true); auto bPropertyExpr = new (C) DotSyntaxCallExpr(bPropertyRef, SourceLoc(), bParamRef); auto guardStmt = returnIfNotEqualGuard(C, aPropertyExpr, bPropertyExpr); statements.emplace_back(guardStmt); } // If none of the guard statements caused an early exit, then all the pairs // were true. // return true auto trueExpr = new (C) BooleanLiteralExpr(true, SourceLoc(), /*Implicit*/true); auto returnStmt = new (C) ReturnStmt(SourceLoc(), trueExpr); statements.push_back(returnStmt); auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc()); eqDecl->setBody(body); }
bool IRTranslator::translateMemcpy(const CallInst &CI) { LLT SizeTy{*CI.getArgOperand(2)->getType(), *DL}; if (cast<PointerType>(CI.getArgOperand(0)->getType())->getAddressSpace() != 0 || cast<PointerType>(CI.getArgOperand(1)->getType())->getAddressSpace() != 0 || SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) return false; SmallVector<CallLowering::ArgInfo, 8> Args; for (int i = 0; i < 3; ++i) { const auto &Arg = CI.getArgOperand(i); Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); } MachineOperand Callee = MachineOperand::CreateES("memcpy"); return CLI->lowerCall(MIRBuilder, Callee, CallLowering::ArgInfo(0, CI.getType()), Args); }
Type ASTBuilder::createTupleType(ArrayRef<Type> eltTypes, StringRef labels, bool isVariadic) { // Just bail out on variadic tuples for now. if (isVariadic) return Type(); SmallVector<TupleTypeElt, 4> elements; elements.reserve(eltTypes.size()); for (auto eltType : eltTypes) { Identifier label; if (!labels.empty()) { auto split = labels.split(' '); if (!split.first.empty()) label = Ctx.getIdentifier(split.first); labels = split.second; } elements.emplace_back(eltType, label); } return TupleType::get(elements, Ctx); }
/// Derive the body for the 'hash(into:)' method for a struct. static void deriveBodyHashable_struct_hashInto(AbstractFunctionDecl *hashIntoDecl) { // struct SomeStruct { // var x: Int // var y: String // @derived func hash(into hasher: inout Hasher) { // hasher.combine(x) // hasher.combine(y) // } // } auto parentDC = hashIntoDecl->getDeclContext(); ASTContext &C = parentDC->getASTContext(); auto structDecl = parentDC->getAsStructOrStructExtensionContext(); SmallVector<ASTNode, 6> statements; auto selfDecl = hashIntoDecl->getImplicitSelfDecl(); // Extract the decl for the hasher parameter. auto hasherParam = hashIntoDecl->getParameters()->get(0); auto storedProperties = structDecl->getStoredProperties(/*skipInaccessible=*/true); // Feed each stored property into the hasher. for (auto propertyDecl : storedProperties) { auto propertyRef = new (C) DeclRefExpr(propertyDecl, DeclNameLoc(), /*implicit*/ true); auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/ true); auto selfPropertyExpr = new (C) DotSyntaxCallExpr(propertyRef, SourceLoc(), selfRef); // Generate: hasher.combine(self.<property>) auto combineExpr = createHasherCombineCall(C, hasherParam, selfPropertyExpr); statements.emplace_back(ASTNode(combineExpr)); } auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(), /*implicit*/ true); hashIntoDecl->setBody(body); }
void Scope::popPreservingValues(ArrayRef<ManagedValue> innerValues, MutableArrayRef<ManagedValue> outerValues) { auto &SGF = cleanups.SGF; assert(innerValues.size() == outerValues.size()); // Record the cleanup information for each preserved value and deactivate its // cleanup. SmallVector<CleanupCloner, 4> cleanups; cleanups.reserve(innerValues.size()); for (auto &mv : innerValues) { cleanups.emplace_back(SGF, mv); mv.forward(SGF); } // Pop any unpreserved cleanups. pop(); // Create a managed value for each preserved value, cloning its cleanup. // Since the CleanupCloner does not remember its SILValue, grab it from the // original, now-deactivated managed value. for (auto index : indices(innerValues)) { outerValues[index] = cleanups[index].clone(innerValues[index].getValue()); } }
