TPZCompMesh *MalhaCompDois(TPZGeoMesh * gmesh, int pOrder, bool isdiscontinuous) { /// criar materiais int dim = 2; TPZMatPoisson3d *material; material = new TPZMatPoisson3d(matId,dim); TPZMaterial * mat(material); material->SetNoPenalty(); material->SetNonSymmetric(); REAL diff = -1.; REAL conv = 0.; TPZVec<REAL> convdir(3,0.); REAL flux = 0.; material->SetParameters(diff, conv, convdir); material->SetInternalFlux(flux); material->NStateVariables(); TPZCompEl::SetgOrder(pOrder); TPZCompMesh * cmesh = new TPZCompMesh(gmesh); cmesh->SetDimModel(dim); //cmesh->SetAllCreateFunctionsContinuous(); cmesh->InsertMaterialObject(mat); TPZAutoPointer<TPZFunction<STATE> > forcef = new TPZDummyFunction<STATE>(ForcingF, 5); material->SetForcingFunction(forcef); ///Inserir condicao de contorno TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.); TPZMaterial * BCond0 = material->CreateBC(mat, bc0,dirichlet, val1, val2); TPZMaterial * BCond2 = material->CreateBC(mat, bc2,dirichlet, val1, val2); TPZMaterial * BCond1 = material->CreateBC(mat, bc1,dirichlet, val1, val2); TPZMaterial * BCond3 = material->CreateBC(mat, bc3,dirichlet, val1, val2); cmesh->InsertMaterialObject(BCond0); cmesh->InsertMaterialObject(BCond1); cmesh->InsertMaterialObject(BCond2); cmesh->InsertMaterialObject(BCond3); //Ajuste da estrutura de dados computacional if (isdiscontinuous==true) { //Set discontinuous functions cmesh->SetAllCreateFunctionsDiscontinuous(); cmesh->AutoBuild(); cmesh->ExpandSolution(); cmesh->AdjustBoundaryElements(); cmesh->CleanUpUnconnectedNodes(); } else{ cmesh->SetAllCreateFunctionsContinuous(); cmesh->AutoBuild(); cmesh->ExpandSolution(); cmesh->AdjustBoundaryElements(); cmesh->CleanUpUnconnectedNodes(); } return cmesh; }
TPZCompMesh * ComputationalMesh(TPZGeoMesh * gmesh, int p) { int matid = 1; int dim = 2; REAL wavespeed = 1.0; ///Computational Mesh TPZCompEl::SetgOrder(p); TPZCompMesh * cmesh = new TPZCompMesh(gmesh); cmesh->SetDimModel(dim); cmesh->SetAllCreateFunctionsContinuous(); TPZMaterial * Air = new TPZLinearWave(matid,dim); cmesh->InsertMaterialObject(Air); { //Boundary Conditions TPZFMatrix<STATE> k1(dim,dim,0.), k2(dim,dim,0.); TPZMaterial * BCD = Air->CreateBC(Air, 2, 0, k1, k2); cmesh->InsertMaterialObject(BCD); TPZMaterial * BCN = Air->CreateBC(Air, 3, 1, k1, k2); cmesh->InsertMaterialObject(BCN); } cmesh->AutoBuild(); cmesh->AdjustBoundaryElements(); cmesh->CleanUpUnconnectedNodes(); return cmesh; }
TPZCompMesh *CompMesh1D(TPZGeoMesh *gmesh,int p, TPZMaterial *material,TPZVec<int> &bc,TPZVec<int> &bcType) { if(!material || bc.NElements()<2 || bcType.NElements() != bc.NElements()) return NULL; int dim = 1; TPZAutoPointer<TPZMaterial> mat(material); // related to interpolation space TPZCompEl::SetgOrder(p); TPZCompMesh *cmesh = new TPZCompMesh(gmesh); cmesh->SetDimModel(dim); cmesh->SetAllCreateFunctionsContinuous(); cmesh->InsertMaterialObject(mat); // Related to boundary conditions // REAL uN=1-cosh(1.)/sinh(1.); TPZFMatrix<STATE> val1(1,1,0.), val2(1,1,0.); if(!bcType[0]) // dirichlet val2.PutVal(0,0,0.0); TPZAutoPointer<TPZMaterial> BCond1 = material->CreateBC(mat, bc[0],bcType[0], val1, val2); cmesh->InsertMaterialObject(BCond1); if(!bcType[1]) // dirichlet val2.PutVal(0,0,0.0); TPZAutoPointer<TPZMaterial> BCond2 = material->CreateBC(mat, bc[1],bcType[1], val1, val2); cmesh->InsertMaterialObject(BCond2); //Adjusting data cmesh->AutoBuild(); cmesh->AdjustBoundaryElements(); cmesh->CleanUpUnconnectedNodes(); return cmesh; }
