示例#1
0
// Test for and give an error if the node can't be read from.
void TParseContextBase::rValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
    if (! node)
        return;

    TIntermBinary* binaryNode = node->getAsBinaryNode();
    if (binaryNode) {
        switch(binaryNode->getOp()) {
        case EOpIndexDirect:
        case EOpIndexIndirect:
        case EOpIndexDirectStruct:
        case EOpVectorSwizzle:
        case EOpMatrixSwizzle:
            rValueErrorCheck(loc, op, binaryNode->getLeft());
        default:
            break;
        }

        return;
    }

    TIntermSymbol* symNode = node->getAsSymbolNode();
    if (symNode && symNode->getQualifier().writeonly)
        error(loc, "can't read from writeonly object: ", op, symNode->getName().c_str());
}
示例#2
0
// Returns name to be used in generated assembly for a given node
string ARBVar::GetNodeVarName(TIntermTyped* node) {
	TIntermSymbol* symbol = node->getAsSymbolNode();
	if (symbol) {
		return string("symbol_") + symbol->getSymbol().c_str();
	}
	TIntermConstantUnion* cu = node->getAsConstantUnion();
	if (cu) {
		string ret = "";
		if (cu->getBasicType() == EbtFloat) {
			if (cu->getNominalSize() == 1) {
				ret = "const_" + floattostr(cu->getUnionArrayPointer()[0].getFConst());
			} else if (cu->isVector() && cu->getNominalSize() > 1 && cu->getNominalSize() <= 4) {
				ret = "const_vec" + inttostr(cu->getNominalSize());
				for (int i = 0; i < cu->getNominalSize(); ++i) {
					ret += "_" + floattostr(cu->getUnionArrayPointer()[i].getFConst());
				}
			}
		}
		if (ret != "") {
			for (unsigned int i = 0; i < ret.size(); ++i) {
				if (ret[i] == '.') {
					ret[i] = 'x';
				}
			}
			return ret;
		}
	}
	failmsg() << "Unknown node in GetNodeVarName [" << node->getCompleteString() << "]\n";
	return "{unknown node}";
}
示例#3
0
文件: LoopInfo.cpp 项目: RSATom/Qt
void TLoopIndexInfo::fillInfo(TIntermLoop *node)
{
    if (node == NULL)
        return;

    // Here we assume all the operations are valid, because the loop node is
    // already validated in ValidateLimitations.
    TIntermSequence *declSeq =
        node->getInit()->getAsAggregate()->getSequence();
    TIntermBinary *declInit = (*declSeq)[0]->getAsBinaryNode();
    TIntermSymbol *symbol = declInit->getLeft()->getAsSymbolNode();

    mId = symbol->getId();
    mType = symbol->getBasicType();

    if (mType == EbtInt)
    {
        TIntermConstantUnion* initNode = declInit->getRight()->getAsConstantUnion();
        mInitValue = EvaluateIntConstant(initNode);
        mCurrentValue = mInitValue;
        mIncrementValue = GetLoopIntIncrement(node);

        TIntermBinary* binOp = node->getCondition()->getAsBinaryNode();
        mStopValue = EvaluateIntConstant(
            binOp->getRight()->getAsConstantUnion());
        mOp = binOp->getOp();
    }
}
//
// Add a terminal node for an identifier in an expression.
//
// Returns the added node.
//
TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, TSourceLoc line)
{
    TIntermSymbol* node = new TIntermSymbol(id, name, type);
    node->setLine(line);

    return node;
}
示例#5
0
bool ValidateLimitations::validateForLoopCond(TIntermLoop *node,
                                              int indexSymbolId)
{
    TIntermNode *cond = node->getCondition();
    if (cond == NULL)
    {
        error(node->getLine(), "Missing condition", "for");
        return false;
    }
    //
    // condition has the form:
    //     loop_index relational_operator constant_expression
    //
    TIntermBinary *binOp = cond->getAsBinaryNode();
    if (binOp == NULL)
    {
        error(node->getLine(), "Invalid condition", "for");
        return false;
    }
    // Loop index should be to the left of relational operator.
    TIntermSymbol *symbol = binOp->getLeft()->getAsSymbolNode();
    if (symbol == NULL)
    {
        error(binOp->getLine(), "Invalid condition", "for");
        return false;
    }
    if (symbol->getId() != indexSymbolId)
    {
        error(symbol->getLine(),
              "Expected loop index", symbol->getSymbol().c_str());
        return false;
    }
    // Relational operator is one of: > >= < <= == or !=.
    switch (binOp->getOp())
    {
      case EOpEqual:
      case EOpNotEqual:
      case EOpLessThan:
      case EOpGreaterThan:
      case EOpLessThanEqual:
      case EOpGreaterThanEqual:
        break;
      default:
        error(binOp->getLine(),
              "Invalid relational operator",
              GetOperatorString(binOp->getOp()));
        break;
    }
    // Loop index must be compared with a constant.
    if (!isConstExpr(binOp->getRight()))
    {
        error(binOp->getLine(),
              "Loop index cannot be compared with non-constant expression",
              symbol->getSymbol().c_str());
        return false;
    }

    return true;
}
示例#6
0
TIntermDeclaration* ir_grow_declaration(TIntermDeclaration* declaration, TSymbol* symbol, TIntermTyped* initializer, TInfoSink& infoSink)
{
	TVariable* var = static_cast<TVariable*>(symbol);
	TIntermSymbol* sym = ir_add_symbol(var->getUniqueId(), var->getName(), var->getType(), var->getType().getLine());
	sym->setGlobal(symbol->isGlobal());
	
	return ir_grow_declaration(declaration, sym, initializer, infoSink);
}
示例#7
0
int ValidateLimitations::validateForLoopInit(TIntermLoop *node)
{
    TIntermNode *init = node->getInit();
    if (init == NULL)
    {
        error(node->getLine(), "Missing init declaration", "for");
        return -1;
    }

