PyObject *py_ue_skeletal_mesh_set_skeleton(ue_PyUObject * self, PyObject * args) { ue_py_check(self); PyObject *py_skeleton; if (!PyArg_ParseTuple(args, "O:skeletal_mesh_set_skeleton", &py_skeleton)) return nullptr; USkeletalMesh *mesh = ue_py_check_type<USkeletalMesh>(self); if (!mesh) return PyErr_Format(PyExc_Exception, "UObject is not a USkeletalMesh."); USkeleton *skeleton = ue_py_check_type<USkeleton>(py_skeleton); if (!skeleton) return PyErr_Format(PyExc_Exception, "argument is not a USkeleton."); mesh->ReleaseResources(); mesh->ReleaseResourcesFence.Wait(); mesh->Skeleton = skeleton; mesh->RefSkeleton = skeleton->GetReferenceSkeleton(); mesh->RefBasesInvMatrix.Empty(); mesh->CalculateInvRefMatrices(); #if WITH_EDITOR mesh->PostEditChange(); #endif mesh->InitResources(); mesh->MarkPackageDirty(); Py_RETURN_NONE; }
PyObject *py_ue_skeletal_mesh_build_lod(ue_PyUObject *self, PyObject * args, PyObject * kwargs) { ue_py_check(self); PyObject *py_ss_vertex; int lod_index = 0; PyObject *py_compute_normals = nullptr; PyObject *py_compute_tangents = nullptr; PyObject *py_use_mikk = nullptr; static char *kw_names[] = { (char *)"soft_vertices", (char *)"lod", (char *)"compute_normals", (char *)"compute_tangents", (char *)"use_mikk", nullptr }; if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|iOOO:skeletal_mesh_build_lod", kw_names, &py_ss_vertex, &lod_index, &py_compute_normals, &py_compute_tangents, &py_use_mikk)) { return nullptr; } USkeletalMesh *mesh = ue_py_check_type<USkeletalMesh>(self); if (!mesh) return PyErr_Format(PyExc_Exception, "uobject is not a SkeletalMesh"); #if ENGINE_MINOR_VERSION < 19 FSkeletalMeshResource *resource = mesh->GetImportedResource(); #else FSkeletalMeshModel *resource = mesh->GetImportedModel(); #endif if (lod_index < 0 || lod_index > resource->LODModels.Num()) return PyErr_Format(PyExc_Exception, "invalid LOD index, must be between 0 and %d", resource->LODModels.Num()); mesh->PreEditChange(nullptr); if (lod_index == resource->LODModels.Num()) { #if ENGINE_MINOR_VERSION < 19 resource->LODModels.Add(new FStaticLODModel()); #else resource->LODModels.Add(new FSkeletalMeshLODModel()); #endif mesh->LODInfo.AddZeroed(); } else { // reinitialized already existent LOD #if ENGINE_MINOR_VERSION < 19 new(&resource->LODModels[lod_index]) FStaticLODModel(); #else new(&resource->LODModels[lod_index]) FSkeletalMeshLODModel(); #endif } #if ENGINE_MINOR_VERSION < 19 FStaticLODModel& LODModel = resource->LODModels[lod_index]; #else FSkeletalMeshLODModel& LODModel = resource->LODModels[lod_index]; #endif mesh->LODInfo[lod_index].LODHysteresis = 0.02; FSkeletalMeshOptimizationSettings settings; mesh->LODInfo[lod_index].ReductionSettings = settings; LODModel.NumTexCoords = 1; IMeshUtilities & MeshUtilities = FModuleManager::Get().LoadModuleChecked<IMeshUtilities>("MeshUtilities"); PyObject *py_iter = PyObject_GetIter(py_ss_vertex); if (!py_iter) { return PyErr_Format(PyExc_Exception, "argument is not an iterable of FSoftSkinVertex"); } TArray<FSoftSkinVertex> soft_vertices; TArray<FVector> points; TArray<FMeshWedge> wedges; TArray<FMeshFace> faces; TArray<FVertInfluence> influences; TArray<int32> points_to_map; TArray<FVector> tangentsX; TArray<FVector> tangentsY; TArray<FVector> tangentsZ; TArray<uint16> material_indices; TArray<uint32> smoothing_groups; while (PyObject *py_item = PyIter_Next(py_iter)) { ue_PyFSoftSkinVertex *ss_vertex = py_ue_is_fsoft_skin_vertex(py_item); if (!ss_vertex) { Py_DECREF(py_iter); return PyErr_Format(PyExc_Exception, "argument is not an iterable of FSoftSkinVertex"); } int32 