void SourceCoverageViewHTML::renderLine( raw_ostream &OS, LineRef L, const coverage::CoverageSegment *WrappedSegment, CoverageSegmentArray Segments, unsigned ExpansionCol, unsigned) { StringRef Line = L.Line; unsigned LineNo = L.LineNo; // Steps for handling text-escaping, highlighting, and tooltip creation: // // 1. Split the line into N+1 snippets, where N = |Segments|. The first // snippet starts from Col=1 and ends at the start of the first segment. // The last snippet starts at the last mapped column in the line and ends // at the end of the line. Both are required but may be empty. SmallVector<std::string, 8> Snippets; unsigned LCol = 1; auto Snip = [&](unsigned Start, unsigned Len) { Snippets.push_back(Line.substr(Start, Len)); LCol += Len; }; Snip(LCol - 1, Segments.empty() ? 0 : (Segments.front()->Col - 1)); for (unsigned I = 1, E = Segments.size(); I < E; ++I) Snip(LCol - 1, Segments[I]->Col - LCol); // |Line| + 1 is needed to avoid underflow when, e.g |Line| = 0 and LCol = 1. Snip(LCol - 1, Line.size() + 1 - LCol); // 2. Escape all of the snippets. for (unsigned I = 0, E = Snippets.size(); I < E; ++I) Snippets[I] = escape(Snippets[I], getOptions()); // 3. Use \p WrappedSegment to set the highlight for snippet 0. Use segment // 1 to set the highlight for snippet 2, segment 2 to set the highlight for // snippet 3, and so on. Optional<std::string> Color; SmallVector<std::pair<unsigned, unsigned>, 2> HighlightedRanges; auto Highlight = [&](const std::string &Snippet, unsigned LC, unsigned RC) { if (getOptions().Debug) HighlightedRanges.emplace_back(LC, RC); return tag("span", Snippet, Color.getValue()); }; auto CheckIfUncovered = [](const coverage::CoverageSegment *S) { return S && S->HasCount && S->Count == 0; }; if (CheckIfUncovered(WrappedSegment)) { Color = "red"; if (!Snippets[0].empty()) Snippets[0] = Highlight(Snippets[0], 1, 1 + Snippets[0].size()); } for (unsigned I = 0, E = Segments.size(); I < E; ++I) { const auto *CurSeg = Segments[I]; if (CurSeg->Col == ExpansionCol) Color = "cyan"; else if (CheckIfUncovered(CurSeg)) Color = "red"; else Color = None; if (Color.hasValue()) Snippets[I + 1] = Highlight(Snippets[I + 1], CurSeg->Col, CurSeg->Col + Snippets[I + 1].size()); } if (Color.hasValue() && Segments.empty()) Snippets.back() = Highlight(Snippets.back(), 1, 1 + Snippets.back().size()); if (getOptions().Debug) { for (const auto &Range : HighlightedRanges) { errs() << "Highlighted line " << LineNo << ", " << Range.first << " -> "; if (Range.second == 0) errs() << "?"; else errs() << Range.second; errs() << "\n"; } } // 4. Snippets[1:N+1] correspond to \p Segments[0:N]: use these to generate // sub-line region count tooltips if needed. bool HasMultipleRegions = [&] { unsigned RegionCount = 0; for (const auto *S : Segments) if (S->HasCount && S->IsRegionEntry) if (++RegionCount > 1) return true; return false; }(); if (shouldRenderRegionMarkers(HasMultipleRegions)) { for (unsigned I = 0, E = Segments.size(); I < E; ++I) { const auto *CurSeg = Segments[I]; if (!CurSeg->IsRegionEntry || !CurSeg->HasCount) continue; Snippets[I + 1] = tag("div", Snippets[I + 1] + tag("span", formatCount(CurSeg->Count), "tooltip-content"), "tooltip"); } } OS << BeginCodeTD; OS << BeginPre; for (const auto &Snippet : Snippets) OS << Snippet; OS << EndPre; // If there are no sub-views left to attach to this cell, end the cell. // Otherwise, end it after the sub-views are rendered (renderLineSuffix()). if (!hasSubViews()) OS << EndCodeTD; }