    //
    // init-declaration has the form:
    //     type-specifier identifier = constant-expression
    //
    TIntermAggregate *decl = init->getAsAggregate();
    if ((decl == NULL) || (decl->getOp() != EOpDeclaration))
    {
        error(init->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    // To keep things simple do not allow declaration list.
    TIntermSequence &declSeq = decl->getSequence();
    if (declSeq.size() != 1)
    {
        error(decl->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    TIntermBinary *declInit = declSeq[0]->getAsBinaryNode();
    if ((declInit == NULL) || (declInit->getOp() != EOpInitialize))
    {
        error(decl->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    TIntermSymbol *symbol = declInit->getLeft()->getAsSymbolNode();
    if (symbol == NULL)
    {
        error(declInit->getLine(), "Invalid init declaration", "for");
        return -1;
    }
    // The loop index has type int or float.
    TBasicType type = symbol->getBasicType();
    if ((type != EbtInt) && (type != EbtFloat))
    {
        error(symbol->getLine(),
              "Invalid type for loop index", getBasicString(type));
        return -1;
    }
    // The loop index is initialized with constant expression.
    if (!isConstExpr(declInit->getRight()))
    {
        error(declInit->getLine(),
              "Loop index cannot be initialized with non-constant expression",
              symbol->getSymbol().c_str());
        return -1;
    }

    return symbol->getId();
}
TIntermBinary *TIntermTraverser::createTempAssignment(TIntermTyped *rightNode)
{
    ASSERT(rightNode != nullptr);
    TIntermSymbol *tempSymbol = createTempSymbol(rightNode->getType());
    TIntermBinary *assignment = new TIntermBinary(EOpAssign);
    assignment->setLeft(tempSymbol);
    assignment->setRight(rightNode);
    assignment->setType(tempSymbol->getType());
    return assignment;
}
TIntermAggregate *TIntermTraverser::createTempInitDeclaration(TIntermTyped *initializer, TQualifier qualifier)
{
    ASSERT(initializer != nullptr);
    TIntermSymbol *tempSymbol = createTempSymbol(initializer->getType(), qualifier);
    TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
    TIntermBinary *tempInit = new TIntermBinary(EOpInitialize);
    tempInit->setLeft(tempSymbol);
    tempInit->setRight(initializer);
    tempInit->setType(tempSymbol->getType());
    tempDeclaration->getSequence()->push_back(tempInit);
    return tempDeclaration;
}
TIntermSymbol *TIntermTraverser::createTempSymbol(const TType &type, TQualifier qualifier)
{
    // Each traversal uses at most one temporary variable, so the index stays the same within a single traversal.
    TInfoSinkBase symbolNameOut;
    ASSERT(mTemporaryIndex != nullptr);
    symbolNameOut << "s" << (*mTemporaryIndex);
    TString symbolName = symbolNameOut.c_str();

    TIntermSymbol *node = new TIntermSymbol(0, symbolName, type);
    node->setInternal(true);
    node->getTypePointer()->setQualifier(qualifier);
    return node;
}
示例#11
0
bool TGlslOutputTraverser::parseInitializer( TIntermBinary *node )
{
   TIntermTyped *left, *right;

   left = node->getLeft();
   right = node->getRight();

   if (!left->getAsSymbolNode())
      return false; //Something is likely seriously wrong

   TIntermSymbol *symNode = left->getAsSymbolNode();
   

   if (symNode->getBasicType() == EbtStruct)
      return false;

   GlslSymbol * sym = NULL;

   if ( !current->hasSymbol( symNode->getId() ) )
   {
      int array = symNode->getTypePointer()->isArray() ? symNode->getTypePointer()->getArraySize() : 0;
      const char* semantic = "";

      if (symNode->getInfo())
         semantic = symNode->getInfo()->getSemantic().c_str();

      sym = new GlslSymbol( symNode->getSymbol().c_str(), semantic, symNode->getId(),
                            translateType(symNode->getTypePointer()), m_UsePrecision?node->getPrecision():EbpUndefined, translateQualifier(symNode->getQualifier()), array);

      current->addSymbol(sym);
   }
   else
      return false; //can't init already declared variable
	
	if (right->getAsTyped())
	{
		std::stringstream ss;
		std::stringstream* oldOut = &current->getActiveOutput();
		current->pushDepth(0);
		current->setActiveOutput(&ss);
		right->getAsTyped()->traverse(this);
		current->setActiveOutput(oldOut);
		current->popDepth();
		
		sym->setInitializer(ss.str());
	}

   return true;
}
示例#12
0
bool ValidateLimitations::validateOperation(TIntermOperator *node,
                                            TIntermNode* operand)
{
    // Check if loop index is modified in the loop body.
    if (!withinLoopBody() || !node->isAssignment())
        return true;

    TIntermSymbol *symbol = operand->getAsSymbolNode();
    if (symbol && isLoopIndex(symbol))
    {
        error(node->getLine(),
              "Loop index cannot be statically assigned to within the body of the loop",
              symbol->getSymbol().c_str());
    }
    return true;
}
示例#13
0
TIntermSymbol *TIntermTraverser::createTempSymbol(const TType &type, TQualifier qualifier)
{
    // Each traversal uses at most one temporary variable, so the index stays the same within a single traversal.
    TInfoSinkBase symbolNameOut;
    ASSERT(mTemporaryIndex != nullptr);
    symbolNameOut << "s" << (*mTemporaryIndex);
    TString symbolName = symbolNameOut.c_str();

    TIntermSymbol *node = new TIntermSymbol(0, symbolName, type);
    node->setInternal(true);

