int main (int argc, const char * argv[]) { //Create a new DTW instance, using the default parameters DTW dtw; //Load some training data to train the classifier - the DTW uses TimeSeriesClassificationData TimeSeriesClassificationData trainingData; if( !trainingData.load("DTWTrainingData.grt") ){ cout << "Failed to load training data!\n"; return EXIT_FAILURE; } //Use 20% of the training dataset to create a test dataset TimeSeriesClassificationData testData = trainingData.split( 80 ); //Trim the training data for any sections of non-movement at the start or end of the recordings dtw.enableTrimTrainingData(true,0.1,90); //Train the classifier if( !dtw.train( trainingData ) ){ cout << "Failed to train classifier!\n"; return EXIT_FAILURE; } //Save the DTW model to a file if( !dtw.save("DTWModel.grt") ){ cout << "Failed to save the classifier model!\n"; return EXIT_FAILURE; } //Load the DTW model from a file if( !dtw.load("DTWModel.grt") ){ cout << "Failed to load the classifier model!\n"; return EXIT_FAILURE; } //Use the test dataset to test the DTW model double accuracy = 0; for(UINT i=0; i<testData.getNumSamples(); i++){ //Get the i'th test sample - this is a timeseries UINT classLabel = testData[i].getClassLabel(); MatrixDouble timeseries = testData[i].getData(); //Perform a prediction using the classifier if( !dtw.predict( timeseries ) ){ cout << "Failed to perform prediction for test sampel: " << i <<"\n"; return EXIT_FAILURE; } //Get the predicted class label UINT predictedClassLabel = dtw.getPredictedClassLabel(); double maximumLikelihood = dtw.getMaximumLikelihood(); VectorDouble classLikelihoods = dtw.getClassLikelihoods(); VectorDouble classDistances = dtw.getClassDistances(); //Update the accuracy if( classLabel == predictedClassLabel ) accuracy++; cout << "TestSample: " << i << "\tClassLabel: " << classLabel << "\tPredictedClassLabel: " << predictedClassLabel << "\tMaximumLikelihood: " << maximumLikelihood << endl; } cout << "Test Accuracy: " << accuracy/double(testData.getNumSamples())*100.0 << "%" << endl; return EXIT_SUCCESS; }
int main(int argc, const char * argv[]){ //Load the training data TimeSeriesClassificationData trainingData; if( !trainingData.load("HMMTrainingData.grt") ){ cout << "ERROR: Failed to load training data!\n"; return false; } //Remove 20% of the training data to use as test data TimeSeriesClassificationData testData = trainingData.split( 80 ); //The input to the HMM must be a quantized discrete value //We therefore use a KMeansQuantizer to covert the N-dimensional continuous data into 1-dimensional discrete data const UINT NUM_SYMBOLS = 10; KMeansQuantizer quantizer( NUM_SYMBOLS ); //Train the quantizer using the training data if( !quantizer.train( trainingData ) ){ cout << "ERROR: Failed to train quantizer!\n"; return false; } //Quantize the training data TimeSeriesClassificationData quantizedTrainingData( 1 ); for(UINT i=0; i<trainingData.getNumSamples(); i++){ UINT classLabel = trainingData[i].getClassLabel(); MatrixDouble quantizedSample; for(UINT j=0; j<trainingData[i].getLength(); j++){ quantizer.quantize( trainingData[i].getData().getRow(j) ); quantizedSample.push_back( quantizer.getFeatureVector() ); } if( !quantizedTrainingData.addSample(classLabel, quantizedSample) ){ cout << "ERROR: Failed to quantize training data!\n"; return false; } } //Create a new HMM instance HMM hmm; //Set the HMM as a Discrete HMM hmm.setHMMType( HMM_DISCRETE ); //Set the number of states in each model hmm.setNumStates( 4 ); //Set the number of symbols in each model, this must match the number of symbols in the quantizer hmm.setNumSymbols( NUM_SYMBOLS ); //Set the HMM model type to LEFTRIGHT with a delta of 1 hmm.setModelType( HMM_LEFTRIGHT ); hmm.setDelta( 1 ); //Set the training parameters hmm.setMinChange( 1.0e-5 ); hmm.setMaxNumEpochs( 100 ); hmm.setNumRandomTrainingIterations( 20 ); //Train the HMM model if( !hmm.train( quantizedTrainingData ) ){ cout << "ERROR: Failed to train the HMM model!\n"; return false; } //Save the HMM model to a file if( !hmm.save( "HMMModel.grt" ) ){ cout << "ERROR: Failed to save the model to a file!\n"; return false; } //Load the HMM model from a file if( !hmm.load( "HMMModel.grt" ) ){ cout << "ERROR: Failed to load the model from a file!\n"; return false; } //Quantize the test data TimeSeriesClassificationData quantizedTestData( 1 ); for(UINT i=0; i<testData.getNumSamples(); i++){ UINT classLabel = testData[i].getClassLabel(); MatrixDouble quantizedSample; for(UINT j=0; j<testData[i].getLength(); j++){ quantizer.quantize( testData[i].getData().getRow(j) ); quantizedSample.push_back( quantizer.getFeatureVector() ); } if( !quantizedTestData.addSample(classLabel, quantizedSample) ){ cout << "ERROR: Failed to quantize training data!\n"; return false; } } //Compute the accuracy of the HMM models using the test data double numCorrect = 0; double numTests = 0; for(UINT i=0; i<quantizedTestData.getNumSamples(); i++){ UINT classLabel = quantizedTestData[i].getClassLabel(); hmm.predict( quantizedTestData[i].getData() ); if( classLabel == hmm.getPredictedClassLabel() ) numCorrect++; numTests++; VectorFloat classLikelihoods = hmm.getClassLikelihoods(); VectorFloat classDistances = hmm.getClassDistances(); cout << "ClassLabel: " << classLabel; cout << " PredictedClassLabel: " << hmm.getPredictedClassLabel(); cout << " MaxLikelihood: " << hmm.getMaximumLikelihood(); cout << " ClassLikelihoods: "; for(UINT k=0; k<classLikelihoods.size(); k++){ cout << classLikelihoods[k] << "\t"; } cout << "ClassDistances: "; for(UINT k=0; k<classDistances.size(); k++){ cout << classDistances[k] << "\t"; } cout << endl; } cout << "Test Accuracy: " << numCorrect/numTests*100.0 << endl; return true; }