TPZCompMesh *MalhaMultifisicaOpt(TPZVec<TPZCompMesh *> meshvec, TPZGeoMesh *gmesh){ //Creating computational mesh for multiphysic elements gmesh->ResetReference(); TPZCompMesh *mphysics = new TPZCompMesh(gmesh); //criando material int dim =2; TPZMatPoissonControl *material = new TPZMatPoissonControl(MatId,dim); //incluindo os dados do problema REAL k=1; REAL alpha=1; material-> SetParameters( k, alpha); //solucao exata TPZAutoPointer<TPZFunction<STATE> > solexata; solexata = new TPZDummyFunction<STATE>(StateAd, 5); material->SetForcingFunctionExact(solexata); //funcao do lado direito da equacao do problema TPZAutoPointer<TPZFunction<STATE> > force; TPZDummyFunction<STATE> *dum; dum = new TPZDummyFunction<STATE>(OptForcing, 5); dum->SetPolynomialOrder(20); force = dum; material->SetForcingFunction(force); //inserindo o material na malha computacional TPZMaterial *mat(material); mphysics->InsertMaterialObject(mat); mphysics->SetDimModel(dim); //Criando condicoes de contorno TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.); TPZMaterial * BCond0 = material->CreateBC(mat, bc0, bcdirichlet, val1, val2); TPZMaterial * BCond1 = material->CreateBC(mat, bc1, bcdirichlet, val1, val2); TPZMaterial * BCond2 = material->CreateBC(mat, bc2, bcdirichlet, val1, val2); TPZMaterial * BCond3 = material->CreateBC(mat, bc3, bcdirichlet, val1, val2); ///Inserir condicoes de contorno mphysics->InsertMaterialObject(BCond0); mphysics->InsertMaterialObject(BCond1); mphysics->InsertMaterialObject(BCond2); mphysics->InsertMaterialObject(BCond3); mphysics->SetAllCreateFunctionsMultiphysicElem(); //Fazendo auto build mphysics->AutoBuild(); mphysics->AdjustBoundaryElements(); mphysics->CleanUpUnconnectedNodes(); TPZBuildMultiphysicsMesh::AddElements(meshvec, mphysics); TPZBuildMultiphysicsMesh::AddConnects(meshvec,mphysics); TPZBuildMultiphysicsMesh::TransferFromMeshes(meshvec, mphysics); return mphysics; }
int main() { //malha geometrica TPZGeoMesh *firstmesh = new TPZGeoMesh; firstmesh->SetName("Malha Geometrica : Nós e Elementos"); firstmesh->NodeVec().Resize(10); TPZVec<REAL> coord(2); //,coordtrans(2); // REAL ct,st,PI=3.141592654; // cout << "\nEntre rotacao do eixo n1 (graus) -> "; // REAL g; // cin >> g; // g = g*PI/180.; // ct = cos(g); // st = sin(g); //ct = 1.; //st = 0.; //nos geometricos //no 0 coord[0] = 0; coord[1] = 0; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[0].Initialize(coord,*firstmesh); //no 1 coord[0] = 1.; coord[1] = 0; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[1].Initialize(coord,*firstmesh); //no 2 coord[0] = 2.; coord[1] = 0.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[2].Initialize(coord,*firstmesh); //no 3 coord[0] = 3.; coord[1] = 0.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[3].Initialize(coord,*firstmesh); //no 4 coord[0] = 4; coord[1] = 0.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[4].Initialize(coord,*firstmesh); //no 5 coord[0] = 0; coord[1] = 1; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[5].Initialize(coord,*firstmesh); //no 6 coord[0] = 1.; coord[1] = 1.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[6].Initialize(coord,*firstmesh); //no 7 coord[0] = 2.; coord[1] = 1.; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[7].Initialize(coord,*firstmesh); //no 8 coord[0] = 3.; coord[1] = 1; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[8].Initialize(coord,*firstmesh); //no 9 coord[0] = 4; coord[1] = 1; // coordtrans[0] = ct*coord[0]-st*coord[1]; // coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[9].Initialize(coord,*firstmesh); /* TPZVec<int> nodeindexes(3); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; //elementos geometricos TPZGeoElT2d *elg0 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg1 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; TPZGeoElT2d *elg2 