    ASSERT(qualifier == EvqTemporary || qualifier == EvqConst || qualifier == EvqGlobal);
    node->getTypePointer()->setQualifier(qualifier);
    // TODO(oetuaho): Might be useful to sanitize layout qualifier etc. on the type of the created
    // symbol. This might need to be done in other places as well.
    return node;
}
示例#14
0
ParsedCode Parser::buildShader(TIntermAggregate* f) {
    cur.pos = f->getLine().first_line;
    cur.args.clear();
    cur.exprs.clear();
    Position pos = f->getLine().first_line;
    TIntermSequence& sequence = f->getSequence();
    TIntermSequence& arguments = sequence[0]->getAsAggregate()->getSequence();
    for (auto it = arguments.begin(); it != arguments.end(); ++it) {
        TIntermSymbol* symbol = (*it)->getAsSymbolNode();
        //if (symbol->getType().getStruct()) {
        //	addConstructor(symbol->getType(), scopedStruct(symbol->getType().getTypeName()), NULL);
        //}
        cur.args.push_back(allocVar(symbol->getQualifierString(), symbol->getTypePointer(), VUnknown, pos));
    }
    parseExpr(sequence[1]->getAsAggregate()->getSequence());
    return cur;
}
示例#15
0
void TSamplerTraverser::typeSampler( TIntermTyped *node, TBasicType samp )
{
   TIntermSymbol *symNode = node->getAsSymbolNode();

   if ( !symNode)
   {
      //TODO: add logic to handle sampler arrays and samplers as struct members

      //Don't try typing this one, it is a complex expression
      TIntermBinary *biNode = node->getAsBinaryNode();

      if ( biNode )
      {
         switch (biNode->getOp())
         {
         case EOpIndexDirect:
         case EOpIndexIndirect:
            infoSink.info << "Warning: " << node->getLine() <<  ": typing of sampler arrays presently unsupported\n";
            break;

         case EOpIndexDirectStruct:
            infoSink.info << "Warning: " << node->getLine() <<  ": typing of samplers as struct members presently unsupported\n";
            break;
         }
      }
      else
      {
         infoSink.info << "Warning: " << node->getLine() <<  ": unexpected expression type for sampler, cannot type\n";
      }
      abort = false;
   }
   else
   {
      // We really have something to type, abort this traverse and activate typing
      abort = true;
      id = symNode->getId();
      sampType = samp;
   }
}
示例#16
0
void ForLoopUnroll::FillLoopIndexInfo(TIntermLoop* node, TLoopIndexInfo& info)
{
    ASSERT(node->getType() == ELoopFor);
    ASSERT(node->getUnrollFlag());

    TIntermNode* init = node->getInit();
    ASSERT(init != NULL);
    TIntermAggregate* decl = init->getAsAggregate();
    ASSERT((decl != NULL) && (decl->getOp() == EOpDeclaration));
    TIntermSequence& declSeq = decl->getSequence();
    ASSERT(declSeq.size() == 1);
    TIntermBinary* declInit = declSeq[0]->getAsBinaryNode();
    ASSERT((declInit != NULL) && (declInit->getOp() == EOpInitialize));
    TIntermSymbol* symbol = declInit->getLeft()->getAsSymbolNode();
    ASSERT(symbol != NULL);
    ASSERT(symbol->getBasicType() == EbtInt);

    info.id = symbol->getId();

    ASSERT(declInit->getRight() != NULL);
    TIntermConstantUnion* initNode = declInit->getRight()->getAsConstantUnion();
    ASSERT(initNode != NULL);

    info.initValue = evaluateIntConstant(initNode);
    info.currentValue = info.initValue;

    TIntermNode* cond = node->getCondition();
    ASSERT(cond != NULL);
    TIntermBinary* binOp = cond->getAsBinaryNode();
    ASSERT(binOp != NULL);
    ASSERT(binOp->getRight() != NULL);
    ASSERT(binOp->getRight()->getAsConstantUnion() != NULL);

    info.incrementValue = getLoopIncrement(node);
    info.stopValue = evaluateIntConstant(
        binOp->getRight()->getAsConstantUnion());
    info.op = binOp->getOp();
}
bool ValidateLimitations::visitBinary(Visit, TIntermBinary* node)
{
    // Check if loop index is modified in the loop body.
    validateOperation(node, node->getLeft());

    // Check indexing.
    switch (node->getOp()) {
      case EOpIndexDirect:
        validateIndexing(node);
        break;
      case EOpIndexIndirect:
#if defined(__APPLE__)
        // Loop unrolling is a work-around for a Mac Cg compiler bug where it
        // crashes when a sampler array's index is also the loop index.
        // Once Apple fixes this bug, we should remove the code in this CL.
        // See http://codereview.appspot.com/4331048/.
        if ((node->getLeft() != NULL) && (node->getRight() != NULL) &&
            (node->getLeft()->getAsSymbolNode())) {
            TIntermSymbol* symbol = node->getLeft()->getAsSymbolNode();
            if (IsSampler(symbol->getBasicType()) && symbol->isArray()) {
                ValidateLoopIndexExpr validate(mLoopStack);
                node->getRight()->traverse(&validate);
                if (validate.usesFloatLoopIndex()) {
                    error(node->getLine(),
                          "sampler array index is float loop index",
                          "for");
                }
            }
        }
#endif
        validateIndexing(node);
        break;
      default: break;
    }
    return true;
}
示例#18
0
bool TOutputGLSLBase::visitLoop(Visit visit, TIntermLoop *node)
{
    TInfoSinkBase &out = objSink();

    incrementDepth(node);
    // Loop header.
    TLoopType loopType = node->getType();
    if (loopType == ELoopFor)  // for loop
    {
        if (!node->getUnrollFlag())
        {
            out << "for (";
            if (node->getInit())
                node->getInit()->traverse(this);
            out << "; ";

            if (node->getCondition())
                node->getCondition()->traverse(this);
            out << "; ";

            if (node->getExpression())
                node->getExpression()->traverse(this);
            out << ")\n";
        }
        else
        {
            // Need to put a one-iteration loop here to handle break.
            TIntermSequence *declSeq =
                node->getInit()->getAsAggregate()->getSequence();
            TIntermSymbol *indexSymbol =
                (*declSeq)[0]->getAsBinaryNode()->getLeft()->getAsSymbolNode();
            TString name = hashVariableName(indexSymbol->getSymbol());
            out << "for (int " << name << " = 0; "
                << name << " < 1; "
                << "++" << name << ")\n";
        }
    }
    else if (loopType == ELoopWhile)  // while loop
    {
        out << "while (";
        ASSERT(node->getCondition() != NULL);
        node->getCondition()->traverse(this);
        out << ")\n";
    }
    else  // do-while loop
    {
        ASSERT(loopType == ELoopDoWhile);
        out << "do\n";
    }

