示例#1
0
文件: PhaseSpace.C 项目: Y--/root
void PhaseSpace() {

   if (!gROOT->GetClass("TGenPhaseSpace")) gSystem->Load("libPhysics");

   TLorentzVector target(0.0, 0.0, 0.0, 0.938);
   TLorentzVector beam(0.0, 0.0, .65, .65);
   TLorentzVector W = beam + target;

   //(Momentum, Energy units are Gev/C, GeV)
   Double_t masses[3] = { 0.938, 0.139, 0.139} ;

   TGenPhaseSpace event;
   event.SetDecay(W, 3, masses);

   TH2F *h2 = new TH2F("h2","h2", 50,1.1,1.8, 50,1.1,1.8);

   for (Int_t n=0;n<100000;n++) {
      Double_t weight = event.Generate();

      TLorentzVector *pProton = event.GetDecay(0);

      TLorentzVector *pPip    = event.GetDecay(1);
      TLorentzVector *pPim    = event.GetDecay(2);

      TLorentzVector pPPip = *pProton + *pPip;
      TLorentzVector pPPim = *pProton + *pPim;

      h2->Fill(pPPip.M2() ,pPPim.M2() ,weight);
   }
   h2->Draw();
}
示例#2
0
int xAna::HggTreeWriteLoop(const char* filename, int ijob, 
					  bool correctVertex, bool correctEnergy, 
					  bool setRho0
					  ) {

  //bool invDRtoTrk = false;


  if( _config == 0 ) {
    cout << " config file was not set properly... bail out" << endl;
    return -1;
  }

  if (fChain == 0) return -1;
  
  Long64_t nentries = fChain->GetEntriesFast();
  //  nentries = 10000;
  cout << "nentries: " << nentries << endl;  
  Long64_t entry_start = ijob    *_config->nEvtsPerJob();
  Long64_t entry_stop  = (ijob+1)*_config->nEvtsPerJob();
  if( _config->nEvtsPerJob() < 0 ) {
    entry_stop = nentries;
  }
  if( entry_stop  > nentries ) entry_stop = nentries;
  cout << "   *** doing entries from: " << entry_start << " -> " << entry_stop << endl;
  if( entry_start > entry_stop ) return -1;

  
  EnergyScaleReader enScaleSkimEOS; /// skim EOS bugged so need to undo the energy scale in the skim
  EnergyScaleReader enScale;
  //  enScaleSkimEOS.setup( "ecalCalibFiles/EnergyScale2012_Lisbon_9fb.txt" );
  enScale.setup( _config->energyScaleFile() );


  Float_t HiggsMCMass =  _weight_manager->getCrossSection()->getHiggsMass();
  Float_t HiggsMCPt   = -1;
  bool isHiggsSignal = false;
  if( HiggsMCMass > 0 ) isHiggsSignal = true;

  mode_ = _weight_manager->getCrossSection()->mode();
  isData = false;
  if(mode_==-1) isData = true;        

//  mode_ = ijob; //  

  DoCorrectVertex_ = correctVertex;
  DoCorrectEnergy_ = correctEnergy;
  DoSetRho0_ = setRho0;

  doJetRegression = _config->getDoJetRegression();
  doControlSample = _config->getDoControlSample();
  
  phoID_2011[0] = new TMVA::Reader("!Color:Silent");
  phoID_2011[1] = new TMVA::Reader("!Color:Silent");
  phoID_2012[0] = new TMVA::Reader("!Color:Silent");
  phoID_2012[1] = new TMVA::Reader("!Color:Silent");
  DiscriDiPho_2011 = new TMVA::Reader("!Color:Silent");
  DiscriDiPho_2012 = new TMVA::Reader("!Color:Silent");
  if(doJetRegression!=0) jetRegres = new TMVA::Reader("!Color:Silent");
  Setup_MVA();
  
  if( _config->setup() == "ReReco2011" )  for( int i = 0 ; i < 2; i++ ) phoID_mva[i] = phoID_2011[i];
  else                                    for( int i = 0 ; i < 2; i++ ) phoID_mva[i] = phoID_2012[i];

  MassResolution massResoCalc;
  massResoCalc.addSmearingTerm();
  if( _config->setup() == "ReReco2011" )  Ddipho_mva = DiscriDiPho_2011;
  else                                    Ddipho_mva = DiscriDiPho_2012;

  float Ddipho_cat[5]; Ddipho_cat[4] = -1; 
  if( _config->setup() == "ReReco2011" ) { Ddipho_cat[0] = 0.89; Ddipho_cat[1] = 0.72; Ddipho_cat[2] = 0.55; Ddipho_cat[3] = +0.05; }
  else                                   { Ddipho_cat[0] = 0.91; Ddipho_cat[1] = 0.79; Ddipho_cat[2] = 0.49; Ddipho_cat[3] = -0.05; }
  //  else                                   { Ddipho_cat[0] = 0.88; Ddipho_cat[1] = 0.71; Ddipho_cat[2] = 0.50; Ddipho_cat[3] = -0.05; }

  DiscriVBF_UseDiPhoPt = true;
  DiscriVBF_UsePhoPt   = true;
  DiscriVBF_cat.resize(2); DiscriVBF_cat[0] = 0.985; DiscriVBF_cat[1] = 0.93;
  DiscriVBF_useMvaSel  = _config->doVBFmvaCat();


  


  /// depending on the selection veto or not on electrons (can do muele, elemu,eleele)
  bool vetoElec[2] = {true,true};
  if( _config->invertElectronVeto() ) { vetoElec[0] = false; vetoElec[1] = false; }
  if( _config->isEleGamma()         ) { vetoElec[0] = false; vetoElec[1] = true ; }
  if( _config->isGammaEle()         ) { vetoElec[0] = true ; vetoElec[1] = false; }
  cout << " --------- veto electron config -----------" << endl;
  cout << " Leading  Pho VetoElec: " << vetoElec[0] << endl;
  cout << " Trailing Pho VetoElec: " << vetoElec[1] << endl;
  

  DoDebugEvent = true;
  
  bool DoPreselection = true;
  //  bool DoPrint = true;
  
  
  TString VertexFileNamePrefix;
  
  TRandom3 *rnd = new TRandom3();
  rnd->SetSeed(0);
  
  /// output tree and cross check file
   _xcheckTextFile.open(TString(filename)+".xcheck.txt");
   // _xcheckTextFile = cout;

  _minitree = new MiniTree( filename );
  TTree * tSkim = 0;
  if( _config->doSkimming() ) tSkim = (TTree*) fChain->CloneTree(0);

  InitHists();
  _minitree->mc_wXsec = _weight_manager->xSecW();
  _minitree->mc_wNgen = 100000./_weight_manager->getNevts();
  if( isData ) {
    _minitree->mc_wXsec = 1;
    _minitree->mc_wNgen = 1;
  }
    
  Int_t isprompt0 = -1;
  Int_t isprompt1 = -1;
  
  set<Long64_t> syncEvt;

  cout <<" ================ mode  "  << mode_   <<" ===============================  "<<endl;
  /// setupType has to be passed via config file
  //  photonOverSmearing overSmearICHEP("Test52_ichep");
  photonOverSmearing overSmearHCP( "oversmear_hcp2012" );
  photonOverSmearing overSmear(    _config->setup()    );
  int overSmearSyst = _config->getEnergyOverSmearingSyst();

  Long64_t nbytes = 0, nb = 0;
  ////////////////////////////////////////////////////////////////////////////
  //////////////////////////// Start the loop ////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////
  vector<int>    nEvts;
  vector<string> nCutName;
  nCutName.push_back("TOTAL          :"); nEvts.push_back(0);
  nCutName.push_back("2 gammas       :"); nEvts.push_back(0);
  nCutName.push_back("triggers       :"); nEvts.push_back(0);
  nCutName.push_back("nan weight     :"); nEvts.push_back(0);
  nCutName.push_back("presel kin cuts:"); nEvts.push_back(0);
  nCutName.push_back("pass 2 gam incl:"); nEvts.push_back(0);
  nCutName.push_back("pass all       :"); nEvts.push_back(0);
  nCutName.push_back("   --> pass 2 gam lep: "); nEvts.push_back(0);
  nCutName.push_back("   --> pass 2 gam vbf: "); nEvts.push_back(0);

  vector<int> selVtxSumPt2(3);  selVtxSumPt2[0] = 0; selVtxSumPt2[1] = -1;   selVtxSumPt2[2] = -1;

  for (Long64_t jentry=entry_start; jentry< entry_stop ; ++jentry) {
    Long64_t ientry = LoadTree(jentry);

    if (ientry < -9999) break;
    if( jentry % 10000 == 0) cout<<"processing event "<<jentry<<endl;
    nb = fChain->GetEntry(jentry);   nbytes += nb;