vertex_index = points.Add(ss_vertex->ss_vertex.Position); points_to_map.Add(vertex_index); FMeshWedge wedge; wedge.iVertex = vertex_index; wedge.Color = ss_vertex->ss_vertex.Color; for (int32 i = 0; i < MAX_TEXCOORDS; i++) { wedge.UVs[i] = ss_vertex->ss_vertex.UVs[i]; } int32 wedge_index = wedges.Add(wedge); for (int32 i = 0; i < MAX_TOTAL_INFLUENCES; i++) { FVertInfluence influence; influence.VertIndex = wedge_index; influence.BoneIndex = ss_vertex->ss_vertex.InfluenceBones[i]; influence.Weight = ss_vertex->ss_vertex.InfluenceWeights[i] / 255.f; influences.Add(influence); } tangentsX.Add(ss_vertex->ss_vertex.TangentX); tangentsY.Add(ss_vertex->ss_vertex.TangentY); tangentsZ.Add(ss_vertex->ss_vertex.TangentZ); material_indices.Add(ss_vertex->material_index); smoothing_groups.Add(ss_vertex->smoothing_group); } Py_DECREF(py_iter); if (wedges.Num() % 3 != 0) return PyErr_Format(PyExc_Exception, "invalid number of FSoftSkinVertex, must be a multiple of 3"); for (int32 i = 0; i < wedges.Num(); i += 3) { FMeshFace face; face.iWedge[0] = i; face.iWedge[1] = i + 1; face.iWedge[2] = i + 2; face.MeshMaterialIndex = material_indices[i]; face.SmoothingGroups = smoothing_groups[i]; face.TangentX[0] = tangentsX[i]; face.TangentX[1] = tangentsX[i + 1]; face.TangentX[2] = tangentsX[i + 2]; face.TangentY[0] = tangentsY[i]; face.TangentY[1] = tangentsY[i + 1]; face.TangentY[2] = tangentsY[i + 2]; face.TangentZ[0] = tangentsZ[i]; face.TangentZ[1] = tangentsZ[i + 1]; face.TangentZ[2] = tangentsZ[i + 2]; faces.Add(face); } #if ENGINE_MINOR_VERSION < 19 FStaticLODModel & lod_model = resource->LODModels[lod_index]; #else FSkeletalMeshLODModel & lod_model = resource->LODModels[lod_index]; #endif IMeshUtilities::MeshBuildOptions build_settings; build_settings.bUseMikkTSpace = (py_use_mikk && PyObject_IsTrue(py_use_mikk)); build_settings.bComputeNormals = (py_compute_normals && PyObject_IsTrue(py_compute_normals)); build_settings.bComputeTangents = (py_compute_tangents && PyObject_IsTrue(py_compute_tangents)); build_settings.bRemoveDegenerateTriangles = true; bool success = MeshUtilities.BuildSkeletalMesh(lod_model, mesh->RefSkeleton, influences, wedges, faces, points, points_to_map, build_settings); if (!success) { return PyErr_Format(PyExc_Exception, "unable to create new Skeletal LOD"); } #if ENGINE_MINOR_VERSION < 19 for (int32 i = 0; i < lod_model.Sections.Num(); i++) { mesh->LODInfo[lod_index].TriangleSortSettings.AddZeroed(); } #endif mesh->CalculateRequiredBones(LODModel, mesh->RefSkeleton, nullptr); mesh->CalculateInvRefMatrices(); mesh->Skeleton->RecreateBoneTree(mesh); mesh->Skeleton->SetPreviewMesh(mesh); mesh->Skeleton->PostEditChange(); mesh->Skeleton->MarkPackageDirty(); mesh->PostEditChange(); mesh->MarkPackageDirty(); Py_RETURN_NONE; }
PyObject *py_ue_skeletal_mesh_set_required_bones(ue_PyUObject *self, PyObject * args) { ue_py_check(self); PyObject *py_map; int lod_index = 0; if (!PyArg_ParseTuple(args, "O|i:skeletal_mesh_set_required_bones", &py_map, &lod_index)) return nullptr; USkeletalMesh *mesh = ue_py_check_type<USkeletalMesh>(self); if (!mesh) return PyErr_Format(PyExc_Exception, "uobject is not a USkeletalMesh"); #if ENGINE_MINOR_VERSION < 19 FSkeletalMeshResource *resource = mesh->GetImportedResource(); #else FSkeletalMeshModel *resource = mesh->GetImportedModel(); #endif if (lod_index < 0 || lod_index >= resource->LODModels.Num()) return PyErr_Format(PyExc_Exception, "invalid LOD index, must be between 0 and %d", resource->LODModels.Num() - 1); #if ENGINE_MINOR_VERSION < 19 FStaticLODModel &model = resource->LODModels[lod_index]; #else