/// Derive the body for the 'hash(into:)' method for an enum with associated /// values. static void deriveBodyHashable_enum_hasAssociatedValues_hashInto( AbstractFunctionDecl *hashIntoDecl ) { // enum SomeEnumWithAssociatedValues { // case A, B(Int), C(String, Int) // @derived func hash(into hasher: inout Hasher) { // switch self { // case A: // hasher.combine(0) // case B(let a0): // hasher.combine(1) // hasher.combine(a0) // case C(let a0, let a1): // hasher.combine(2) // hasher.combine(a0) // hasher.combine(a1) // } // } // } auto parentDC = hashIntoDecl->getDeclContext(); ASTContext &C = parentDC->getASTContext(); auto enumDecl = parentDC->getAsEnumOrEnumExtensionContext(); auto selfDecl = hashIntoDecl->getImplicitSelfDecl(); Type enumType = selfDecl->getType(); // Extract the decl for the hasher parameter. auto hasherParam = hashIntoDecl->getParameters()->get(0); unsigned index = 0; SmallVector<ASTNode, 4> cases; // For each enum element, generate a case statement that binds the associated // values so that they can be fed to the hasher. for (auto elt : enumDecl->getAllElements()) { // case .<elt>(let a0, let a1, ...): SmallVector<VarDecl*, 3> payloadVars; SmallVector<ASTNode, 3> statements; auto payloadPattern = enumElementPayloadSubpattern(elt, 'a', hashIntoDecl, payloadVars); auto pat = new (C) EnumElementPattern(TypeLoc::withoutLoc(enumType), SourceLoc(), SourceLoc(), elt->getName(), elt, payloadPattern); pat->setImplicit(); auto labelItem = CaseLabelItem(pat); // If the enum has no associated values, we use the ordinal as the single // hash component, because that is sufficient for a good distribution. If // any case does have associated values, then the ordinal is used as the // first term fed into the hasher. { // Generate: hasher.combine(<ordinal>) auto ordinalExpr = IntegerLiteralExpr::createFromUnsigned(C, index++); auto combineExpr = createHasherCombineCall(C, hasherParam, ordinalExpr); statements.emplace_back(ASTNode(combineExpr)); } // Generate a sequence of statements that feed the payloads into hasher. for (auto payloadVar : payloadVars) { auto payloadVarRef = new (C) DeclRefExpr(payloadVar, DeclNameLoc(), /*implicit*/ true); // Generate: hasher.combine(<payloadVar>) auto combineExpr = createHasherCombineCall(C, hasherParam, payloadVarRef); statements.emplace_back(ASTNode(combineExpr)); } auto hasBoundDecls = !payloadVars.empty(); auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc()); cases.push_back(CaseStmt::create(C, SourceLoc(), labelItem, hasBoundDecls, SourceLoc(), SourceLoc(), body, /*implicit*/ true)); } // generate: switch enumVar { } auto enumRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/true); auto switchStmt = SwitchStmt::create(LabeledStmtInfo(), SourceLoc(), enumRef, SourceLoc(), cases, SourceLoc(), C); auto body = BraceStmt::create(C, SourceLoc(), {ASTNode(switchStmt)}, SourceLoc()); hashIntoDecl->setBody(body); }
/// Derive the body for an '==' operator for an enum where at least one of the /// cases has associated values. static void deriveBodyEquatable_enum_hasAssociatedValues_eq(AbstractFunctionDecl *eqDecl) { auto parentDC = eqDecl->getDeclContext(); ASTContext &C = parentDC->getASTContext(); auto args = eqDecl->getParameters(); auto aParam = args->get(0); auto bParam = args->get(1); Type enumType = aParam->getType(); auto enumDecl = cast<EnumDecl>(aParam->getType()->getAnyNominal()); SmallVector<ASTNode, 6> statements; SmallVector<ASTNode, 4> cases; unsigned elementCount = 0; // For each enum element, generate a case statement matching a pair containing // the same case, binding variables for the left- and right-hand associated // values. for (auto elt : enumDecl->getAllElements()) { elementCount++; // .