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg3 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); */ TPZVec<int> nodeindexes(4); //elementos geometricos TPZGeoEl *elg[4]; nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 6; nodeindexes[3] = 5; elg[0] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 1; nodeindexes[1] = 2; nodeindexes[2] = 7; nodeindexes[3] = 6; elg[1] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 2; nodeindexes[1] = 3; nodeindexes[2] = 8; nodeindexes[3] = 7; elg[2] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 3; nodeindexes[1] = 4; nodeindexes[2] = 9; nodeindexes[3] = 8; elg[3] = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); //Arquivos de saida ofstream outgm1("outgm1.dat"); ofstream outcm1("outcm1.dat"); ofstream outcm2("outcm2.dat"); //montagem de conectividades entre elementos firstmesh->BuildConnectivity(); //malha computacional TPZCompMesh *secondmesh = new TPZCompMesh(firstmesh); secondmesh->SetName("Malha Computacional : Conectividades e Elementos"); //material TPZMaterial *pl = LerMaterial("flavio.dat"); secondmesh->InsertMaterialObject(pl); // pl = LerMaterial("placa2.dat"); // secondmesh->InsertMaterialObject(pl); // pl = LerMaterial("placa3.dat"); // secondmesh->InsertMaterialObject(pl); // carregamento hidrostatico no plano vertica xz pl->SetForcingFunction(PressaoHid); //CC : condicões de contorno TPZBndCond *bc; REAL big = 1.e12; TPZFMatrix val1(6,6,0.),val2(6,1,0.); // engastes nos lados 4 e 7 do elemento 0 TPZGeoElBC(elg[0],4,-2,*firstmesh); TPZGeoElBC(elg[0],7,-2,*firstmesh); // engaste no lado 4 do elemento 1 TPZGeoElBC(elg[1],4,-2,*firstmesh); // engaste no lado 4 do elemento 2 TPZGeoElBC(elg[2],4,-2,*firstmesh); // engaste no lado 4 do elemento 3 TPZGeoElBC(elg[3],4,-2,*firstmesh); // imposicao do valor zero associado a condicao -2 (engaste) bc = pl->CreateBC(-2,0,val1,val2); secondmesh->InsertMaterialObject(bc); // imposicao da condicao de simetria no lado 5 do elemento 4 val1(0,0)=big; val1(1,1)=0.; val1(2,2)=0.; val1(3,3)=0.; val1(4,4)=big; val1(5,5)=big; TPZGeoElBC(elg[3],5,-3,*firstmesh); bc = pl->CreateBC(-3,2,val1,val2); secondmesh->InsertMaterialObject(bc); //ordem de interpolacao int ord; cout << "Entre ordem 1,2,3,4,5 : "; cin >> ord; // TPZCompEl::gOrder = ord; firstmesh.SetDefaultOrder(order); //construção malha computacional TPZVec<int> csub(0); TPZManVector<TPZGeoEl *> pv(4); int n1=1,level=0; cout << "\nDividir ate nivel ? "; int resp; cin >> resp; int nelc = firstmesh->ElementVec().NElements(); int el; TPZGeoEl *cpel; for(el=0;el<firstmesh->ElementVec().NElements();el++) { cpel = firstmesh->ElementVec()[el]; if(cpel && cpel->Level() < resp) cpel->Divide(pv); } cout << "\nDividir o elemento esquerdo superior quantas vezes? "; cin >> resp; cpel = firstmesh->ElementVec()[0]; for(el=0; el<resp; el++) { cpel->Divide(pv); cpel = pv[3]; } //analysis secondmesh->AutoBuild(); firstmesh->Print(outgm1); outgm1.flush(); secondmesh->AdjustBoundaryElements(); secondmesh->InitializeBlock(); secondmesh->Print(outcm1); TPZAnalysis an(secondmesh,outcm1); int numeq = secondmesh->NEquations(); secondmesh->Print(outcm1); outcm1.flush(); TPZVec<int> skyline; secondmesh->Skyline(skyline); TPZSkylMatrix *stiff = new TPZSkylMatrix(numeq,skyline); an.SetMatrix(stiff); an.Solver().SetDirect(ECholesky); secondmesh->SetName("Malha Computacional : Connects e Elementos"); // Posprocessamento an.Run(outcm2); TPZVec<char *> scalnames(5); scalnames[0] = "Mn1"; scalnames[1] = "Mn2"; scalnames[2] = "Vn1"; scalnames[3] = "Vn2"; scalnames[4] = "Deslocz"; TPZVec<char *> vecnames(0); char plotfile[] = "placaPos.pos"; char pltfile[] = "placaView.plt"; an.DefineGraphMesh(2, scalnames, vecnames, plotfile); an.Print("FEM SOLUTION ",outcm1); an.PostProcess(3); an.DefineGraphMesh(2, scalnames, vecnames, pltfile); an.PostProcess(2); firstmesh->Print(outgm1); outgm1.flush(); delete secondmesh; delete firstmesh; return 0; }