    /// reset minitree variables
    _minitree->initEvent();

    // study mc truth block
    if( !isData ) {
      fillMCtruthInfo_HiggsSignal();
      _minitree->fillMCtrueOnly();
    }

    /// reco analysis
    unsigned icutlevel = 0;
    nEvts[icutlevel++]++;
    if( nPho < 2 ) continue; 
    nEvts[icutlevel++]++;
    
    /// set synchronisation flag
    if( syncEvt.find(event) != syncEvt.end() ) DoDebugEvent = true;
    else                                       DoDebugEvent = false;
    if( DoDebugEvent ) _xcheckTextFile << "==========================================================" << endl;
    if( DoDebugEvent ) _xcheckTextFile << "================= debugging event: " << event << endl;
    
    /// PU & BSz reweightings
    if( !isData ) {
      int itpu = 1;  /// 0 without OOT PU - 1 with OOT PU
      _minitree->mc_wPU  = _weight_manager->puW( nPU[itpu] );
     // PUwei  = _weight_manager->puWTrue( puTrue[itpu] );      
    }
    hTotEvents->Fill(1,_minitree->mc_wPU);


    
    bool sigWH = false ;
    bool sigZH = false ;    
    int  mc_whzh_type = 0;
    _minitree->mc_wHQT = 1;
    if( isHiggsSignal ) {
      if ( _weight_manager->getCrossSection()->getMCType() == "vh" ) 
      for( Int_t i=0; i < nMC && i <= 1; ++i ) { 
	  if( abs(mcPID[i]) == 24 ) sigWH=true;
	  if( abs(mcPID[i]) == 23 ) sigZH=true;
	}
      if( sigWH ) mc_whzh_type = 1;
      if( sigZH ) mc_whzh_type = 2;
      
      for( Int_t i=0; i<nMC; ++i)
      if ( abs(mcPID[i]) == 25 ) HiggsMCPt   = mcPt[i];

      if( _weight_manager->getCrossSection()->getMCType() == "ggh" && 
	  _config->setup().find( "ReReco2011" ) != string::npos )
	_minitree->mc_wHQT = getHqTWeight(HiggsMCMass, HiggsMCPt);      
    }
    


    
    if ((mode_ == 2 || mode_ ==1 ||  mode_ == 18 || mode_ == 19) && processID==18) continue;      
    
    // Remove double counting in gamma+jets and QCDjets
    
    Int_t mcIFSR_pho = 0;
    Int_t mcPartonic_pho = 0;
    if (mode_ == 1 || mode_ == 2 || mode_ == 3  ||  mode_ == 18 ||  mode_ == 19 ) {
      for (Int_t i=0; i<nMC; ++i) {    
	if (mcPID[i] == 22 && (fabs(mcMomPID[i]) < 6 || mcMomPID[i] == 21)) mcIFSR_pho++;
	if (mcPID[i] == 22 && mcMomPID[i] == 22) mcPartonic_pho++;
      }
    }
    
    // if pythia is used for diphoton.. no IFSR removing from QCD and Gjets!!!!!!      
    if ((mode_==1 || mode_ == 2  ||   mode_ == 18 ) && mcIFSR_pho >= 1 && mcPartonic_pho >=1) continue;
    if ((mode_ == 3 ||  mode_ == 19 )&& mcIFSR_pho == 2) continue;   

 
    bool prompt2= false;
    bool prompt1= false;
    bool prompt0= false;
    vertProb = -1;
    
    if (mode_ == 2  || mode_ == 1    ||   mode_ == 18     ){
      if      ( mcPartonic_pho >= 1 &&  mcIFSR_pho >= 1 ) prompt2 = true;
      else if ( mcPartonic_pho >= 1 &&  mcIFSR_pho == 0 ) prompt1 = true;
      else if ( mcPartonic_pho == 0 &&  mcIFSR_pho == 0 ) prompt0 = true;
    } else if(mode_ == 3 ||  mode_ == 19   ){
      if      ( mcIFSR_pho >= 2 ) prompt2 = true;
      else if ( mcIFSR_pho == 1 ) prompt1 = true;
      else if ( mcIFSR_pho == 0 ) prompt0 = true;
      if( prompt1 ) _minitree->mc_wXsec = 1.3*_weight_manager->xSecW();
    }
    
    if(mode_==1 || mode_==2 || mode_==3 || mode_==18 || mode_==19){
      if(prompt0)isprompt0=1;
      else isprompt0=0;
      if(prompt1)isprompt1=1;
      else isprompt1=0;
    }
    
    if( mode_ == 20 && isZgamma() ) continue;

    /// wei weight is just temporary and may not contain all info.
    float wei = _minitree->mc_wXsec * _minitree->mc_wPU  
      * _minitree->mc_wNgen * _minitree->mc_wHQT;

    if( isData && !PassTriggerSelection() ) continue;      nEvts[icutlevel++]++;
    if( std::isinf( wei ) || std::isnan( wei ) )continue;  nEvts[icutlevel++]++;
    
    
    
    //// ********************* define S4 variable **********************////
    for( int i=0; i<nPho; ++i){
      if( _config->setup() == "ReReco2011" ) phoS4ratio[i] = 1;
      else                                   phoS4ratio[i] = phoE2x2[i] / phoE5x5[i];
    }
    //// ************************************************************* ////

    if( !isData ) {
      //// ************** MC corrections (mostly MC) ******************* //// 
      // 1. energy shifting / smearing
      for( int i=0; i<nPho; ++i)
	if( fabs(phoSCEta[i]) <= 2.5 ) {
	  float smearing = overSmear.randOverSmearing(phoSCEta[i],phoR9[i],isInGAP_EB(i),overSmearSyst);
	  phoRegrE[i] *= (1 + smearing); 
	  phoE[i]     *= (1 + smearing); 
	  /// from MassFactorized in gglobe:   energyCorrectedError[ipho] *=(l.pho_isEB[ipho]) ? 1.07 : 1.045 ;
	  float smearFactor = 1;
	  if( _config->setup() == "ReReco2011" ) smearFactor = fabs(phoSCEta[i]) < 1.45 ? 1.07: 1.045;
	  phoRegrErr[i] *= smearFactor;
	}  
      
      
      // 2. reweighting of photon id variables (R9...)
      for (int i=0; i<nPho; ++i) ReweightMC_phoIdVar(i);
      //// ************************************************************* ////
    }
    
    //// ********** Apply regression energy ************* ////
    float phoStdE[500];
    for( int i=0; i<nPho; ++i)
      if( fabs(phoSCEta[i]) <= 2.5 ) {
	if( isData ){
	  float enCorrSkim = 1;//enScaleSkimEOS.energyScale( phoR9[i], phoSCEta[i], run);
	  float phoEnScale = enScale.energyScale( phoR9[i], phoSCEta[i], run)/enCorrSkim;
	  phoRegrE[i]  *= phoEnScale;
	  phoE[i]      *= phoEnScale;
	}
	phoStdE[i] = phoE[i];
	phoE[i]   = phoRegrE[i];
	
	/// transform calo position abd etaVtx, phiVtx with SC position
	for( int x = 0 ; x < 3; x++ )  phoCaloPos[i][x] = phoSCPos[i][x];
	for( int ivtx = 0 ; ivtx < nVtxBS; ivtx++ ) {
	  TVector3 xxi = getCorPhotonTVector3(i,ivtx);
	  phoEtaVtx[i][ivtx] = xxi.Eta();
	  phoPhiVtx[i][ivtx] = xxi.Phi();
	}
	