    // Loop body.
    if (node->getUnrollFlag())
    {
        out << "{\n";
        mLoopUnrollStack.push(node);
        while (mLoopUnrollStack.satisfiesLoopCondition())
        {
            visitCodeBlock(node->getBody());
            mLoopUnrollStack.step();
        }
        mLoopUnrollStack.pop();
        out << "}\n";
    }
    else
    {
        visitCodeBlock(node->getBody());
    }

    // Loop footer.
    if (loopType == ELoopDoWhile)  // do-while loop
    {
        out << "while (";
        ASSERT(node->getCondition() != NULL);
        node->getCondition()->traverse(this);
        out << ");\n";
    }
    decrementDepth();

    // No need to visit children. They have been already processed in
    // this function.
    return false;
}
示例#19
0
TIntermSymbol* ir_add_symbol_internal(int id, const TString& name, const TTypeInfo *info, const TType& type, TSourceLoc line)
{
	TIntermSymbol* node = new TIntermSymbol(id, name, info, type);
	node->setLine(line);
	return node;
}
示例#20
0
// Add a terminal node for an identifier in an expression.
TIntermSymbol* ir_add_symbol(const TVariable* var, TSourceLoc line)
{
	TIntermSymbol* node = ir_add_symbol_internal(var->getUniqueId(), var->getName(), var->getInfo(), var->getType(), line);
	node->setGlobal(var->isGlobal());
	return node;
}
示例#21
0
//
// Compare two global objects from two compilation units and see if they match
// well enough.  Rules can be different for intra- vs. cross-stage matching.
//
// This function only does one of intra- or cross-stage matching per call.
//
void TIntermediate::mergeErrorCheck(TInfoSink& infoSink, const TIntermSymbol& symbol, const TIntermSymbol& unitSymbol, bool crossStage)
{
    bool writeTypeComparison = false;

    // Types have to match
    if (symbol.getType() != unitSymbol.getType()) {
        error(infoSink, "Types must match:");
        writeTypeComparison = true;
    }

    // Qualifiers have to (almost) match

    // Storage...
    if (symbol.getQualifier().storage != unitSymbol.getQualifier().storage) {
        error(infoSink, "Storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Precision...
    if (symbol.getQualifier().precision != unitSymbol.getQualifier().precision) {
        error(infoSink, "Precision qualifiers must match:");
        writeTypeComparison = true;
    }

    // Invariance...
    if (! crossStage && symbol.getQualifier().invariant != unitSymbol.getQualifier().invariant) {
        error(infoSink, "Presence of invariant qualifier must match:");
        writeTypeComparison = true;
    }

    // Precise...
    if (! crossStage && symbol.getQualifier().noContraction != unitSymbol.getQualifier().noContraction) {
        error(infoSink, "Presence of precise qualifier must match:");
        writeTypeComparison = true;
    }

    // Auxiliary and interpolation...
    if (symbol.getQualifier().centroid  != unitSymbol.getQualifier().centroid ||
        symbol.getQualifier().smooth    != unitSymbol.getQualifier().smooth ||
        symbol.getQualifier().flat      != unitSymbol.getQualifier().flat ||
        symbol.getQualifier().sample    != unitSymbol.getQualifier().sample ||
        symbol.getQualifier().patch     != unitSymbol.getQualifier().patch ||
        symbol.getQualifier().nopersp   != unitSymbol.getQualifier().nopersp) {
        error(infoSink, "Interpolation and auxiliary storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Memory...
    if (symbol.getQualifier().coherent  != unitSymbol.getQualifier().coherent ||
        symbol.getQualifier().volatil   != unitSymbol.getQualifier().volatil ||
        symbol.getQualifier().restrict  != unitSymbol.getQualifier().restrict ||
        symbol.getQualifier().readonly  != unitSymbol.getQualifier().readonly ||
        symbol.getQualifier().writeonly != unitSymbol.getQualifier().writeonly) {
        error(infoSink, "Memory qualifiers must match:");
        writeTypeComparison = true;
    }

    // Layouts... 
    // TODO: 4.4 enhanced layouts: Generalize to include offset/align: current spec 
    //       requires separate user-supplied offset from actual computed offset, but 
    //       current implementation only has one offset.
    if (symbol.getQualifier().layoutMatrix    != unitSymbol.getQualifier().layoutMatrix ||
        symbol.getQualifier().layoutPacking   != unitSymbol.getQualifier().layoutPacking ||
        symbol.getQualifier().layoutLocation  != unitSymbol.getQualifier().layoutLocation ||
        symbol.getQualifier().layoutComponent != unitSymbol.getQualifier().layoutComponent ||
        symbol.getQualifier().layoutIndex     != unitSymbol.getQualifier().layoutIndex ||
        symbol.getQualifier().layoutBinding   != unitSymbol.getQualifier().layoutBinding ||
        (symbol.getQualifier().hasBinding() && (symbol.getQualifier().layoutOffset != unitSymbol.getQualifier().layoutOffset))) {
        error(infoSink, "Layout qualification must match:");
        writeTypeComparison = true;
    }

