int main() { vector<string> gestures(0,""); GetFilesInDirectory(gestures, "rawdata"); CreateDirectory("processed", NULL); sort(gestures.begin(), gestures.end()); data = vector<vector<vector<double > > >(gestures.size(), vector<vector<double > >(0,vector<double>(0,0))); for(size_t i = 0; i < gestures.size(); i++) { ifstream fin(gestures[i]); int n; fin >> n; // cerr << gestures[i] << endl; // cerr << n << endl; data[i] = vector<vector<double> >(n, vector<double>(NUMPARAM, 0)); for(int j = 0; j < n; j++) { for(int k = 0; k < NUMPARAM; k++) { fin >> data[i][j][k]; } } fin.close(); } //Create a new instance of the TimeSeriesClassificationDataStream TimeSeriesClassificationData trainingData; // ax, ay, az trainingData.setNumDimensions(3); trainingData.setDatasetName("processed\\GestureTrainingData.txt"); ofstream labelfile("processed\\GestureTrainingDataLabels.txt"); UINT currLabel = 1; Random random; map<string, int> gesturenames; for(size_t overall = 0; overall < gestures.size(); overall++) { string nam = gestures[overall].substr(8,gestures[overall].find_first_of('_')-8); if(gesturenames.count(nam)) currLabel = gesturenames[nam]; else { currLabel = gesturenames.size()+1; gesturenames[nam] = currLabel; labelfile << currLabel << " " << nam << endl; } MatrixDouble trainingSample; VectorDouble currVec( trainingData.getNumDimensions() ); for(size_t k = 1; k < data[overall].size(); k++) { for(UINT j=0; j<currVec.size(); j++){ currVec[j] = data[overall][k][j]; } trainingSample.push_back(currVec); } trainingData.addSample(currLabel, trainingSample); } for(size_t i = 0; i < gestures.size(); i++) { MatrixDouble trainingSample; VectorDouble currVec(trainingData.getNumDimensions()); for(UINT j = 0; j < currVec.size(); j++) { currVec[j] = random.getRandomNumberUniform(-1.0, 1.0); } for(size_t k = 0; k < 100; k++) { trainingSample.push_back(currVec); } trainingData.addSample(0, trainingSample); } //After recording your training data you can then save it to a file if( !trainingData.save( "processed\\TrainingData.grt" ) ){ cout << "ERROR: Failed to save dataset to file!\n"; return EXIT_FAILURE; } //This can then be loaded later if( !trainingData.load( "processed\\TrainingData.grt" ) ){ cout << "ERROR: Failed to load dataset from file!\n"; return EXIT_FAILURE; } //This is how you can get some stats from the training data string datasetName = trainingData.getDatasetName(); string infoText = trainingData.getInfoText(); UINT numSamples = trainingData.getNumSamples(); UINT numDimensions = trainingData.getNumDimensions(); UINT numClasses = trainingData.getNumClasses(); cout << "Dataset Name: " << datasetName << endl; cout << "InfoText: " << infoText << endl; cout << "NumberOfSamples: " << numSamples << endl; cout << "NumberOfDimensions: " << numDimensions << endl; cout << "NumberOfClasses: " << numClasses << endl; //You can also get the minimum and maximum ranges of the data vector< MinMax > ranges = trainingData.getRanges(); cout << "The ranges of the dataset are: \n"; for(UINT j=0; j<ranges.size(); j++){ cout << "Dimension: " << j << " Min: " << ranges[j].minValue << " Max: " << ranges[j].maxValue << endl; } DTW dtw; if( !dtw.train( trainingData ) ){ cerr << "Failed to train classifier!\n"; exit(EXIT_FAILURE); } dtw.enableNullRejection(true); dtw.setNullRejectionCoeff(4); dtw.enableTrimTrainingData(true, 0.1, 90); //Save the DTW model to a file if( !dtw.saveModelToFile("processed\\DTWModel.txt") ){ cerr << "Failed to save the classifier model!\n"; exit(EXIT_FAILURE); } trainingData.clear(); return EXIT_SUCCESS; }