	/// additionnal smearing to go to data energy resolution
	phoRegrSmear[i] = phoE[i]*overSmearHCP.meanOverSmearing(phoSCEta[i],phoR9[i],isInGAP_EB(i),0);
	phoEt[i] = phoE[i] / cosh(phoEta[i]);  
      }    
    //// ************************************************* ////
     

    /// lepton selection
    int iElecVtx(-1), iMuonVtx(-1);
    vector<int> elecIndex = selectElectronsHCP2012( wei, iElecVtx );
    vector<int> muonIndex = selectMuonsHCP2012(     wei, iMuonVtx );

    vector<int>             event_vtx; 
    vector<int>             event_ilead ;
    vector<int>             event_itrail;
    vector<TLorentzVector>  event_plead ;
    vector<TLorentzVector>  event_ptrail;
    TLorentzVector leptag;
    
    int lepCat = -1;
    bool exitLoop = false;
    for( int ii = 0     ; ii < nPho ; ++ii ) {
      for( int jj = (ii+1); jj < nPho ; ++jj ) {
	// Preselection 2nd leg
	if (DoPreselection && !preselectPhoton(ii,phoEt[ii])) continue;
	if (DoPreselection && !preselectPhoton(jj,phoEt[jj])) continue;
	
	/// define i, j locally, so when they are inverted this does not mess up the loop
	int i = ii; 
	int j = jj;
	if(phoEt[j] > phoEt[i]){ i = jj; j = ii; }	  
	
	// Select vertex
	int selVtx  = 0;
	TLorentzVector gi,gj;
	double mij(-1);
	
	vector<int> selVtxIncl;      
	if(_config->vtxSelType()==0)
	  selVtxIncl = getSelectedVertex(i,j,true,true );
	else //use sumpt2 ranking
	  selVtxIncl = selVtxSumPt2;
	selVtx = selVtxIncl[0];
	if( selVtx < 0 ) continue;

	/// check lepton tag
	if( muonIndex.size() > 0 ) {
	  //selVtx = iMuonVtx;	  
	  leptag.SetPtEtaPhiM( muPt[muonIndex[0]], muEta[muonIndex[0]], muPhi[muonIndex[0]],0);
	  if( selectTwoPhotons(i,j,selVtx,gi,gj,vetoElec) ) {
	    lepCat = 0;
	  }
	}
	
	/// check electron tag only if muon tag failed
	if( elecIndex.size() > 0 && lepCat == -1 ) {
	  //selVtx = iElecVtx;
	  leptag.SetPtEtaPhiM( elePt[elecIndex[0]], eleEta[elecIndex[0]], elePhi[elecIndex[0]],0);
	  if( selectTwoPhotons(i,j,selVtx,gi,gj,vetoElec) ) {
	    lepCat = 1;
	    if( fabs( (leptag+gi).M() - 91.19 ) < 10 || fabs( (leptag+gj).M() - 91.19 ) < 10 ) lepCat = -1;
	    /// this is not actually the cut, but it should be but ok (dR(pho,eleTrk) > 1 no dR(pho,anyTrk) > 1 )
	    if(phoCiCdRtoTrk[i] < 1 || phoCiCdRtoTrk[j] <1 ) lepCat = -1;
	  }
	}
	

	if( lepCat >= 0 ) {
	  mij = (gi+gj).M();
          if( _config->analysisType() == "MVA" )
	        if( gi.Pt() / mij < 45./120. || gj.Pt() / mij < 30./120. ) lepCat = -1;
          if( _config->analysisType() == "baselineCiC4PF" )
	        if( gi.Pt() / mij < 45./120. || gj.Pt() < 25. ) lepCat = -1;
	  if( leptag.DeltaR(gi) < 1.0  || leptag.DeltaR(gj) < 1.0  ) lepCat = -1;
	}
	if( lepCat >= 0 ) {
	  cout << " ****** keep leptag event pts[photons] i: " << i << " j: " << j << "   -> event: " << ientry <<  endl;
	  cout << "        leptonCat: " << lepCat << endl;
	  /// if one pair passes lepton tag then no need to go further
	  /// fill in variables
	  event_vtx.resize(   1); event_vtx[0]    = selVtx;
	  event_ilead.resize( 1); event_ilead[0]  = i;
	  event_itrail.resize(1); event_itrail[0] = j;
	  event_plead.resize( 1); event_plead[0]  = gi;
	  event_ptrail.resize(1); event_ptrail[0] = gj;
	  exitLoop = true;
	  break;	
	} else {
	  /// inclusive + VBF + MetTag preselection
	  
	  /// apply kinematic cuts
	  if( !selectTwoPhotons(i,j,selVtx,gi,gj,vetoElec) ) continue;
	  /// drop photon pt cuts from inclusive cuts (add them in categorisation only)
	  mij = (gi+gj).M();	
	  if( ! _config->doSkimming() && 
	      ( gi.Pt()     < _config->pt1Cut() || gi.Pt() < _config->pt2Cut() ||
		gi.Pt()/mij < _config->loosePt1MCut() ||
		gj.Pt()/mij < _config->loosePt2MCut() ) ) continue;
	}
	
	/// here i = lead; j = trail (selectTwoPhotons does that)
	/// fill in variables
	event_vtx.push_back( selVtx );
	event_ilead.push_back(   i  );
	event_itrail.push_back(  j  );
	event_plead.push_back(  gi  );
	event_ptrail.push_back( gj  );   	  
      }
      if( exitLoop ) break;
    }
      
    if(event_ilead.size()==0 || event_itrail.size()==0)continue;
    if(event_vtx.size() == 0 ) continue;  // no pairs selected
    nEvts[icutlevel++]++;

    // Now decide which photon-photon pair in the event to select
    // for lepton tag (size of arrays is 1, so dummy selection)
    unsigned int selectedPair = 0;
    float sumEt = -1;
    for (unsigned int p=0; p < event_vtx.size(); p++) {
      float tempSumEt = event_plead[p].Pt() + event_ptrail[p].Pt();
      if( tempSumEt > sumEt) {
	sumEt = tempSumEt;
      selectedPair = p;
      }
    } 
    

    int ilead  = event_ilead[  selectedPair ];
    int itrail = event_itrail[ selectedPair ];
    int selVtx = event_vtx[    selectedPair ];
    TLorentzVector glead  = event_plead[selectedPair];
    TLorentzVector gtrail = event_ptrail[selectedPair];
    TLorentzVector hcand  = glead + gtrail;

    int CAT4 = cat4(phoR9[ilead], phoR9[itrail], phoSCEta[ilead], phoSCEta[itrail]);
    
    if( glead.Pt()  < _config->pt1Cut() ) continue;
    if( gtrail.Pt() < _config->pt2Cut() ) continue;
    if( hcand.M()   < _config->mggCut() ) continue;
    nEvts[icutlevel++]++;

    _minitree->mtree_runNum = run;
    _minitree->mtree_evtNum = event;
    _minitree->mtree_lumiSec = lumis;

    //    TLorentzVector g1,g2;
    //    g1.SetPtEtaPhiM(phoE[ilead ]/cosh(phoEta[ilead]),phoEta[ilead ], phoPhi[ilead ], 0);
    //    g2.SetPtEtaPhiM(phoE[itrail]/cosh(phoEta[ilead]),phoEta[itrail], phoPhi[itrail], 0);
    //    TLorentzVector lgg = g1 + g2;
    //_minitree->mtree_massDefVtx = lgg.M();
    _minitree->mtree_massDefVtx = hcand.M()/sqrt(phoE[ilead]*phoE[itrail])*sqrt(phoStdE[ilead]*phoStdE[itrail]);

    // calc again vertex to get correct vertex probability (can be different from last one in loop)
    vector<int> sortedVertex;
    if(_config->vtxSelType()==0)
      sortedVertex = getSelectedVertex( ilead, itrail, true, true );
    else //use sumpt2 ranking
      sortedVertex = selVtxSumPt2;

    if( sortedVertex.size() < 2 ) sortedVertex.push_back(-1);
    if( sortedVertex.size() < 3 ) sortedVertex.push_back(-1);

    if( lepCat >= 0 ) {
      /// lepton tag
      sortedVertex[0] = selVtx;  
      sortedVertex[1] = -1; 
      sortedVertex[2] = -1; 
      //      vertProb = 1;
    } 