    // Initializers have to match, if both are present, and if we don't already know the types don't match
    if (! writeTypeComparison) {
        if (! symbol.getConstArray().empty() && ! unitSymbol.getConstArray().empty()) {
            if (symbol.getConstArray() != unitSymbol.getConstArray()) {
                error(infoSink, "Initializers must match:");
                infoSink.info << "    " << symbol.getName() << "\n";
            }
        }
    }

    if (writeTypeComparison)
        infoSink.info << "    " << symbol.getName() << ": \"" << symbol.getType().getCompleteString() << "\" versus \"" <<
                                                             unitSymbol.getType().getCompleteString() << "\"\n";
}
示例#22
0
//
// Initializers show up in several places in the grammar.  Have one set of
// code to handle them here.
//
bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType, 
                                       TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
{
    TType type = TType(pType);

    if (variable == 0) {
        if (reservedErrorCheck(line, identifier))
            return true;

        if (voidErrorCheck(line, identifier, pType))
            return true;

        //
        // add variable to symbol table
        //
        variable = new TVariable(&identifier, type);
        if (! symbolTable.insert(*variable)) {
            error(line, "redefinition", variable->getName().c_str(), "");
            return true;
            // don't delete variable, it's used by error recovery, and the pool 
            // pop will take care of the memory
        }
    }

    //
    // identifier must be of type constant, a global, or a temporary
    //
    TQualifier qualifier = variable->getType().getQualifier();
    if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
        error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString(), "");
        return true;
    }
    //
    // test for and propagate constant
    //

    if (qualifier == EvqConst) {
        if (qualifier != initializer->getType().getQualifier()) {
            error(line, " assigning non-constant to", "=", "'%s'", variable->getType().getCompleteString().c_str());
            variable->getType().setQualifier(EvqTemporary);
            return true;
        }
        if (type != initializer->getType()) {
            error(line, " non-matching types for const initializer ", 
                variable->getType().getQualifierString(), "");
            variable->getType().setQualifier(EvqTemporary);
            return true;
        }
        if (initializer->getAsConstantUnion()) { 
            ConstantUnion* unionArray = variable->getConstPointer();

            if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) {
                *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0];
            } else {
                variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
            }
        } else if (initializer->getAsSymbolNode()) {
            const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
            const TVariable* tVar = static_cast<const TVariable*>(symbol);

            ConstantUnion* constArray = tVar->getConstPointer();
            variable->shareConstPointer(constArray);
        } else {
            error(line, " cannot assign to", "=", "'%s'", variable->getType().getCompleteString().c_str());
            variable->getType().setQualifier(EvqTemporary);
            return true;
        }
    }
 
    if (qualifier != EvqConst) {
        TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
        intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
        if (intermNode == 0) {
            assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
            return true;
        }
    } else 
        intermNode = 0;

    return false;
}
示例#23
0
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if the was an error.
//
bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node)
{
    TIntermSymbol* symNode = node->getAsSymbolNode();
    TIntermBinary* binaryNode = node->getAsBinaryNode();

    if (binaryNode) {
        bool errorReturn;

        switch(binaryNode->getOp()) {
        case EOpIndexDirect:
        case EOpIndexIndirect:
        case EOpIndexDirectStruct:
            return lValueErrorCheck(line, op, binaryNode->getLeft());
        case EOpVectorSwizzle:
            errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
            if (!errorReturn) {
                int offset[4] = {0,0,0,0};

                TIntermTyped* rightNode = binaryNode->getRight();
                TIntermAggregate *aggrNode = rightNode->getAsAggregate();
                
                for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); 
                                               p != aggrNode->getSequence().end(); p++) {
                    int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getIConst();
                    offset[value]++;     
                    if (offset[value] > 1) {
                        error(line, " l-value of swizzle cannot have duplicate components", op, "", "");

                        return true;
                    }
                }
            } 

            return errorReturn;
        default: 
            break;
        }
        error(line, " l-value required", op, "", "");

        return true;
    }


    const char* symbol = 0;
    if (symNode != 0)
        symbol = symNode->getSymbol().c_str();

    const char* message = 0;
    switch (node->getQualifier()) {
    case EvqConst:          message = "can't modify a const";        break;
    case EvqConstReadOnly:  message = "can't modify a const";        break;
    case EvqAttribute:      message = "can't modify an attribute";   break;
    case EvqUniform:        message = "can't modify a uniform";      break;
    case EvqVaryingIn:      message = "can't modify a varying";      break;
    case EvqInput:          message = "can't modify an input";       break;
    case EvqFragCoord:      message = "can't modify gl_FragCoord";   break;
    case EvqFrontFacing:    message = "can't modify gl_FrontFacing"; break;
    case EvqPointCoord:     message = "can't modify gl_PointCoord";  break;
    default:

        //
        // Type that can't be written to?
        //
        switch (node->getBasicType()) {
        case EbtSampler2D:
        case EbtSamplerCube:
            message = "can't modify a sampler";
            break;
        case EbtVoid:
            message = "can't modify void";
            break;
        default: 
            break;
        }
    }

    if (message == 0 && binaryNode == 0 && symNode == 0) {
        error(line, " l-value required", op, "", "");

        return true;
    }


    //
    // Everything else is okay, no error.
    //
    if (message == 0)
        return false;

    //
    // If we get here, we have an error and a message.
    //
    if (symNode)
        error(line, " l-value required", op, "\"%s\" (%s)", symbol, message);
    else
        error(line, " l-value required", op, "(%s)", message);

    return true;
}
示例#24
0
bool TSamplerTraverser::traverseAggregate( bool preVisit, TIntermAggregate *node, TIntermTraverser *it)
{
   TSamplerTraverser* sit = static_cast<TSamplerTraverser*>(it);
   TInfoSink &infoSink = sit->infoSink;

   if (sit->abort)
      return false;

   if (! (sit->typing) )
   {
      switch (node->getOp())
      {
      
      case EOpFunction:
         // Store the current function name to use to setup the parameters
         sit->currentFunction = node->getName().c_str(); 
         break;

      case EOpParameters:
         // Store the parameters to the function in the map
         sit->functionMap[sit->currentFunction.c_str()] = &(node->getSequence());
         break;

      case EOpFunctionCall:
         {
            // This is a bit tricky.  Find the function in the map.  Loop over the parameters
            // and see if the parameters have been marked as a typed sampler.  If so, propagate
            // the sampler type to the caller
            if ( sit->functionMap.find ( node->getName().c_str() ) != sit->functionMap.end() )
            {
               // Get the sequence of function parameters
               TIntermSequence *funcSequence = sit->functionMap[node->getName().c_str()];
               