//************************************* //************Option 8***************** //*****All element types Mesh********** //************************************* TPZCompMesh * CreateTestMesh() { REAL nodeco[12][3] = { {0.,0.,0.}, {1.,0.,0.}, {2.,0.,0.}, {0.,1.,0.}, {1.,1.,0.}, {2.,1.,0.}, {0.,0.,1.}, {1.,0.,1.}, {2.,0.,1.}, {0.,1.,1.}, {1.,1.,1.}, {2.,1.,1.} }; int nodind[7][8] = { {0,1,4,3,6,7,10,9}, {2,4,10,8,5}, {8,10,11,5}, {2,4,1,8,10,7}, {0,1}, {0,1,7,6}, {1,2,7} }; int numnos[7] = {8,5,4,6,2,4,3}; TPZGeoMesh *gmesh = new TPZGeoMesh(); int noind[12]; int no; for(no=0; no<12; no++) { noind[no] = gmesh->NodeVec().AllocateNewElement(); TPZVec<REAL> coord(3); coord[0] = nodeco[no][0]; coord[1] = nodeco[no][1]; coord[2] = nodeco[no][2]; gmesh->NodeVec()[noind[no]].Initialize(coord,*gmesh); } int matid = 1; TPZVec<int> nodeindex; int nel; TPZVec<TPZGeoEl *> gelvec; gelvec.Resize(4); for(nel=0; nel<4; nel++) { int in; nodeindex.Resize(numnos[nel]); for(in=0; in<numnos[nel]; in++) { nodeindex[in] = nodind[nel][in]; } int index; switch(nel) { case 0: // elvec[el] = gmesh->CreateGeoElement(ECube,nodeindex,1,index); // gelvec[nel]=new TPZGeoElC3d(nodeindex,matid,*gmesh); break; case 1: gelvec[nel] = gmesh->CreateGeoElement(EPiramide,nodeindex,matid,index); // gelvec[nel]=new TPZGeoElPi3d(nodeindex,matid,*gmesh); break; case 2: gelvec[nel] = gmesh->CreateGeoElement(ETetraedro,nodeindex,matid,index); // gelvec[nel]=new TPZGeoElT3d(nodeindex,matid,*gmesh); break; case 3: // gelvec[nel]=new TPZGeoElPr3d(nodeindex,matid,*gmesh); // gelvec[nel] = gmesh->CreateGeoElement(EPrisma,nodeindex,matid,index); break; case 4: // gelvec[nel]=new TPZGeoEl1d(nodeindex,2,*gmesh); break; case 5: // gelvec[nel]=new TPZGeoElQ2d(nodeindex,3,*gmesh); break; case 6: // gelvec[nel]=new TPZGeoElT2d(nodeindex,3,*gmesh); break; default: break; } } gmesh->BuildConnectivity2(); //TPZVec<TPZGeoEl *> sub; //elvec[0]->Divide(sub); // elvec[1]->Divide(sub); // elvec[2]->Divide(sub); // TPZGeoElBC gbc; // bc -1 -> Dirichlet // TPZGeoElBC gbc1(gelvec[0],20,-1,*gmesh); TPZGeoElBC gbc11(gelvec[1],14,-1,*gmesh); // TPZGeoElBC gbc12(gelvec[3],15,-1,*gmesh); // bc -2 -> Neumann at the right x==1 // TPZGeoElBC gbc2(gelvec[0],25,-2,*gmesh); // TPZGeoElBC gbc21(gelvec[3],19,-2,*gmesh); TPZGeoElBC gbc22(gelvec[2],10,-2,*gmesh); TPZCompMesh *cmesh = new TPZCompMesh(gmesh); TPZAutoPointer<TPZMaterial> mat; // if(nstate == 3) { mat = new TPZMaterialTest3D(1); TPZFMatrix mp (3,1,0.); TPZMaterialTest3D * mataux = dynamic_cast<TPZMaterialTest3D *> (mat.operator ->()); TPZMaterialTest3D::geq3=1; mataux->SetMaterial(mp); /* } else { TPZMat2dLin *mat2d = new TPZMat2dLin(1); int ist,jst; TPZFMatrix xk(nstate,nstate,1.),xc(nstate,nstate,0.),xf(nstate,1,0.); for(ist=0; ist<nstate; ist++) { if(nstate != 1) xf(ist,0) = 1.; for(jst=0; jst<nstate; jst++) { if(ist != jst) xk(ist,jst) = 0.; } } mat2d->SetMaterial(xk,xc,xf); mat = mat2d; }*/ TPZFMatrix val1(3,3,0.),val2(3,1,0.); TPZAutoPointer<TPZMaterial> bc[2]; bc[0] = mat->CreateBC(mat,-1,0,val1,val2); val2(0,0) = 1.; bc[1] = mat->CreateBC(mat,-2,1,val1,val2); cmesh->InsertMaterialObject(mat); int i; for(i=0; i<2; i++) cmesh->InsertMaterialObject(bc[i]); gmesh->Print(cout); cmesh->AutoBuild(); cmesh->AdjustBoundaryElements(); cmesh->CleanUpUnconnectedNodes(); gmesh->Print(cout); return cmesh; }