    _minitree->mtree_rho   = rho2012;
    _minitree->mtree_rho25 = rho25;    
    _minitree->mtree_zVtx  = vtxbs[selVtx][2];
    _minitree->mtree_nVtx  = nVtxBS;
    _minitree->mtree_ivtx1 = selVtx;
    _minitree->mtree_ivtx2 = sortedVertex[1];
    _minitree->mtree_ivtx3 = sortedVertex[2];
    _minitree->mtree_vtxProb = vertProb;
    _minitree->mtree_vtxMva  = vertMVA;

    _minitree->mtree_mass  = hcand.M();
    _minitree->mtree_pt    = hcand.Pt();
    _minitree->mtree_piT   = hcand.Pt()/hcand.M();
    _minitree->mtree_y     = hcand.Rapidity();

    /// spin variables
    TLorentzVector gtmp1 = glead;  gtmp1.Boost( -hcand.BoostVector() );
    TLorentzVector gtmp2 = gtrail; gtmp2.Boost( -hcand.BoostVector() );
    _minitree->mtree_cThetaLead_heli  = cos( gtmp1.Angle(hcand.BoostVector()) );
    _minitree->mtree_cThetaTrail_heli = cos( gtmp2.Angle(hcand.BoostVector()) );
    _minitree->mtree_cThetaStar_CS    = 2*(glead.E()*gtrail.Pz() - gtrail.E()*glead.Pz())/(hcand.M()*sqrt(hcand.M2()+hcand.Pt()*hcand.Pt()));
    
    /// fill photon id variables in main tree
    _minitree->mtree_minR9      = +999;
    _minitree->mtree_minPhoIdEB = +999;
    _minitree->mtree_minPhoIdEE = +999;
    _minitree->mtree_maxSCEta   =   -1;
    _minitree->mtree_minSCEta   = +999;
    for( int i = 0 ; i < 2; i++ ) {
      int ipho = -1;
      if( i == 0 ) ipho = ilead;
      if( i == 1 ) ipho = itrail;
      fillPhotonVariablesToMiniTree( ipho, selVtx, i );      
      if( _minitree->mtree_r9[i] < _minitree->mtree_minR9 ) _minitree->mtree_minR9 = _minitree->mtree_r9[i];
      if( fabs( _minitree->mtree_sceta[i] ) <  1.5 &&  _minitree->mtree_mvaid[i] <  _minitree->mtree_minPhoIdEB ) _minitree->mtree_minPhoIdEB = _minitree->mtree_mvaid[i];
      if( fabs( _minitree->mtree_sceta[i] ) >= 1.5 &&  _minitree->mtree_mvaid[i] <  _minitree->mtree_minPhoIdEE ) _minitree->mtree_minPhoIdEE = _minitree->mtree_mvaid[i];
      if( fabs( _minitree->mtree_sceta[i] ) > _minitree->mtree_maxSCEta ) _minitree->mtree_maxSCEta =  fabs(_minitree->mtree_sceta[i]);
      if( fabs( _minitree->mtree_sceta[i] ) < _minitree->mtree_minSCEta ) _minitree->mtree_minSCEta =  fabs(_minitree->mtree_sceta[i]);
    }
    
    //------------ compute diphoton mva (add var to minitree inside function) ----------------//
    massResoCalc.setP4CalPosVtxResoSmear( glead,gtrail, 
					  TVector3(phoCaloPos[ilead ][0], phoCaloPos[ilead ][1],phoCaloPos[ilead ][2]),
					  TVector3(phoCaloPos[itrail][0], phoCaloPos[itrail][1],phoCaloPos[itrail][2]),
					  TVector3(vtxbs[selVtx][0], vtxbs[selVtx][1], vtxbs[selVtx][2]),
					  _minitree->mtree_relResOverE, _minitree->mtree_relSmearing );

    
    _minitree->mtree_massResoTot = massResoCalc.relativeMassResolutionFab_total( vertProb );    
    _minitree->mtree_massResoEng = massResoCalc.relativeMassResolutionFab_energy( );    
    _minitree->mtree_massResoAng = massResoCalc.relativeMassResolutionFab_angular();    
   
    float diphotonmva = DiPhoID_MVA( glead, gtrail, hcand, massResoCalc, vertProb, 
				     _minitree->mtree_mvaid[0],_minitree->mtree_mvaid[1] );

    
    // ---- Start categorisation ---- //
    _minitree->mtree_lepTag  = 0;
    _minitree->mtree_metTag  = 0;
    _minitree->mtree_vbfTag  = 0;
    _minitree->mtree_hvjjTag = 0;

    // 1. lepton tag
    if( lepCat >= 0 ) {
      _minitree->mtree_lepTag = 1;
      _minitree->mtree_lepCat = lepCat;
      _minitree->mtree_fillLepTree  = true;
      // if( lepCat == 0 ) fillMuonTagVariables(lepTag,glead,gtrail,elecIndex[0],selVtx);
      // if( lepCat == 1 ) fillElecTagVariables(lepTag,glead,gtrail,muonIndex[0],selVtx);
    }

    // 3. met tag (For the jet energy regression, MET needs to be corrected first.)
    _minitree->mtree_rawMet    = recoPfMET;
    _minitree->mtree_rawMetPhi = recoPfMETPhi;
    //    if( !isData ) {
      /// bug in data skim, met correction already applied
      //3.1 Soft Jet correction (FC?)    
      applyJEC4SoftJets();
      //3.2 smearing
      if( !isData ) METSmearCorrection(ilead, itrail);
      //3.3 shifting (even in data? but different in data and MC)
      METPhiShiftCorrection();
      //3.4 scaling
      if( isData) METScaleCorrection(ilead, itrail);
      //    }
    _minitree->mtree_corMet    = recoPfMET;
    _minitree->mtree_corMetPhi = recoPfMETPhi;
    
    // 2. dijet tag
    Int_t nVtxJetID = -1;
    if( _config->doPUJetID() ) nVtxJetID = nVtxBS;
    //vector<int> goodJetsIndex = selectJets( ilead, itrail, nVtxJetID, wei, selVtx );
    vector<int> goodJetsIndex = selectJetsJEC(  ilead, itrail, nVtxJetID, wei, selVtx );
    int vbftag(-1),hstratag(-1),catjet(-1);
    dijetSelection( glead, gtrail, goodJetsIndex, wei, selVtx, vbftag, hstratag, catjet);
    _minitree->mtree_vbfTag  = vbftag;
    _minitree->mtree_hvjjTag = hstratag;
    _minitree->mtree_vbfCat  = catjet;      

    // 2x. radion analysis

    // take the very same photon candidates as in the H->GG analysis above
    _minitree->radion_evtNum = event;
    *(_minitree->radion_gamma1) = glead;
    *(_minitree->radion_gamma2) = gtrail;

    vector<int> goodJetsIndexRadion = selectJetsRadion(nVtxJetID, selVtx);
    _minitree->radion_bJetTags->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_genJetPt        ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_eta             ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_cef		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_nef		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_mef		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_nconstituents	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_chf		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_JECUnc	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_ptLeadTrack	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_vtxPt		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_vtx3dL	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_SoftLeptPtCut	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_dPhiMETJet	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_nch		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_vtx3deL	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_vtxMass	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_ptRaw		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_EnRaw		  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_SoftLeptptRelCut->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_SoftLeptdRCut	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_partonID	  ->Set(goodJetsIndexRadion.size());
    _minitree->radion_jet_dRJetGenJet         ->Set(goodJetsIndexRadion.size());
    _minitree->radion_MET = recoPfMET;
    _minitree->radion_rho25 = rho25;

    for (unsigned i = 0; i < goodJetsIndexRadion.size(); i++) {
      int iJet = goodJetsIndexRadion[i];