FSkeletalMeshLODModel &model = resource->LODModels[lod_index]; #endif PyObject *py_iter = PyObject_GetIter(py_map); if (!py_iter) { return PyErr_Format(PyExc_Exception, "argument is not an iterable of numbers"); } TArray<FBoneIndexType> required_bones; while (PyObject *py_item = PyIter_Next(py_iter)) { if (!PyNumber_Check(py_item)) { Py_DECREF(py_iter); return PyErr_Format(PyExc_Exception, "argument is not an iterable of numbers"); } PyObject *py_num = PyNumber_Long(py_item); uint16 index = PyLong_AsUnsignedLong(py_num); Py_DECREF(py_num); required_bones.Add(index); } Py_DECREF(py_iter); // temporarily disable all USkinnedMeshComponent's TComponentReregisterContext<USkinnedMeshComponent> ReregisterContext; mesh->ReleaseResources(); mesh->ReleaseResourcesFence.Wait(); model.RequiredBones = required_bones; model.RequiredBones.Sort(); mesh->RefBasesInvMatrix.Empty(); mesh->CalculateInvRefMatrices(); #if WITH_EDITOR mesh->PostEditChange(); #endif mesh->InitResources(); mesh->MarkPackageDirty(); Py_RETURN_NONE; }
PyObject *py_ue_skeletal_mesh_set_soft_vertices(ue_PyUObject *self, PyObject * args) { ue_py_check(self); PyObject *py_ss_vertex; int lod_index = 0; int section_index = 0; if (!PyArg_ParseTuple(args, "O|ii:skeletal_mesh_set_soft_vertices", &py_ss_vertex, &lod_index, §ion_index)) return nullptr; USkeletalMesh *mesh = ue_py_check_type<USkeletalMesh>(self); if (!mesh) return PyErr_Format(PyExc_Exception, "uobject is not a USkeletalMesh"); #if ENGINE_MINOR_VERSION < 19 FSkeletalMeshResource *resource = mesh->GetImportedResource(); #else FSkeletalMeshModel *resource = mesh->GetImportedModel(); #endif if (lod_index < 0 || lod_index >= resource->LODModels.Num()) return PyErr_Format(PyExc_Exception, "invalid LOD index, must be between 0 and %d", resource->LODModels.Num() - 1); #if ENGINE_MINOR_VERSION < 19 FStaticLODModel &model = resource->LODModels[lod_index]; #else FSkeletalMeshLODModel &model = resource->LODModels[lod_index]; #endif if (section_index < 0 || section_index >= model.Sections.Num()) return PyErr_Format(PyExc_Exception, "invalid Section index, must be between 0 and %d", model.Sections.Num() - 1); PyObject *py_iter = PyObject_GetIter(py_ss_vertex); if (!py_iter) { return PyErr_Format(PyExc_Exception, "argument is not an iterable of FSoftSkinVertex"); } TArray<FSoftSkinVertex> soft_vertices; while (PyObject *py_item = PyIter_Next(py_iter)) { ue_PyFSoftSkinVertex *ss_vertex = py_ue_is_fsoft_skin_vertex(py_item); if (!ss_vertex) { Py_DECREF(py_iter); return PyErr_Format(PyExc_Exception, "argument is not an iterable of FSoftSkinVertex"); } soft_vertices.Add(ss_vertex->ss_vertex); } Py_DECREF(py_iter); // temporarily disable all USkinnedMeshComponent's TComponentReregisterContext<USkinnedMeshComponent> ReregisterContext; mesh->ReleaseResources(); mesh->ReleaseResourcesFence.Wait(); model.Sections[section_index].SoftVertices = soft_vertices; model.Sections[section_index].NumVertices = soft_vertices.Num(); model.Sections[section_index].CalcMaxBoneInfluences(); mesh->RefBasesInvMatrix.Empty(); mesh->CalculateInvRefMatrices(); #if WITH_EDITOR mesh->PostEditChange(); #endif mesh->InitResources(); mesh->MarkPackageDirty(); Py_RETURN_NONE; }