<elt>(let l0, let l1, ...) SmallVector<VarDecl*, 3> lhsPayloadVars; auto lhsSubpattern = enumElementPayloadSubpattern(elt, 'l', eqDecl, lhsPayloadVars); auto lhsElemPat = new (C) EnumElementPattern(TypeLoc::withoutLoc(enumType), SourceLoc(), SourceLoc(), Identifier(), elt, lhsSubpattern); lhsElemPat->setImplicit(); // .<elt>(let r0, let r1, ...) SmallVector<VarDecl*, 3> rhsPayloadVars; auto rhsSubpattern = enumElementPayloadSubpattern(elt, 'r', eqDecl, rhsPayloadVars); auto rhsElemPat = new (C) EnumElementPattern(TypeLoc::withoutLoc(enumType), SourceLoc(), SourceLoc(), Identifier(), elt, rhsSubpattern); rhsElemPat->setImplicit(); auto hasBoundDecls = !lhsPayloadVars.empty(); // case (.<elt>(let l0, let l1, ...), .<elt>(let r0, let r1, ...)) auto caseTuplePattern = TuplePattern::create(C, SourceLoc(), { TuplePatternElt(lhsElemPat), TuplePatternElt(rhsElemPat) }, SourceLoc()); caseTuplePattern->setImplicit(); auto labelItem = CaseLabelItem(caseTuplePattern); // Generate a guard statement for each associated value in the payload, // breaking out early if any pair is unequal. (This is done to avoid // constructing long lists of autoclosure-wrapped conditions connected by // &&, which the type checker has more difficulty processing.) SmallVector<ASTNode, 6> statementsInCase; for (size_t varIdx = 0; varIdx < lhsPayloadVars.size(); varIdx++) { auto lhsVar = lhsPayloadVars[varIdx]; auto lhsExpr = new (C) DeclRefExpr(lhsVar, DeclNameLoc(), /*implicit*/true); auto rhsVar = rhsPayloadVars[varIdx]; auto rhsExpr = new (C) DeclRefExpr(rhsVar, DeclNameLoc(), /*Implicit*/true); auto guardStmt = returnIfNotEqualGuard(C, lhsExpr, rhsExpr); statementsInCase.emplace_back(guardStmt); } // If none of the guard statements caused an early exit, then all the pairs // were true. // return true auto trueExpr = new (C) BooleanLiteralExpr(true, SourceLoc(), /*Implicit*/true); auto returnStmt = new (C) ReturnStmt(SourceLoc(), trueExpr); statementsInCase.push_back(returnStmt); auto body = BraceStmt::create(C, SourceLoc(), statementsInCase, SourceLoc()); cases.push_back(CaseStmt::create(C, SourceLoc(), labelItem, hasBoundDecls, SourceLoc(), SourceLoc(), body)); } // default: result = false // // We only generate this if the enum has more than one case. If it has exactly // one case, then that single case statement is already exhaustive. if (elementCount > 1) { auto defaultPattern = new (C) AnyPattern(SourceLoc()); defaultPattern->setImplicit(); auto defaultItem = CaseLabelItem::getDefault(defaultPattern); auto falseExpr = new (C) BooleanLiteralExpr(false, SourceLoc(), /*implicit*/ true); auto returnStmt = new (C) ReturnStmt(SourceLoc(), falseExpr); auto body = BraceStmt::create(C, SourceLoc(), ASTNode(returnStmt), SourceLoc()); cases.push_back(CaseStmt::create(C, SourceLoc(), defaultItem, /*HasBoundDecls*/ false, SourceLoc(), SourceLoc(), body)); } // switch (a, b) { <case statements> } auto aRef = new (C) DeclRefExpr(aParam, DeclNameLoc(), /*implicit*/true); auto bRef = new (C) DeclRefExpr(bParam, DeclNameLoc(), /*implicit*/true); auto abExpr = TupleExpr::create(C, SourceLoc(), { aRef, bRef }, {}, {}, SourceLoc(), /*HasTrailingClosure*/ false, /*implicit*/ true); auto switchStmt = SwitchStmt::create(LabeledStmtInfo(), SourceLoc(), abExpr, SourceLoc(), cases, SourceLoc(), C); statements.push_back(switchStmt); auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc()); eqDecl->setBody(body); }