      //_minitree->radion_bJetTags->AddAt(jetCombinedSecondaryVtxMVABJetTags[iJet], i);
      _minitree->radion_bJetTags->AddAt(jetCombinedSecondaryVtxBJetTags[iJet], i);
      _minitree->radion_jet_genJetPt         ->AddAt(jetGenJetPt[iJet], i);
      _minitree->radion_jet_eta              ->AddAt(jetEta[iJet], i);
      _minitree->radion_jet_cef		     ->AddAt(jetCEF[iJet], i);
      _minitree->radion_jet_nef		     ->AddAt(jetNEF[iJet], i);
      _minitree->radion_jet_mef		     ->AddAt(jetMEF[iJet], i);
      _minitree->radion_jet_nconstituents    ->AddAt(jetNConstituents[iJet], i);
      _minitree->radion_jet_chf		     ->AddAt(jetCHF[iJet], i);
      _minitree->radion_jet_JECUnc	     ->AddAt(jetJECUnc[iJet], i);
      _minitree->radion_jet_ptLeadTrack	     ->AddAt(jetLeadTrackPt[iJet], i);
      _minitree->radion_jet_vtxPt	     ->AddAt(jetVtxPt[iJet], i);
      _minitree->radion_jet_vtx3dL	     ->AddAt(jetVtx3dL[iJet], i);
      _minitree->radion_jet_SoftLeptPtCut    ->AddAt(jetSoftLeptPt[iJet], i);
      _minitree->radion_jet_nch		     ->AddAt(jetNCH[iJet], i);
      _minitree->radion_jet_vtx3deL	     ->AddAt(jetVtx3deL[iJet], i);
      _minitree->radion_jet_vtxMass	     ->AddAt(jetVtxMass[iJet], i);
      _minitree->radion_jet_ptRaw	     ->AddAt(jetRawPt[iJet], i);
      _minitree->radion_jet_EnRaw	     ->AddAt(jetRawEn[iJet], i);
      _minitree->radion_jet_SoftLeptptRelCut ->AddAt(jetSoftLeptPtRel[iJet], i);
      _minitree->radion_jet_SoftLeptdRCut    ->AddAt(jetSoftLeptdR[iJet], i);
      _minitree->radion_jet_partonID	     ->AddAt(jetPartonID[iJet], i);
      _minitree->radion_jet_dRJetGenJet      ->AddAt(sqrt(pow(jetEta[iJet]-jetGenEta[iJet],2)+pow(jetPhi[iJet]-jetGenPhi[iJet],2)), i);
      float tmpPi = 3.1415927, tmpDPhi=fabs(jetPhi[iJet]-recoPfMETPhi);
      if(tmpDPhi>tmpPi) tmpDPhi=2*tmpPi-tmpDPhi;
      _minitree->radion_jet_dPhiMETJet	     ->AddAt(tmpDPhi, i);

      TLorentzVector* jet = new((*(_minitree->radion_jets))[_minitree->radion_jets->GetEntriesFast()]) TLorentzVector();
      jet->SetPtEtaPhiE(jetPt[iJet], jetEta[iJet], jetPhi[iJet], jetEn[iJet]);
    }

    // Continue step 3.
    if (  MetTagSelection(glead,gtrail,goodJetsIndex) && _minitree->mtree_vbfTag == 0 && _minitree->mtree_lepTag == 0   && 
	 _minitree->mtree_corMet > 70.  &&	 
	 fabs( phoSCEta[ilead] ) < 1.45 && fabs( phoSCEta[itrail]) < 1.45 ) _minitree->mtree_metTag = 1;

    //----------- categorisation (for now incl + vbf + lep + met) -----------//
    _minitree->mtree_catBase = CAT4;
    _minitree->mtree_catMva  = -1;
    for( int icat_mva = 0 ; icat_mva < 4; icat_mva++ )
      if( diphotonmva >= Ddipho_cat[icat_mva] ) { _minitree->mtree_catMva = icat_mva; break; }
    if       ( _minitree->mtree_lepTag == 1 ) {
      _minitree->mtree_catBase = _minitree->mtree_lepCat + 6;
      _minitree->mtree_catMva  = _minitree->mtree_lepCat + 6;
    } else if( _minitree->mtree_vbfTag == 1 ) {
      _minitree->mtree_catBase = _minitree->mtree_vbfCat + 4;
      _minitree->mtree_catMva  = _minitree->mtree_vbfCat + 4;
    } else if( _minitree->mtree_metTag == 1 ) {
      _minitree->mtree_catBase = 8;
      _minitree->mtree_catMva  = 8;
    }
    if( diphotonmva < Ddipho_cat[3] )  _minitree->mtree_catMva  = -1;
    
    /// photon pt cut was dropped from the inclusive cuts
    if(  _minitree->mtree_catMva  < 4 && (glead.Pt()/hcand.M() < 1./3. || gtrail.Pt()/hcand.M() < 1./4.) ) 
       _minitree->mtree_catMva  = -1;

    if(  _minitree->mtree_catBase < 4 && (glead.Pt()/hcand.M() < 1./3. || gtrail.Pt()/hcand.M() < 1./4.) ) 
       _minitree->mtree_catBase  = -1;
    
    //------------ MC weighting factors and corrections    
    if( !isData ) {
      /// needs to be recomputed for each event (because reinit var for each event)
      _minitree->mc_wNgen = 100000./_weight_manager->getNevts();
      _minitree->mc_wXsec  = _weight_manager->xSecW(mc_whzh_type);      
      if( ( mode_ == 3 ||  mode_ == 19 ) && isprompt1 == 1 ) _minitree->mc_wXsec  *= 1.3;
      _minitree->mc_wBSz   = _weight_manager->bszW(vtxbs[selVtx][2]-mcVtx[0][2]);
      _minitree->mc_wVtxId = _weight_manager->vtxPtCorrW( hcand.Pt() );
      
      /// photon identification
      float wPhoId[] = { 1., 1.};
      for( int i = 0 ; i < 2; i++ ) {
	wPhoId[i] = 1;
	int index = -1;
	if( i == 0 ) index = ilead;
	if( i == 1 ) index = itrail;
	wPhoId[i] *= _weight_manager->phoIdPresel(phoR9[index],phoSCEta[index]);
	if( _config->analysisType() == "baselineCiC4PF" ) wPhoId[i] *= _weight_manager->phoIdCiC(phoR9[index],phoSCEta[index]);
	if( _config->analysisType() == "MVA"            ) wPhoId[i] *= _weight_manager->phoIdMVA(phoR9[index],phoSCEta[index]);
	if( vetoElec[i] ) wPhoId[i] *= _weight_manager->phoIdEleVeto(phoR9[index],phoSCEta[index]);	      
      }
      _minitree->mc_wPhoEffi   = wPhoId[0]*wPhoId[1];
      
      /// trigger efficiency
      _minitree->mc_wTrigEffi = 0.9968; /// FIX ME

      /// cross section volontary not included in total weight
      _minitree->mc_wei = 
	_minitree->mc_wPU       *
	_minitree->mc_wBSz      *
	_minitree->mc_wHQT      *  /// = 1 but in 2011
	_minitree->mc_wVtxId    *
	_minitree->mc_wPhoEffi  *
	_minitree->mc_wTrigEffi *
	_minitree->mc_wNgen;

      wei =  _minitree->mc_wei;
    }
    nEvts[icutlevel++]++;
    if( _minitree->mtree_lepTag ) nEvts[icutlevel+0]++;
    if( _minitree->mtree_vbfTag ) nEvts[icutlevel+1]++;
    
    //// following crap can be removed when the synchornization will be successfull. 
    if( DoDebugEvent ) {
      _minitree->setSynchVariables();
      _xcheckTextFile << " pho1 pos: " << phoPos[ilead]  << endl;
      _xcheckTextFile << " ieta1 : " << phoSeedDetId1[ilead] << " iphi1: " << phoSeedDetId2[ilead] << endl;
      _xcheckTextFile << " pho2 pos: " << phoPos[itrail] << endl;
      _xcheckTextFile << " ieta1 : " << phoSeedDetId1[itrail] << " iphi1: " << phoSeedDetId2[itrail] << endl;