//malha multifisica para o metodo da dupla projecao TPZCompMesh *MalhaMDP(TPZVec<TPZCompMesh *> meshvec,TPZGeoMesh * gmesh){ //Creating computational mesh for multiphysic elements gmesh->ResetReference(); TPZCompMesh *mphysics = new TPZCompMesh(gmesh); //criando material int dim =2; TPZMDPMaterial *material = new TPZMDPMaterial(1,dim); //incluindo os dados do problema REAL coefk = 1.; material->SetParameters(coefk, 0.); //solucao exata TPZAutoPointer<TPZFunction<STATE> > solexata; solexata = new TPZDummyFunction<STATE>(SolSuave); material->SetForcingFunctionExact(solexata); //funcao do lado direito da equacao do problema TPZAutoPointer<TPZFunction<STATE> > force; TPZDummyFunction<STATE> *dum; dum = new TPZDummyFunction<STATE>(ForceSuave); dum->SetPolynomialOrder(20); force = dum; material->SetForcingFunction(force); //inserindo o material na malha computacional TPZMaterial *mat(material); mphysics->InsertMaterialObject(mat); //Criando condicoes de contorno TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.); int boundcond = dirichlet; //BC -1 TPZMaterial * BCondD1 = material->CreateBC(mat, bc1,boundcond, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet1 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD1->SetForcingFunction(bcmatDirichlet1); mphysics->InsertMaterialObject(BCondD1); //BC -2 TPZMaterial * BCondD2 = material->CreateBC(mat, bc2,boundcond, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet2 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD2->SetForcingFunction(bcmatDirichlet2); mphysics->InsertMaterialObject(BCondD2); //BC -3 TPZMaterial * BCondD3 = material->CreateBC(mat, bc3,boundcond, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet3 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD3->SetForcingFunction(bcmatDirichlet3); mphysics->InsertMaterialObject(BCondD3); //BC -4 TPZMaterial * BCondD4 = material->CreateBC(mat, bc4,boundcond, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet4 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD4->SetForcingFunction(bcmatDirichlet4); mphysics->InsertMaterialObject(BCondD4); mphysics->InsertMaterialObject(BCondD1); mphysics->InsertMaterialObject(BCondD2); mphysics->InsertMaterialObject(BCondD3); mphysics->InsertMaterialObject(BCondD4); //set multiphysics element mphysics->SetDimModel(dim); mphysics->SetAllCreateFunctionsMultiphysicElem(); //Fazendo auto build mphysics->AutoBuild(); mphysics->AdjustBoundaryElements(); mphysics->CleanUpUnconnectedNodes(); // Creating multiphysic elements into mphysics computational mesh TPZBuildMultiphysicsMesh::AddElements(meshvec, mphysics); TPZBuildMultiphysicsMesh::AddConnects(meshvec,mphysics); TPZBuildMultiphysicsMesh::TransferFromMeshes(meshvec, mphysics); return mphysics; }
TPZCompMesh * CompMesh(TPZGeoMesh *gmesh, int porder) { /// criar materiais int dim = gmesh->Dimension(); TPZCompMesh * cmesh = new TPZCompMesh(gmesh); TPZMatLaplacian *material = new TPZMatLaplacian(1,dim); // TPZAutoPointer<TPZFunction<REAL> > forcef = new TPZDummyFunction<REAL>(ForceSuave); // material->SetForcingFunction(forcef); TPZAutoPointer<TPZFunction<STATE> > force; TPZDummyFunction<STATE> *dum; dum = new TPZDummyFunction<STATE>(ForceSuave); dum->SetPolynomialOrder(20); force = dum; material->SetForcingFunction(force); TPZAutoPointer<TPZFunction<STATE> > solExata= new TPZDummyFunction<STATE>(SolSuave); material->SetForcingFunctionExact(solExata); TPZMaterial * mat(material); cmesh->InsertMaterialObject(mat); cmesh->SetDimModel(dim); cmesh->SetDefaultOrder(porder); ///Inserir condicao de contorno TPZFMatrix<STATE> val1(2,2,1.), val2(2,1,0.); //BC -1 TPZMaterial * BCondD1 = material->CreateBC(mat, bc1,dirichlet, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet1 