UObject* USpriterImporterFactory::FactoryCreateText(UClass* InClass, UObject* InParent, FName InName, EObjectFlags Flags, UObject* Context, const TCHAR* Type, const TCHAR*& Buffer, const TCHAR* BufferEnd, FFeedbackContext* Warn) { Flags |= RF_Transactional; FEditorDelegates::OnAssetPreImport.Broadcast(this, InClass, InParent, InName, Type); FAssetToolsModule& AssetToolsModule = FModuleManager::GetModuleChecked<FAssetToolsModule>("AssetTools"); bool bLoadedSuccessfully = true; const FString CurrentFilename = UFactory::GetCurrentFilename(); FString CurrentSourcePath; FString FilenameNoExtension; FString UnusedExtension; FPaths::Split(CurrentFilename, CurrentSourcePath, FilenameNoExtension, UnusedExtension); const FString LongPackagePath = FPackageName::GetLongPackagePath(InParent->GetOutermost()->GetPathName()); const FString NameForErrors(InName.ToString()); const FString FileContent(BufferEnd - Buffer, Buffer); TSharedPtr<FJsonObject> DescriptorObject = ParseJSON(FileContent, NameForErrors); UPaperSpriterImportData* Result = nullptr; // Parse the file FSpriterSCON DataModel; if (DescriptorObject.IsValid()) { DataModel.ParseFromJSON(DescriptorObject, NameForErrors, /*bSilent=*/ false, /*bPreParseOnly=*/ false); } // Create the new 'hub' asset and convert the data model over if (DataModel.IsValid()) { const bool bSilent = false; Result = NewObject<UPaperSpriterImportData>(InParent, InName, Flags); Result->Modify(); //@TODO: Do some things here maybe? Result->ImportedData = DataModel; // Import the assets in the folders for (const FSpriterFolder& Folder : DataModel.Folders) { for (const FSpriterFile& File : Folder.Files) { const FString RelativeFilename = File.Name.Replace(TEXT("\\"), TEXT("/"), ESearchCase::CaseSensitive); const FString SourceSpriterFilePath = FPaths::Combine(*CurrentSourcePath, *RelativeFilename); FString RelativeDestPath; FString JustFilename; FString JustExtension; FPaths::Split(RelativeFilename, /*out*/ RelativeDestPath, /*out*/ JustFilename, /*out*/ JustExtension); if (File.FileType == ESpriterFileType::Sprite) { const FString TargetTexturePath = LongPackagePath / TEXT("Textures") / RelativeDestPath; const FString TargetSpritePath = LongPackagePath / TEXT("Sprites") / RelativeDestPath; // Import the texture UTexture2D* ImportedTexture = ImportTexture(SourceSpriterFilePath, TargetTexturePath); if (ImportTexture == nullptr) { SPRITER_IMPORT_ERROR(TEXT("Failed to import texture '%s' while importing '%s'"), *SourceSpriterFilePath, *CurrentFilename); } // Create a sprite from it UPaperSprite* ImportedSprite = CastChecked<UPaperSprite>(CreateNewAsset(UPaperSprite::StaticClass(), TargetSpritePath, JustFilename, Flags)); const ESpritePivotMode::Type PivotMode = ConvertNormalizedPivotPointToPivotMode(File.PivotX, File.PivotY); const double PivotInPixelsX = File.Width * File.PivotX; const double PivotInPixelsY = File.Height * File.PivotY; ImportedSprite->SetPivotMode(PivotMode, FVector2D((float)PivotInPixelsX, (float)PivotInPixelsY)); FSpriteAssetInitParameters SpriteInitParams; SpriteInitParams.SetTextureAndFill(ImportedTexture); GetDefault<UPaperImporterSettings>()->ApplySettingsForSpriteInit(SpriteInitParams); SpriteInitParams.SetPixelsPerUnrealUnit(1.0f); ImportedSprite->InitializeSprite(SpriteInitParams); } else if (File.FileType == ESpriterFileType::Sound) { // Import the sound const FString TargetAssetPath = LongPackagePath / RelativeDestPath; UObject* ImportedSound = ImportAsset(SourceSpriterFilePath, TargetAssetPath); } else if (File.FileType != ESpriterFileType::INVALID) { ensureMsgf(false, TEXT("Importer was not updated when a new entry was added to ESpriterFileType")); } // TMap<FString, class UTexture2D*> ImportedTextures; // TMap<FString, class UPaperSprite> ImportedSprites; } } for (const FSpriterEntity& Entity : DataModel.Entities) { // Extract the common/shared skeleton FBoneHierarchyBuilder HierarchyBuilder; HierarchyBuilder.ProcessHierarchy(Entity); // Create the skeletal