      _xcheckTextFile << " oversmear 1: " << overSmear.meanOverSmearing(phoSCEta[ilead],phoR9[ilead]  ,isInGAP_EB(ilead),0) << endl;
      _xcheckTextFile << " oversmear 2: " << overSmear.meanOverSmearing(phoSCEta[itrail],phoR9[itrail],isInGAP_EB(itrail),0) << endl;
      _xcheckTextFile << " mass reso (eng only): " << _minitree->mtree_massResoEng << endl;
      _xcheckTextFile << " mass reso (ang only): " << _minitree->mtree_massResoAng << endl;

      for( unsigned i = 0 ; i < _minitree->sync_iName.size(); i++ )
	cout  << _minitree->sync_iName[i] << ":" << *_minitree->sync_iVal[i]  << "  ";
      for( unsigned i = 0 ; i < _minitree->sync_lName.size(); i++ )
	cout << _minitree->sync_lName[i] << ":" << *_minitree->sync_lVal[i]  << "  ";
      for( unsigned i = 0 ; i < _minitree->sync_fName.size(); i++ )
	cout << _minitree->sync_fName[i] << ":" << *_minitree->sync_fVal[i]  << "  ";
      cout << endl;	
      

      cout << "  myVtx = " << selVtx << "; 1=" << sortedVertex[1] << " 2= " << sortedVertex[2] << endl;
      for( int ivtx = 0; ivtx < nVtxBS; ivtx++ ) {
	cout << " etas[ ivtx = " << ivtx << "] = " << phoEtaVtx[ilead][ivtx] << " - " << phoEtaVtx[itrail][ivtx] << "  - zVtx = " << vtxbs[ivtx][2] << endl;

      }
    }

    _minitree->fill();    
    if( _config->doSkimming() && tSkim ) {
      /// undo all modifs before filling the skim
      fChain->GetEntry(jentry);
      tSkim->Fill();
    }
    //---------------      
    
  //   }    
  }// end for entry
  if( _config->doSkimming() ) {
    _minitree->mtree_file->cd();
    TH1F *hEvents = new TH1F("hEvents","hEvents",2,0,2);
    hEvents->SetBinContent(1,_weight_manager->getNevts());
    hEvents->SetBinContent(2,nEvts[nEvts.size()-1]);
    hEvents->Write();
    tSkim->Write();
    _minitree->mtree_file->Close();
  } else  _minitree->end();

  for( unsigned icut = 0 ; icut < nEvts.size(); icut++ )
    cout << nCutName[icut] << nEvts[icut] << endl;
  
  delete rnd;  

  return nEvts[nEvts.size()-1];
}
示例#3
0
bool leptonic_fitter_algebraic::fit( const TLorentzVector& B, const TH1& BITF, const TF1& Beff, 
				     const TLorentzVector& lep, 
				     double MEX, double MEY, const TF1& dnuPDF )
{
  if( _dbg > 19 ) cout<<"DBG20 Entered leptonic_fitter_algebraic::fit with B mass: "<<B.M()<<", l_m:"<<lep.M()<<", MET: "<<MEX<<" "<<MEY<<endl;
  if( B.M() <= 0 ) throw std::runtime_error( "leptonic_fitter_algebraic was given a b-jet with an illegal (non-positive) mass!"); 
  if( lep.M() < 0 ) throw std::runtime_error( "leptonic_fitter_algebraic was given a lepton with an illegal (negative) mass!"); 
  _converged = _swapped = false;
  _obsB = B;
  _obsL = lep;

  _BITF = &BITF;
  _Beff = &Beff;
  _dnuPDF = dnuPDF;

  _b_m2 = B.M2();

  double lep_b_angle = lep.Angle( B.Vect() );
  double cos_lep_b = TMath::Cos( lep_b_angle );
  double sin_lep_b = TMath::Sin( lep_b_angle );
  double b_p = B.P();
  double b_e = B.E();
  _denom = b_e - cos_lep_b * b_p;
  
  _lep_p = lep.P();
  _x0 = - _W_m2 / ( 2 * _lep_p );
  _y1 = - sin_lep_b * _x0 * b_p / _denom;
  _x1_0 = _x0 * b_e / _denom  -  _y1*_y1 / _x0;
  _Z2_0 = _x0*_x0 - _W_m2 - _y1*_y1;
  if( _dbg > 219 ) cout<<"DBG220 lfa updated lepton with: "<<lv2str( lep )<<" -> x0:"<<_x0<<", y1: "<<_y1<<", x1_0: "<<_x1_0<<", Z2_0: "<<_Z2_0<<endl;

  static double bnums[3];
  bnums[0] = B.X();
  bnums[1] = B.Y();
  bnums[2] = B.Z();
  TMatrixD bXYZ( 3, 1, bnums );
  _R_T = rotation( 2, lep.Phi() ); // R_z^T
  _R_T *= rotation( 1, lep.Theta() - 0.5*TMath::Pi() ); // R_z^T R_y^T
  TMatrixD rotation_vect( _R_T, TMatrixD::kTransposeMult, bXYZ ); // R_y R_z
  double* rotation_array = rotation_vect.GetMatrixArray();
  double phi_x = - TMath::ATan2( rotation_array[2], rotation_array[1] );
  if( _dbg > 99 ) cout<<"DBG100 lfa x rotation vector is:"<<rotation_array[0]<<" "<<rotation_array[1]<<" "<<rotation_array[2]<<" -> phi_x:"<<phi_x<<endl;
  _R_T *= rotation( 0, - phi_x ); // R_z^T R_y^T R_x^T

  // set up _Nu's non-zero elements so that \vec{nu} = Nu \vec{t} for any \vec{t} (since only t's 3nd component is used, and its always 1).
  _Nu[0][2] = MEX;
  _Nu[1][2] = MEY;

  double iVarMET = TMath::Power( TMath::Max( 1., dnuPDF.GetHistogram()->GetRMS() ), -2 );
  _invFlatVar[0][0] = _invFlatVar[1][1] = iVarMET; // set up the chi^2 distance with the right order of magnitude (generalizes to rotated covariance matrix)
  if( _dbg > 209 ) cout<<"DBG210 lfa "<<dnuPDF.GetName()<<" --> iVarMET:"<<iVarMET<<endl;

  // (re)define fit parameter, so all fits start off on an equal footing
  _mini->SetPrintLevel( _minimizer_print_level );
  _mini->Clear();
  _mini->SetFunction( _functor );
  leptonic_fitter_algebraic_object = this; // set the function in the functor pointing back to this object. Doubtfull that all this redirection is needed...
  _mini->SetTolerance( _tolerance );
  bool OK = _mini->SetLimitedVariable( 0, "sB", 1.0, 0.4, 0.1, 6.0 );
  //bool OK = _mini->SetVariable( 0, "sB", 1.0, 0.4 );
  if( ! OK ) {cerr<<"minimizer (@lfa) failed to SetVariable."<<endl; return false;}

  // define 1 sigma in terms of the function
  _mini->SetErrorDef( 0.5 ); // since this is a likelihood fit

  // do the minimization
  OK = _mini->Minimize(); 
  if( _dbg > 19 && ( ! OK || _dbg > 59 ) ) cout<<"DBG INFO: initial fit @lfa returned OK: "<<OK<<", has status: "<<_mini->Status()<<endl;

  _converged = OK; // use status somehow? depends on fitter?

  // read parameters
  const double *xs = _mini->X();
  for( int ip = 0; ip < 1; ++ip ) _params[ ip ] = xs[ ip ];

  // return all intermediate results to the minimum, in particular, the discriminant
  calc_MLL( _params, true );
  TMatrixD nu_vec( _Emat, TMatrixD::kMult, _tvec );
  update_nu_and_decay_chain( nu_vec );
  if( _dbg > 203 ) cout<<"DBG204 lfa finalized _genN: "<<lv2str(_genN)<<", _W: "<<lv2str(_W)<<", & _t: "<<lv2str(_T)<<endl;

  _MLL = _mini->MinValue();
  return true;
} 
示例#4
0
int main() 
{

	// -- Declaring Cuba variables -- //
	int comp, nregions, neval, fail;
	cubareal integral[NCOMP], error[NCOMP], prob[NCOMP];
	
	// -- ThreeBodyDecay initialization-- // 
	muon.SetMotherMPThetaPhi(M,muon_p,muon_theta,muon_phi);
	muon.SetBitBoostBack(BitBoostBack);

	// -- Set up pointers to the momenta
	P  = muon.P;
	p1 = muon.p[0];
	p2 = muon.p[1];
	p3 = muon.p[2];

	// -- Get muon kinematics
   double P_gamma  = P->Gamma();
   double P_beta   = P->Beta();
   double P_M      = P->M();
   double P_MomMag = P->P();