int main (int argc, const char * argv[]) { //Create a new instance of the TimeSeriesClassificationData TimeSeriesClassificationData trainingData; //Set the dimensionality of the data (you need to do this before you can add any samples) trainingData.setNumDimensions( 3 ); //You can also give the dataset a name (the name should have no spaces) trainingData.setDatasetName("DummyData"); //You can also add some info text about the data trainingData.setInfoText("This data contains some dummy timeseries data"); //Here you would record a time series, when you have finished recording the time series then add the training sample to the training data UINT gestureLabel = 1; MatrixDouble trainingSample; //For now we will just add 10 x 20 random walk data timeseries Random random; for(UINT k=0; k<10; k++){//For the number of classes gestureLabel = k+1; //Get the init random walk position for this gesture VectorDouble startPos( trainingData.getNumDimensions() ); for(UINT j=0; j<startPos.size(); j++){ startPos[j] = random.getRandomNumberUniform(-1.0,1.0); } //Generate the 20 time series for(UINT x=0; x<20; x++){ //Clear any previous timeseries trainingSample.clear(); //Generate the random walk UINT randomWalkLength = random.getRandomNumberInt(90, 110); VectorDouble sample = startPos; for(UINT i=0; i<randomWalkLength; i++){ for(UINT j=0; j<startPos.size(); j++){ sample[j] += random.getRandomNumberUniform(-0.1,0.1); } //Add the sample to the training sample trainingSample.push_back( sample ); } //Add the training sample to the dataset trainingData.addSample( gestureLabel, trainingSample ); } } //After recording your training data you can then save it to a file if( !trainingData.saveDatasetToFile( "TrainingData.txt" ) ){ cout << "Failed to save dataset to file!\n"; return EXIT_FAILURE; } //This can then be loaded later if( !trainingData.loadDatasetFromFile( "TrainingData.txt" ) ){ cout << "Failed to load dataset from file!\n"; return EXIT_FAILURE; } //This is how you can get some stats from the training data string datasetName = trainingData.getDatasetName(); string infoText = trainingData.getInfoText(); UINT numSamples = trainingData.getNumSamples(); UINT numDimensions = trainingData.getNumDimensions(); UINT numClasses = trainingData.getNumClasses(); cout << "Dataset Name: " << datasetName << endl; cout << "InfoText: " << infoText << endl; cout << "NumberOfSamples: " << numSamples << endl; cout << "NumberOfDimensions: " << numDimensions << endl; cout << "NumberOfClasses: " << numClasses << endl; //You can also get the minimum and maximum ranges of the data vector< MinMax > ranges = trainingData.getRanges(); cout << "The ranges of the dataset are: \n"; for(UINT j=0; j<ranges.size(); j++){ cout << "Dimension: " << j << " Min: " << ranges[j].minValue << " Max: " << ranges[j].maxValue << endl; } //If you want to partition the dataset into a training dataset and a test dataset then you can use the partition function //A value of 80 means that 80% of the original data will remain in the training dataset and 20% will be returned as the test dataset TimeSeriesClassificationData testData = trainingData.partition( 80 ); //If you have multiple datasets that you want to merge together then use the merge function if( !trainingData.merge( testData ) ){ cout << "Failed to merge datasets!\n"; return EXIT_FAILURE; } //If you want to run K-Fold cross validation using the dataset then you should first spilt the dataset into K-Folds //A value of 10 splits the dataset into 10 folds and the true parameter signals that stratified sampling should be used if( !trainingData.spiltDataIntoKFolds( 10, true ) ){ cout << "Failed to spiltDataIntoKFolds!\n"; return EXIT_FAILURE; } //After you have called the spilt function you can then get the training and test sets for each fold for(UINT foldIndex=0; foldIndex<10; foldIndex++){ TimeSeriesClassificationData foldTrainingData = trainingData.getTrainingFoldData( foldIndex ); TimeSeriesClassificationData foldTestingData = trainingData.getTestFoldData( foldIndex ); } //If need you can clear any training data that you have recorded trainingData.clear(); return EXIT_SUCCESS; }