               // Get the sequence of parameters being passed to function
               TIntermSequence &sequence = node->getSequence();

               // Grab iterators to both sequences
               TIntermSequence::iterator it = sequence.begin();
               TIntermSequence::iterator funcIt = funcSequence->begin();

               assert ( sequence.size() == funcSequence->size() );
               if ( sequence.size() == funcSequence->size() )
               {
                  while ( it != sequence.end() )
                  {
                     TIntermSymbol *sym = (*it)->getAsSymbolNode();
                     TIntermSymbol *funcSym = (*funcIt)->getAsSymbolNode();
                     
                     if ( sym != NULL && funcSym != NULL)
                     {
                        // If the parameter is generic, and the sampler to which
                        // it is being passed has been marked, propogate its sampler
                        // type to the caller.
                        if ( sym->getBasicType() == EbtSamplerGeneric &&
                             funcSym->getBasicType() != EbtSamplerGeneric )
                        {
                           sit->typeSampler ( sym, funcSym->getBasicType() );
                        }
                     }
                     it++;
                     funcIt++;
                  }
               }
            }
         }
         break;

         //HLSL texture functions
      case EOpTex1D:
      case EOpTex1DProj:
      case EOpTex1DLod:
      case EOpTex1DBias:
      case EOpTex1DGrad:
         {
            TIntermSequence &sequence = node->getSequence();
            assert( sequence.size());
            TIntermTyped *sampArg = sequence[0]->getAsTyped();
            if ( sampArg)
            {
               if (sampArg->getBasicType() == EbtSamplerGeneric)
               {
                  //type the sampler
                  sit->typeSampler( sampArg, EbtSampler1D);
               }
               else if (sampArg->getBasicType() != EbtSampler1D)
               {
                  //We have a sampler mismatch error
                  infoSink.info << "Error: " << node->getLine() << ": Sampler type mismatch, likely using a generic sampler as two types\n";
               }
            }
            else
            {
               assert(0);
            }

         }
         // We need to continue the traverse here, because the calls could be nested 
         break;


      case EOpTex2D:
      case EOpTex2DProj:
      case EOpTex2DLod:
      case EOpTex2DBias:
      case EOpTex2DGrad:
         {
            TIntermSequence &sequence = node->getSequence();
            assert( sequence.size());
            TIntermTyped *sampArg = sequence[0]->getAsTyped();
            if ( sampArg)
            {
               if (sampArg->getBasicType() == EbtSamplerGeneric)
               {
                  //type the sampler
                  sit->typeSampler( sampArg, EbtSampler2D);
               }
               else if (sampArg->getBasicType() != EbtSampler2D)
               {
                  //We have a sampler mismatch error
                  infoSink.info << "Error: " << node->getLine() << ": Sampler type mismatch, likely using a generic sampler as two types\n";
               }
            }
            else
            {
               assert(0);
            }

         }
         // We need to continue the traverse here, because the calls could be nested 
         break;

	  case EOpTexRect:
	  case EOpTexRectProj:
		  {
			  TIntermSequence &sequence = node->getSequence();
			  assert( sequence.size());
			  TIntermTyped *sampArg = sequence[0]->getAsTyped();
			  if ( sampArg)
			  {
				  if (sampArg->getBasicType() == EbtSamplerGeneric)
				  {
					  //type the sampler
					  sit->typeSampler( sampArg, EbtSamplerRect);
				  }
				  else if (sampArg->getBasicType() != EbtSamplerRect)
				  {
					  //We have a sampler mismatch error
					  infoSink.info << "Error: " << node->getLine() << ": Sampler type mismatch, likely using a generic sampler as two types\n";
				  }
			  }
			  else
			  {
				  assert(0);
			  }
			  
		  }
		  // We need to continue the traverse here, because the calls could be nested 
		  break;
			  
			  
      case EOpTex3D:
      case EOpTex3DProj:
      case EOpTex3DLod:
      case EOpTex3DBias:
      case EOpTex3DGrad:
         {
            TIntermSequence &sequence = node->getSequence();
            assert( sequence.size());
            TIntermTyped *sampArg = sequence[0]->getAsTyped();
            if ( sampArg)
            {
               if (sampArg->getBasicType() == EbtSamplerGeneric)
               {
                  //type the sampler
                  sit->typeSampler( sampArg, EbtSampler3D);
               }
               else if (sampArg->getBasicType() != EbtSampler3D)
               {
                  //We have a sampler mismatch error
                  infoSink.info << "Error: " << node->getLine() << ": Sampler type mismatch, likely using a generic sampler as two types\n";
               }
            }
            else
            {
               assert(0);
            }

         }
         // We need to continue the traverse here, because the calls could be nested 
         break;

      case EOpTexCube:
      case EOpTexCubeProj:
      case EOpTexCubeLod:
      case EOpTexCubeBias:
      case EOpTexCubeGrad:
         {
            TIntermSequence &sequence = node->getSequence();
            assert( sequence.size());
            TIntermTyped *sampArg = sequence[0]->getAsTyped();
            if ( sampArg)
            {
               if (sampArg->getBasicType() == EbtSamplerGeneric)
               {
                  //type the sampler
                  sit->typeSampler( sampArg, EbtSamplerCube);
               }
               else if (sampArg->getBasicType() != EbtSamplerCube)
               {
                  //We have a sampler mismatch error
                  infoSink.info << "Error: " << node->getLine() << ": Sampler type mismatch, likely using a generic sampler as two types\n";
               }
            }
            else
            {
               assert(0);
            }