	// -- Polarization vector -- //
	// -- Custom vector construction
   k0_custom = TLorentzVector(1.0, 0.0, 0.0, 1.0);
   // k0_custom = TLorentzVector(3, 2, 0.0, 1.0);
   // k0_custom = TLorentzVector(1.0, 0.0, 0.0, 1.0);
	double alpha = 1;

	// -- Phyicsal vector construction
	k0_physical[3] = 1;
	for (int i = 0; i<3; i++)
	{ k0_physical[i] = (*P)[i]/P_MomMag; }

	for (int nu = 0; nu<4; nu++)
	{ k0_physical[nu] = alpha*k0_physical[nu]/(P_M*P_gamma*(1+P_beta)); }
	
	// -- Choosing k0 auxiliary vector
	if ( k0_flag == 1)
	{ k0 = k0_custom; }

	if ( k0_flag == 2)
	{ k0 = k0_physical; }

	// Get pk0 scalar product
	double Pk0 = P->Dot(k0);

	// Custom spin polarization vector with p and k0
	if (polvec_flag == 1)
	{
		for(int nu = 0; nu<4; nu++)
		{ polvec[nu] = ( (*P)[nu]/M) - (M/Pk0)*k0[nu]; }
	}

	// Helicity spin ampltiude vector
	// Note:
	// This should be equivalent to the custom pol. vector
	// when choosing physical k0
	// Default:
	if (polvec_flag == 2)
	{

		TVector3 phat(1.0,0.0,0.0);
		phat.SetPhi(phat_phi);
		phat.SetTheta(phat_theta);

		polvec = TLorentzVector(phat,P->Beta());

		for(int nu = 0; nu<4; nu++)
		{ polvec[nu] = polvec[nu]*P_gamma; }
	}

	phat34 = TVector3(1.0,0.0,0.0);
   phat34.SetPhi(phat34_phi);
   phat34.SetTheta(phat34_theta);
	polvec34 = TLorentzVector(phat34,0);



/////////////////////////////////////////////////////////////////////////

#if 1

  printf("-------------------- Vegas test --------------------\n");

  Vegas(NDIM, NCOMP, Integrand, USERDATA, NVEC,
    EPSREL, EPSABS, VERBOSE, SEED,
    MINEVAL, MAXEVAL, NSTART, NINCREASE, NBATCH,
    GRIDNO, STATEFILE, SPIN,
    &neval, &fail, integral, error, prob);

  printf("VEGAS RESULT:\tneval %d\tfail %d\n",
    neval, fail);
  comp = 0;
    printf("VEGAS RESULT:\t%.8f +- %.8f\tp = %.3f\n",
      (double)integral[comp], (double)error[comp], (double)prob[comp]);
#endif

#if 0
  printf("\n-------------------- Suave test --------------------\n");

  Suave(NDIM, NCOMP, Integrand, USERDATA, NVEC,
    EPSREL, EPSABS, VERBOSE | LAST, SEED,
    MINEVAL, MAXEVAL, NNEW, NMIN, FLATNESS,
    STATEFILE, SPIN,
    &nregions, &neval, &fail, integral, error, prob);

  printf("SUAVE RESULT:\tnregions %d\tneval %d\tfail %d\n",
    nregions, neval, fail);
  comp = 0;
    printf("SUAVE RESULT:\t%.8f +- %.8f\tp = %.3f\n",
      (double)integral[comp], (double)error[comp], (double)prob[comp]);
#endif

#if 0
  printf("\n------------------- Divonne test -------------------\n");

  Divonne(NDIM, NCOMP, Integrand, USERDATA, NVEC,
    EPSREL, EPSABS, VERBOSE, SEED,
    MINEVAL, MAXEVAL, KEY1, KEY2, KEY3, MAXPASS,
    BORDER, MAXCHISQ, MINDEVIATION,
    NGIVEN, LDXGIVEN, NULL, NEXTRA, NULL,
    STATEFILE, SPIN,
    &nregions, &neval, &fail, integral, error, prob);

  printf("DIVONNE RESULT:\tnregions %d\tneval %d\tfail %d\n",
    nregions, neval, fail);
  for( comp = 0; comp < NCOMP; ++comp )
    printf("DIVONNE RESULT:\t%.8f +- %.8f\tp = %.3f\n",
      (double)integral[comp], (double)error[comp], (double)prob[comp]);
#endif

#if 0
  printf("\n-------------------- Cuhre test --------------------\n");

  Cuhre(NDIM, NCOMP, Integrand, USERDATA, NVEC,
    EPSREL, EPSABS, VERBOSE | LAST,
    MINEVAL, MAXEVAL, KEY,
    STATEFILE, SPIN,
    &nregions, &neval, &fail, integral, error, prob);

  printf("CUHRE RESULT:\tnregions %d\tneval %d\tfail %d\n",
    nregions, neval, fail);
  for( comp = 0; comp < NCOMP; ++comp )
    printf("CUHRE RESULT:\t%.8f +- %.8f\tp = %.3f\n",
      (double)integral[comp], (double)error[comp], (double)prob[comp]);
#endif

  double result = (double)integral[comp];

  // If result is unpolarized divide by 2.0
  if ( (ampltiude == 0) || (ampltiude == 34) )
  { result = result / 2.0;}

  double PSConst = muon.GetPSConst();
  double result_wogamma = result * PSConst * G_Fermi * G_Fermi / M / 2.0  ;
  result = result * PSConst * G_Fermi * G_Fermi / P->E() / 2.0 ;

  double ratio_formula = result/gamma_formula;
  double ratio_PDG = result/gamma_PDG;

  double  tau = hbar/result;
  double ctau = tau*c;

  double  tau_wogamma = hbar/result_wogamma;
  double ctau_wogamma = tau_wogamma*c;


  // -- Displaying info -- //

  printf("\n");
  printf("###############################################\n");
  printf("### --- Muon decay lifetime calculation --- ###\n");
  printf("###############################################\n");

  printf("\n");

  printf("--------------------------\n");
  printf("--- Physical constants ---\n");
  printf("--------------------------\n");

  printf("\n");
  printf("hbar:    %12.6e [GeV s]\n", hbar);
  printf("c:       %12.6e [m/s]\n", c);
  printf("hbar*c:  %12.6e [GeV fm]\n", hbar_c);
  printf("G_Fermi: %12.6e [GeV^{-2}]\n", G_Fermi);

  printf("\n");
  printf("Muon constants:\n");
  printf("m (muon):                  %12.6f [GeV]\n", M);
  printf("c_tau:                     %12.6e  [fm]\n", c_tau_muon);
  printf("Gamma(PDG) = hbarc/c_tau = %12.6e [GeV]\n", gamma_PDG);

  printf("\n");
  printf("Other masses:\n");
  printf("m (elec):       %12.6f [GeV]\n", m1);
  printf("m (nu_e):       %12.6f [GeV]\n", m2);
  printf("m (nu_m):       %12.6f [GeV]\n", m3);

  printf("\n");
  printf("-------------------------\n");
  printf("---   Decay process   ---\n");
  printf("-------------------------\n");

  printf("\n");
  printf("(muon)- ---> (electron)- (nu_mu) (nu_electronbar)\n");
  printf("  p     --->      q        k            k' \n");
  printf("  p     --->      q        k1           k2 \n");
  printf("  P     --->     p1        p2           p3 \n");
  printf("\n");

  printf("-------------------------\n");
  printf("---   Configuration   ---\n");
  printf("-------------------------\n");

  printf("\n");
  printf("############\n");
  printf("### Muon ###\n");
  printf("############\n");
  printf("\n");
  printf("|mom|:  %12.6f [GeV/c]\n", muon_p);
  printf("theta:  %12.6f [rad]\n", muon_theta);
  printf("phi:    %12.6f [rad]\n", muon_phi);
  printf("gamma:  %12.6f \n", P->Gamma());
  printf("beta:   %12.6f \n", P->Beta());
  printf("\n");
  printf("Momentum:\n");
  displayTLorentzVector(P);
  printf("\n");

  printf("Unitvector pointing in the direction of momentum:\n");
  printf("x: %12.6f\n", (*P)[0]/P->P());
  printf("y: %12.6f\n", (*P)[1]/P->P());
  printf("z: %12.6f\n", (*P)[1]/P->P());
  printf("\n");


  printf("################################\n");
  printf("### Spin Polarization vector ###\n");
  printf("################################\n");
  printf("### - Denoted by s^{mu}         \n");
  printf("\n");


  if ( (ampltiude == -1) || (ampltiude == 0) || (ampltiude == 1) )
  {

  if ( polvec_flag == 1 )
  {

   printf("polvec_flag: %d\n", polvec_flag);
  	printf("Spin polarization defined with auxiliary vector k0:\n");
  	printf("s^{mu} = P^{mu}/M - (m/Pk0)*k0^{mu}\n");
   printf("\n");

  	printf("k0_flag: %d\n", k0_flag);
   if ( k0_flag == 1 )
	{ printf("Custom k0:\n"); }

   if ( k0_flag == 2 )
	{ 
		printf("Choice of k0, yielding helicity polarization vector.\n");
		printf("Physical k0:\n");
	}

  	displayTLorentzVector(&k0);
  	printf("\n");