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD1->SetForcingFunction(bcmatDirichlet1); cmesh->InsertMaterialObject(BCondD1); //BC -2 TPZMaterial * BCondD2 = material->CreateBC(mat, bc2,dirichlet, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet2 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD2->SetForcingFunction(bcmatDirichlet2); cmesh->InsertMaterialObject(BCondD2); //BC -3 TPZMaterial * BCondD3 = material->CreateBC(mat, bc3,dirichlet, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet3 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD3->SetForcingFunction(bcmatDirichlet3); cmesh->InsertMaterialObject(BCondD3); //BC -4 TPZMaterial * BCondD4 = material->CreateBC(mat, bc4,dirichlet, val1, val2); TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet4 = new TPZDummyFunction<REAL>(DirichletSuave); BCondD4->SetForcingFunction(bcmatDirichlet4); cmesh->InsertMaterialObject(BCondD4); //Fazendo auto build cmesh->SetAllCreateFunctionsContinuous(); cmesh->AutoBuild(); cmesh->AdjustBoundaryElements(); cmesh->CleanUpUnconnectedNodes(); return cmesh; }
int main() { //malha geometrica TPZGeoMesh *firstmesh = new TPZGeoMesh; firstmesh->SetName("Malha Geometrica : Nós e Elementos"); firstmesh->NodeVec().Resize(4); TPZVec<REAL> coord(2),coordtrans(2); REAL ct,st,PI=3.141592654; cout << "\nEntre rotacao do eixo n1 (graus) -> "; REAL g; cin >> g; g = g*PI/180.; ct = cos(g); st = sin(g); //ct = 1.; //st = 0.; coord[0] = 0; coord[1] = 0; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; //nos geometricos firstmesh->NodeVec()[0].Initialize(coordtrans,*firstmesh); coord[0] = 5; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[1].Initialize(coordtrans,*firstmesh); coord[0] = 5; coord[1] = 5; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[2].Initialize(coordtrans,*firstmesh); coord[0] = 0; coordtrans[0] = ct*coord[0]-st*coord[1]; coordtrans[1] = st*coord[0]+ct*coord[1]; firstmesh->NodeVec()[3].Initialize(coordtrans,*firstmesh); /* TPZVec<int> nodeindexes(3); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; //elementos geometricos TPZGeoElT2d *elg0 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg1 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; TPZGeoElT2d *elg2 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); nodeindexes[0] = 0; nodeindexes[1] = 2; nodeindexes[2] = 3; TPZGeoElT2d *elg3 = new TPZGeoElT2d(nodeindexes,2,*firstmesh); */ TPZVec<int> nodeindexes(4); nodeindexes[0] = 0; nodeindexes[1] = 1; nodeindexes[2] = 2; nodeindexes[3] = 3; //elementos geometricos TPZGeoEl *elg0 = new TPZGeoElQ2d(nodeindexes,1,*firstmesh); TPZGeoEl *elg1 = new TPZGeoElQ2d(nodeindexes,2,*firstmesh); TPZGeoEl *elg2 = new TPZGeoElQ2d(nodeindexes,3,*firstmesh); //Arquivos de saida ofstream outgm1("outgm1.dat"); ofstream outcm1("outcm1.dat"); ofstream outcm2("outcm2.dat"); //montagem de conectividades entre elementos firstmesh->BuildConnectivity(); //malha computacional TPZCompMesh *secondmesh = new TPZCompMesh(firstmesh); secondmesh->SetName("Malha Computacional : Conectividades e Elementos"); //material TPZMaterial *pl = LerMaterial("placa1.dat"); secondmesh->InsertMaterialObject(pl); pl = LerMaterial("placa2.dat"); secondmesh->InsertMaterialObject(pl); pl = LerMaterial("placa3.dat"); secondmesh->InsertMaterialObject(pl); //CC : condicões de contorno TPZBndCond *bc; REAL big = 1.e12; TPZFMatrix val1(6,6,0.),val2(6,1,0.); val1(0,0)=big; val1(1,1)=big; val1(2,2)=big; val1(3,3)=0.; val1(4,4)=0.; val1(5,5)=0.; TPZGeoElBC(elg0,5,-2,*firstmesh); bc = pl->CreateBC(-2,2,val1,val2); secondmesh->InsertMaterialObject(bc); TPZGeoElBC(elg0,6,-3,*firstmesh); bc = pl->CreateBC(-3,2,val1,val2); secondmesh->InsertMaterialObject(bc); val1(0,0)=0.; val1(1,1)=big; val1(2,2)=0.; val1(3,3)=big; val1(4,4)=0.; val1(5,5)=0.; TPZGeoElBC(elg0,4,-1,*firstmesh); bc = pl->CreateBC(-1,2,val1,val2); secondmesh->InsertMaterialObject(bc); val1(0,0)=big; val1(1,1)=0.; val1(2,2)=0.; val1(3,3)=0.; val1(4,4)=big; val1(5,5)=0.; TPZGeoElBC(elg0,7,-4,*firstmesh); bc = pl->CreateBC(-4,2,val1,val2); secondmesh->InsertMaterialObject(bc); //ordem de interpolacao int ord; cout << "Entre ordem 1,2,3,4,5 : "; cin >> ord; // TPZCompEl::gOrder = ord; cmesh.SetDefaultOrder(ord); //construção malha computacional TPZVec<int> csub(0); TPZManVector<TPZGeoEl *> pv(4); int n1=1,level=0; cout << "\nDividir ate nivel ? "; int resp; cin >> resp; int nelc = firstmesh->ElementVec().NElements(); int el; TPZGeoEl *cpel; for(el=0;el<firstmesh->ElementVec().NElements();el++) { cpel = firstmesh->ElementVec()[el]; if(cpel && cpel->Level() < resp) cpel->Divide(pv); } //analysis secondmesh->AutoBuild(); secondmesh->AdjustBoundaryElements(); secondmesh->InitializeBlock(); secondmesh->Print(outcm1); TPZAnalysis an(secondmesh,outcm1); int numeq = secondmesh->NEquations(); secondmesh->Print(outcm1); outcm1.flush(); TPZVec<int> skyline; secondmesh->Skyline(skyline); TPZSkylMatrix *stiff = new TPZSkylMatrix(numeq,skyline); an.SetMatrix(stiff); an.Solver().SetDirect(ECholesky); secondmesh->SetName("Malha Computacional : Connects e Elementos"); // Posprocessamento an.Run(outcm2); TPZVec<char *> scalnames(5); scalnames[0] = "Mn1"; scalnames[1] = "Mn2"; scalnames[2] = "Sign1"; scalnames[3] = "Sign2"; scalnames[4] = "Deslocz"; TPZVec<char *> vecnames(0); char plotfile[] = "placaPos.pos"; char pltfile[] = "placaView.plt"; an.DefineGraphMesh(2, scalnames, vecnames, plotfile); an.Print("FEM SOLUTION ",outcm1); an.PostProcess(2); an.DefineGraphMesh(2, scalnames, vecnames, pltfile); an.PostProcess(2); firstmesh->Print(outgm1); outgm1.flush(); delete secondmesh; delete firstmesh; return 0; }
TPZCompMesh *TPZAdaptMesh::CreateCompMesh (TPZCompMesh *mesh, //malha a refinar TPZVec<TPZGeoEl *> &gelstack, // TPZVec<int> &porders) { //Cria um ponteiro para a malha geom�trica de mesh TPZGeoMesh *gmesh = mesh->Reference(); if(!gmesh) { cout << "TPZAdaptMesh::CreateCompMesh encountered no geometric mesh\n"; return 0; } //Reseta as refer�ncias do ponteiro para a malha geom�trica criada //e cria uma nova malha computacional baseada nesta malha geom�trica gmesh->ResetReference(); TPZCompMesh *cmesh = new TPZCompMesh(gmesh); // int nmat = mesh->MaterialVec().size(); // int m; //Cria um clone do vetor de materiais da malha mesh mesh->CopyMaterials(*cmesh); /* for(m=0; m<nmat; m++) { TPZMaterial * mat = mesh->MaterialVec()[m]; if(!mat) continue; mat->Clone(cmesh->MaterialVec()); } */ //Idenifica o vetor de elementos computacionais de mesh // TPZAdmChunkVector<TPZCompEl *> &elementvec = mesh->ElementVec(); int el,nelem = gelstack.NElements(); // cmesh->SetName("Antes PRefine"); // cmesh->Print(cout); for(el=0; el<nelem; el++) { //identifica os elementos geom�tricos passados em gelstack TPZGeoEl *gel = gelstack[el]; if(!gel) { cout << "TPZAdaptMesh::CreateCompMesh encountered an null element\n"; continue; } long celindex; //Cria um TPZIntel baseado no gel identificado TPZInterpolatedElement *csint; csint = dynamic_cast<TPZInterpolatedElement *> (cmesh->CreateCompEl(gel,celindex)); if(!csint) continue; //Refina em p o elemento criado // cmesh->SetName("depois criar elemento"); // cmesh->Print(cout); csint->PRefine(porders[el]); // cmesh->SetName("depois prefine no elemento"); // cmesh->Print(cout); } #ifndef CLONEBCTOO nelem = gmesh->NElements(); for (el=0; el<nelem; el++) { TPZGeoEl *gel = gmesh->ElementVec()[el]; if (!gel || gel->Reference()) { continue; } int matid = gel->MaterialId(); if (matid < 0) { TPZStack<TPZCompElSide> celstack; int ns = gel->NSides(); TPZGeoElSide gelside(gel,ns-1); gelside.HigherLevelCompElementList2(celstack, 1, 1); if (celstack.size()) { TPZStack<TPZGeoEl *> subels; gel->Divide(subels); } } } nelem = gmesh->NElements(); for (el=0; el<nelem; el++) { TPZGeoEl *gel = gmesh->ElementVec()[el]; if (!gel || gel->Reference()) { continue; } int matid = gel->MaterialId(); if (matid < 0) { TPZStack<TPZCompElSide> celstack; int ns = gel->NSides(); TPZGeoElSide gelside(gel,ns-1); gelside.EqualLevelCompElementList(celstack, 1, 0); if (celstack.size()) { long index; cmesh->CreateCompEl(gel, index); } } } #endif //Mais einh!! // cmesh->SetName("Antes Adjust"); // cmesh->Print(cout); cmesh->AdjustBoundaryElements(); // cmesh->SetName("Depois"); // cmesh->Print(cout); return cmesh; }
TPZCompMesh *MalhaCompMultifisica(TPZGeoMesh * gmesh,TPZVec<TPZCompMesh *> meshvec, TPZMatUncoupledPoissonDisc* &mymaterial){ // Creating computational mesh for multiphysic elements gmesh->ResetReference(); TPZCompMesh *mphysics = new TPZCompMesh(gmesh); mphysics->SetAllCreateFunctionsMultiphysicElem(); int dim = 2; mphysics->SetDimModel(dim); mymaterial = new TPZMatUncoupledPoissonDisc(matId, mphysics->Dimension()); mymaterial->SetParameters(1., 1.); mymaterial->SetInternalFlux(-8.,0.); //mymaterial->SetInternalFlux(0.,0.); mymaterial->SetNonSymmetricOne(); mymaterial->SetNonSymmetricTwo(); mymaterial->SetPenaltyConstant(0., 0.); TPZMaterial * mat(mymaterial); mphysics->InsertMaterialObject(mat); TPZAutoPointer<TPZFunction<STATE> > forcef = new TPZDummyFunction<STATE>(ForcingF, 5); // // TPZAutoPointer<TPZFunction<STATE> > forcef = new TPZDummyFunction<STATE>(ForcingF); mymaterial->SetForcingFunction(forcef); ///Inserir condicao de contorno TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.); TPZMaterial * BCond0 = mymaterial->CreateBC(mat, bc0,neumann_dirichlet, val1, val2); TPZMaterial * BCond2 = mymaterial->CreateBC(mat, bc2,neumann_dirichlet, val1, val2); TPZMaterial * BCond1 = mymaterial->CreateBC(mat, bc1,dirichlet, val1, val2); TPZMaterial * BCond3 = mymaterial->CreateBC(mat, bc3,dirichlet, val1, val2); // TPZMaterial * BCond0 = mymaterial->CreateBC(mat, bc0,dirichlet, val1, val2); // TPZMaterial * BCond2 = mymaterial->CreateBC(mat, bc2,dirichlet, val1, val2); // TPZMaterial * BCond1 = mymaterial->CreateBC(mat, bc1,dirichlet, val1, val2); // TPZMaterial * BCond3 = mymaterial->CreateBC(mat, bc3,dirichlet, val1, val2); mphysics->InsertMaterialObject(BCond0); mphysics->InsertMaterialObject(BCond1); mphysics->InsertMaterialObject(BCond2); mphysics->InsertMaterialObject(BCond3); mphysics->AutoBuild(); mphysics->AdjustBoundaryElements(); mphysics->CleanUpUnconnectedNodes(); //Creating multiphysic elements into mphysics computational mesh TPZBuildMultiphysicsMesh::AddElements(meshvec, mphysics); TPZBuildMultiphysicsMesh::AddConnects(meshvec,mphysics); TPZBuildMultiphysicsMesh::TransferFromMeshes(meshvec, mphysics); mphysics->Reference()->ResetReference(); mphysics->LoadReferences(); if (disc_functions==true){ //criar elementos de interface int nel = mphysics->ElementVec().NElements(); for(int el = 0; el < nel; el++) { TPZCompEl * compEl = mphysics->ElementVec()[el]; if(!compEl) continue; int index = compEl ->Index(); if(compEl->Dimension() == mphysics->Dimension()) { TPZMultiphysicsElement * InterpEl = dynamic_cast<TPZMultiphysicsElement *>(mphysics->ElementVec()[index]); if(!InterpEl) continue; InterpEl->CreateInterfaces(); } } } return mphysics; }