         }
         // We need to continue the traverse here, because the calls could be nested 
         break;

      default: 
         break;
      }
   }


   return !(sit->abort);
}
示例#25
0
bool ValidateLimitations::validateForLoopExpr(TIntermLoop *node,
                                              int indexSymbolId)
{
    TIntermNode *expr = node->getExpression();
    if (expr == NULL)
    {
        error(node->getLine(), "Missing expression", "for");
        return false;
    }

    // for expression has one of the following forms:
    //     loop_index++
    //     loop_index--
    //     loop_index += constant_expression
    //     loop_index -= constant_expression
    //     ++loop_index
    //     --loop_index
    // The last two forms are not specified in the spec, but I am assuming
    // its an oversight.
    TIntermUnary *unOp = expr->getAsUnaryNode();
    TIntermBinary *binOp = unOp ? NULL : expr->getAsBinaryNode();

    TOperator op = EOpNull;
    TIntermSymbol *symbol = NULL;
    if (unOp != NULL)
    {
        op = unOp->getOp();
        symbol = unOp->getOperand()->getAsSymbolNode();
    }
    else if (binOp != NULL)
    {
        op = binOp->getOp();
        symbol = binOp->getLeft()->getAsSymbolNode();
    }

    // The operand must be loop index.
    if (symbol == NULL)
    {
        error(expr->getLine(), "Invalid expression", "for");
        return false;
    }
    if (symbol->getId() != indexSymbolId)
    {
        error(symbol->getLine(),
              "Expected loop index", symbol->getSymbol().c_str());
        return false;
    }

    // The operator is one of: ++ -- += -=.
    switch (op)
    {
      case EOpPostIncrement:
      case EOpPostDecrement:
      case EOpPreIncrement:
      case EOpPreDecrement:
        ASSERT((unOp != NULL) && (binOp == NULL));
        break;
      case EOpAddAssign:
      case EOpSubAssign:
        ASSERT((unOp == NULL) && (binOp != NULL));
        break;
      default:
        error(expr->getLine(), "Invalid operator", GetOperatorString(op));
        return false;
    }

    // Loop index must be incremented/decremented with a constant.
    if (binOp != NULL)
    {
        if (!isConstExpr(binOp->getRight()))
        {
            error(binOp->getLine(),
                  "Loop index cannot be modified by non-constant expression",
                  symbol->getSymbol().c_str());
            return false;
        }
    }

    return true;
}
示例#26
0
//
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
//
// Returns true if there was an error.
//
bool TParseContextBase::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
{
    TIntermBinary* binaryNode = node->getAsBinaryNode();

    if (binaryNode) {
        switch(binaryNode->getOp()) {
        case EOpIndexDirect:
        case EOpIndexIndirect:     // fall through
        case EOpIndexDirectStruct: // fall through
        case EOpVectorSwizzle:
        case EOpMatrixSwizzle:
            return lValueErrorCheck(loc, op, binaryNode->getLeft());
        default:
            break;
        }
        error(loc, " l-value required", op, "", "");

        return true;
    }

    const char* symbol = nullptr;
    TIntermSymbol* symNode = node->getAsSymbolNode();
    if (symNode != nullptr)
        symbol = symNode->getName().c_str();

    const char* message = nullptr;
    switch (node->getQualifier().storage) {
    case EvqConst:          message = "can't modify a const";        break;
    case EvqConstReadOnly:  message = "can't modify a const";        break;
    case EvqUniform:        message = "can't modify a uniform";      break;
    case EvqBuffer:
        if (node->getQualifier().readonly)
            message = "can't modify a readonly buffer";
        break;

    default:
        //
        // Type that can't be written to?
        //
        switch (node->getBasicType()) {
        case EbtSampler:
            message = "can't modify a sampler";
            break;
        case EbtAtomicUint:
            message = "can't modify an atomic_uint";
            break;
        case EbtVoid:
            message = "can't modify void";
            break;
        default:
            break;
        }
    }

    if (message == nullptr && binaryNode == nullptr && symNode == nullptr) {
        error(loc, " l-value required", op, "", "");

        return true;
    }

    //
    // Everything else is okay, no error.
    //
    if (message == nullptr)
        return false;

    //
    // If we get here, we have an error and a message.
    //
    if (symNode)
        error(loc, " l-value required", op, "\"%s\" (%s)", symbol, message);
    else
        error(loc, " l-value required", op, "(%s)", message);

    return true;
}
示例#27
0
//
// Merge the linker objects from unitLinkerObjects into linkerObjects.
// Duplication is expected and filtered out, but contradictions are an error.
//
void TIntermediate::mergeLinkerObjects(TInfoSink& infoSink, TIntermSequence& linkerObjects, const TIntermSequence& unitLinkerObjects)
{
    // Error check and merge the linker objects (duplicates should not be created)
    std::size_t initialNumLinkerObjects = linkerObjects.size();
    for (unsigned int unitLinkObj = 0; unitLinkObj < unitLinkerObjects.size(); ++unitLinkObj) {
        bool merge = true;
        for (std::size_t linkObj = 0; linkObj < initialNumLinkerObjects; ++linkObj) {
            TIntermSymbol* symbol = linkerObjects[linkObj]->getAsSymbolNode();
            TIntermSymbol* unitSymbol = unitLinkerObjects[unitLinkObj]->getAsSymbolNode();
            assert(symbol && unitSymbol);
            if (symbol->getName() == unitSymbol->getName()) {
                // filter out copy
                merge = false;

                // but if one has an initializer and the other does not, update
                // the initializer
                if (symbol->getConstArray().empty() && ! unitSymbol->getConstArray().empty())
                    symbol->setConstArray(unitSymbol->getConstArray());

                // Similarly for binding
                if (! symbol->getQualifier().hasBinding() && unitSymbol->getQualifier().hasBinding())
                    symbol->getQualifier().layoutBinding = unitSymbol->getQualifier().layoutBinding;

                // Update implicit array sizes
                mergeImplicitArraySizes(symbol->getWritableType(), unitSymbol->getType());