  }

  if ( polvec_flag == 2 )
  {
   printf("polvec_flag: %d\n", polvec_flag);
  	printf("Spin polarization vector = helicity polarization vector\n");
 	printf("s^{mu} = ( |pvec|^2 , p0 pvec) / (m |pvec|)) = \n");
 	printf("       = gamma (beta,phat vector)\n");
   printf("\n");
  }

  printf("Spin polarization vector components:\n");
  displayTLorentzVector(&polvec);

  }

  if ( (ampltiude == 3) || (ampltiude == 4) || (ampltiude == 34) )
  {
  	 printf("Spin polarization vector defined in rest frame of the muon\n");
  	 printf("s^{mu} = (0,phat34)\n");

   printf("\n");
  	 printf("where the phat34 is pointing towards:\n");
  	 printf("phat34 theta: %12.6f\n", phat34_theta);
  	 printf("phat34 phi:   %12.6f\n", phat34_phi);

   printf("\n");
  	 printf("phat34 components:\n");
  	 printf("x: %12.6f\n", phat34[0]);
  	 printf("y: %12.6f\n", phat34[1]);
  	 printf("z: %12.6f\n", phat34[2]);

  }

  printf("\n");
  printf("--------------------------\n");
  printf("--- Consistency checks ---\n");
  printf("--------------------------\n");

  printf("\n");
  printf("- Lorentz scalar product (ps) = 0 (orthogonality check)\n");
  printf("(ps): %12.6e     (should give really small value)\n", (*P)*polvec);

  printf("\n");
  printf("- k0^{2} = 0 (massless auxuliary vector)\n");
  printf("(k0)^2: %12.6e     (should give really small value)\n", k0.M2());


  printf("\n");
  printf("------------------\n");
  printf("--- Ampltidude ---\n");
  printf("------------------\n");

  printf("\n");
  printf("Amplitude formula chosen: --->  %d  <--- \n", ampltiude);
  printf("\n");

  printf("Amplitude formula list:\n");
  printf("(No):  ---------------------- Formula ---------------------------- (polarization)\n");
  printf("- Default case:                              \n");
  printf(" (0): 128 * (p k') * (q k)                                         (unpolarized)\n");
  printf("(-1):  64 * (p k') * (q k) + 64 * M * (s k') * (q k)               (polarized)\n");
  printf("(+1):  64 * (p k') * (q k) - 64 * M * (s k') * (q k)               (polarized)\n");

  printf("- Custom:                              \n");
  printf(" (+3): 64 * gamma * ( 1 - beta ) *     (M * (k')^{0}) * (q k) -    (polarized)\n");
  printf("      -64 * gamma * ( 1 - beta ) * M *    (s k')      * (q k)                 \n");
  printf(" (+4): 64 * gamma * ( 1 + beta ) *     (M * (k')^{0}) * (q k) +    (polarized)\n");
  printf("      +64 * gamma * ( 1 + beta ) * M *    (s k')      * (q k)                 \n");
  printf("(+34): sum of (+3) and (+4)                                        (unpolarized)\n");

  printf("\n");
  printf("Notations:\n");
  printf("(muon)- ---> (electron)- (nu_mu) (nu_electronbar)\n");
  printf("  p     --->      q        k            k' \n");
  printf("  p     --->      q        k1           k2 \n");
  printf("  P     --->     p1        p2           p3 \n");
  printf("\n");

  printf("Leftover factors multiplying the result:\n");
  printf("- Coupling constant\n");
  printf("  G_Fermi^{2}\n");

  printf("- Initial particle state normalization:\n");
  printf("  1.0/(2*E) = 1.0/2*M (in the rest frame)\n");

  printf("- Spin averaging for the muon (only if unpolarized):\n");
  printf("  1.0/2.0\n");

  printf("\n");
  printf("ThreeBodyDecay class\n");
  printf("PSConstant (formula)  s23_length/pow(M_PI,3.0)/128.0\n");
  printf("PSConstant  (numval): %12.6e \n", PSConst);

  printf("\n");
  printf("---------------------------\n");
  printf("--- Other formulas used ---\n");
  printf("---------------------------\n");

  printf("\n");
  printf("Textbook result of the integration:\n");
  printf("Gamma: G_Fermi^{2}*m_mu^{5}/(192*pi^{3})\n");

  printf("\n");
  printf("tau  = hbar/Gamma\n");
  printf("ctau = c*tau\n");
  
  printf("\n");
  printf("-------------------------\n");
  printf("--- Numerical results ---\n");
  printf("-------------------------\n");

  printf("Don't forget: our result are quoted in the LAB frame, while the PDG and\n");
  printf("              the textbook formula are calculated in the muon rest frame!\n");
  printf("\n");

  printf("# Important flags:\n", ampltiude);
  printf("- k0_type:                    %d (see above at 'Spin polarization', 1 = custom, 2 = physical)\n", k0_flag);
  printf("- spin_polarization:          %d (see above at 'Spin polarization', 1 = computed with k0, 2 = helicity)\n", polvec_flag);
  printf("- Amplitude formula chosen:   %d (see above at 'Amplitude' )\n", ampltiude);
  printf("\n");
  printf("Note: Choosing (k0_type = 2) and (spin_polarization = 1) should give the same result as\n");
  printf("      choosing (spin_polarization = 2) by definition\n");
  printf("\n");

  printf("Gamma(PDG):                             %12.6e [GeV] (note: this is the total gamma!)\n", gamma_PDG);
  printf("Gamma(textbook):                        %12.6e [GeV]\n", gamma_formula);
  printf("Gamma(our result w/o gamma factor):     %12.6e [GeV]\n", result_wogamma);
  printf("Gamma(our result):                      %12.6e [GeV]\n", result);

  printf("\n");
  printf("ctau(PDG):                              %12.6e [m]\n", c_tau_muon*1e-15);
  printf("ctau(textbook):                         %12.6e [m]\n", ctau_formula*1e-15);
  printf("ctau(our result w/o gamma factor):      %12.6e [m]\n", ctau_wogamma);
  printf("ctau(our result):                       %12.6e [m]\n", ctau);
  printf("\n");
  printf("# Muon configuration\n");
  printf("beta:                                                %12.6f\n", P->Beta());
  printf("gamma:                                               %12.6f <-\n", P->Gamma());

  printf("\n");
  printf("# Ratios\n");
  printf("ratio of ctau's: (our result)/(textbook rest frame)  %12.6f <-\n", ctau/ctau_formula/1e-15);
  printf("ratio of the above two values:                       %12.6f\n", P->Gamma()/(ctau/ctau_formula/1e-15));
  printf("\n");
  printf("Note: You should compare the values of 'gamma' with the 'ratio of ctau's',\n");
  printf("      as they should be equal.\n");
  printf("      The 'ratio of the above two values' gives a measure how well they agree.\n");
  printf("      It should be close to unity, but there could be some tiny deviation as\n");
  printf("      this is after all a numerical integration.\n");

  printf("\n");
  printf("VEGAS RESULT:\t%.8f +- %.8f\tp = %.3f\n",
    (double)integral[comp], (double)error[comp], (double)prob[comp]);


  return 0;

}