                // Check for consistent types/qualification/initializers etc.
                mergeErrorCheck(infoSink, *symbol, *unitSymbol, false);
            }
        }
        if (merge)
            linkerObjects.push_back(unitLinkerObjects[unitLinkObj]);
    }
}
示例#28
0
bool TGlslOutputTraverser::traverseDeclaration(bool preVisit, TIntermDeclaration* decl, TIntermTraverser* it) {
	TGlslOutputTraverser* goit = static_cast<TGlslOutputTraverser*>(it);
	GlslFunction *current = goit->current;
	std::stringstream& out = current->getActiveOutput();
	EGlslSymbolType symbol_type = translateType(decl->getTypePointer());
	TType& type = *decl->getTypePointer();
	
	
	bool emit_osx10_6_arrays = goit->m_EmitSnowLeopardCompatibleArrayInitializers
		&& decl->containsArrayInitialization();
	
	if (emit_osx10_6_arrays) {
		assert(decl->isSingleInitialization() && "Emission of multiple in-line array declarations isn't supported when running in OS X 10.6 compatible mode.");
		
		current->indent(out);
		out << "#if defined(OSX_SNOW_LEOPARD)" << std::endl;
		current->increaseDepth();
		
		TQualifier q = type.getQualifier();
		if (q == EvqConst)
			q = EvqTemporary;
		
		current->beginStatement();
		if (q != EvqTemporary && q != EvqGlobal)
			out << type.getQualifierString() << " ";
		
		TIntermBinary* assign = decl->getDeclaration()->getAsBinaryNode();
		TIntermSymbol* sym = assign->getLeft()->getAsSymbolNode();
		TIntermSequence& init = assign->getRight()->getAsAggregate()->getSequence();
		
		writeType(out, symbol_type, NULL, goit->m_UsePrecision ? decl->getPrecision() : EbpUndefined);
		out << "[" << type.getArraySize() << "] " << sym->getSymbol();
		current->endStatement();
		
		unsigned n_vals = init.size();
		for (unsigned i = 0; i != n_vals; ++i) {
			current->beginStatement();
			sym->traverse(goit);
			out << "[" << i << "]" << " = ";
			init[i]->traverse(goit);
			current->endStatement();
		}
		
		current->decreaseDepth();
		current->indent(out);
		out << "#else" << std::endl;
		current->increaseDepth();
	}
	
	current->beginStatement();
	
	if (type.getQualifier() != EvqTemporary && type.getQualifier() != EvqGlobal)
		out << type.getQualifierString() << " ";
	
	if (type.getBasicType() == EbtStruct)
		out << type.getTypeName();
	else
		writeType(out, symbol_type, NULL, goit->m_UsePrecision ? decl->getPrecision() : EbpUndefined);
	
	if (type.isArray())
		out << "[" << type.getArraySize() << "]";
	
	out << " ";
	
	decl->getDeclaration()->traverse(goit);
	
	current->endStatement();
	
	if (emit_osx10_6_arrays) {
		current->decreaseDepth();
		current->indent(out);
		out << "#endif" << std::endl;
	}
	
	return false;
}
示例#29
0
// TODO(jmadill): This is not complete.
void TOutputVulkanGLSL::writeLayoutQualifier(TIntermTyped *variable)
{
    const TType &type = variable->getType();

    bool needsCustomLayout =
        (type.getQualifier() == EvqAttribute || type.getQualifier() == EvqFragmentOut ||
         type.getQualifier() == EvqVertexIn || IsVarying(type.getQualifier()) ||
         IsSampler(type.getBasicType()) || type.isInterfaceBlock());

    if (!NeedsToWriteLayoutQualifier(type) && !needsCustomLayout)
    {
        return;
    }

    TInfoSinkBase &out                      = objSink();
    const TLayoutQualifier &layoutQualifier = type.getLayoutQualifier();

    // This isn't super clean, but it gets the job done.
    // See corresponding code in GlslangWrapper.cpp.
    TIntermSymbol *symbol = variable->getAsSymbolNode();
    ASSERT(symbol);

    ImmutableString name      = symbol->getName();
    const char *blockStorage  = nullptr;
    const char *matrixPacking = nullptr;

    // For interface blocks, use the block name instead.  When the layout qualifier is being
    // replaced in the backend, that would be the name that's available.
    if (type.isInterfaceBlock())
    {
        const TInterfaceBlock *interfaceBlock = type.getInterfaceBlock();
        name                                  = interfaceBlock->name();
        TLayoutBlockStorage storage           = interfaceBlock->blockStorage();

        // Make sure block storage format is specified.
        if (storage != EbsStd430)
        {
            // Change interface block layout qualifiers to std140 for any layout that is not
            // explicitly set to std430.  This is to comply with GL_KHR_vulkan_glsl where shared and
            // packed are not allowed (and std140 could be used instead) and unspecified layouts can
            // assume either std140 or std430 (and we choose std140 as std430 is not yet universally
            // supported).
            storage = EbsStd140;
        }

        blockStorage = getBlockStorageString(storage);
    }

    // Specify matrix packing if necessary.
    if (layoutQualifier.matrixPacking != EmpUnspecified)
    {
        matrixPacking = getMatrixPackingString(layoutQualifier.matrixPacking);
    }

    if (needsCustomLayout)
    {
        out << "@@ LAYOUT-" << name << "(";
    }
    else
    {
        out << "layout(";
    }

    // Output the list of qualifiers already known at this stage, i.e. everything other than
    // `location` and `set`/`binding`.
    std::string otherQualifiers = getCommonLayoutQualifiers(variable);

    const char *separator = "";
    if (blockStorage)
    {
        out << separator << blockStorage;
        separator = ", ";
    }
    if (matrixPacking)
    {
        out << separator << matrixPacking;
        separator = ", ";
    }
    if (!otherQualifiers.empty())
    {
        out << separator << otherQualifiers;
    }

    out << ") ";
    if (needsCustomLayout)
    {
        out << "@@";
    }
}