mesh const FString TargetMeshName = Entity.Name + TEXT("_SkelMesh"); const FString TargetMeshPath = LongPackagePath; USkeletalMesh* SkeletalMesh = CastChecked<USkeletalMesh>(CreateNewAsset(USkeletalMesh::StaticClass(), TargetMeshPath, TargetMeshName, Flags)); // Create the skeleton const FString TargetSkeletonName = Entity.Name + TEXT("_Skeleton"); const FString TargetSkeletonPath = LongPackagePath; USkeleton* EntitySkeleton = CastChecked<USkeleton>(CreateNewAsset(USkeleton::StaticClass(), TargetSkeletonPath, TargetSkeletonName, Flags)); // Initialize the mesh asset FSkeletalMeshResource* ImportedResource = SkeletalMesh->GetImportedResource(); check(ImportedResource->LODModels.Num() == 0); ImportedResource->LODModels.Empty(); FStaticLODModel& LODModel = *new (ImportedResource->LODModels) FStaticLODModel(); SkeletalMesh->LODInfo.Empty(); SkeletalMesh->LODInfo.AddZeroed(); SkeletalMesh->LODInfo[0].LODHysteresis = 0.02f; FSkeletalMeshOptimizationSettings Settings; // set default reduction settings values SkeletalMesh->LODInfo[0].ReductionSettings = Settings; // Create initial bounding box based on expanded version of reference pose for meshes without physics assets. Can be overridden by artist. // FBox BoundingBox(SkelMeshImportDataPtr->Points.GetData(), SkelMeshImportDataPtr->Points.Num()); // FBox Temp = BoundingBox; // FVector MidMesh = 0.5f*(Temp.Min + Temp.Max); // BoundingBox.Min = Temp.Min + 1.0f*(Temp.Min - MidMesh); // BoundingBox.Max = Temp.Max + 1.0f*(Temp.Max - MidMesh); // // Tuck up the bottom as this rarely extends lower than a reference pose's (e.g. having its feet on the floor). // // Maya has Y in the vertical, other packages have Z. // //BEN const int32 CoordToTuck = bAssumeMayaCoordinates ? 1 : 2; // //BEN BoundingBox.Min[CoordToTuck] = Temp.Min[CoordToTuck] + 0.1f*(Temp.Min[CoordToTuck] - MidMesh[CoordToTuck]); // BoundingBox.Min[2] = Temp.Min[2] + 0.1f*(Temp.Min[2] - MidMesh[2]); // SkeletalMesh->Bounds = FBoxSphereBounds(BoundingBox); // Store whether or not this mesh has vertex colors // SkeletalMesh->bHasVertexColors = SkelMeshImportDataPtr->bHasVertexColors; // Pass the number of texture coordinate sets to the LODModel. Ensure there is at least one UV coord LODModel.NumTexCoords = 1;// FMath::Max<uint32>(1, SkelMeshImportDataPtr->NumTexCoords); // Create the reference skeleton and update LOD0 FReferenceSkeleton& RefSkeleton = SkeletalMesh->RefSkeleton; HierarchyBuilder.CopyToRefSkeleton(RefSkeleton); SkeletalMesh->CalculateRequiredBones(LODModel, RefSkeleton, /*BonesToRemove=*/ nullptr); SkeletalMesh->CalculateInvRefMatrices(); // Initialize the skeleton asset EntitySkeleton->MergeAllBonesToBoneTree(SkeletalMesh); // Point the mesh and skeleton at each other SkeletalMesh->Skeleton = EntitySkeleton; EntitySkeleton->SetPreviewMesh(SkeletalMesh); // Create the animations for (const FSpriterAnimation& Animation : Entity.Animations) { //@TODO: That thing I said... const FString TargetAnimationName = Animation.Name; const FString TargetAnimationPath = LongPackagePath / TEXT("Animations"); UAnimSequence* AnimationAsset = CastChecked<UAnimSequence>(CreateNewAsset(UAnimSequence::StaticClass(), TargetAnimationPath, TargetAnimationName, Flags)); AnimationAsset->SetSkeleton(EntitySkeleton); // if you have one pose(thus 0.f duration), it still contains animation, so we'll need to consider that as MINIMUM_ANIMATION_LENGTH time length const float DurationInSeconds = Animation.LengthInMS * 0.001f; AnimationAsset->SequenceLength = FMath::Max<float>(DurationInSeconds, MINIMUM_ANIMATION_LENGTH); const bool bSourceDataExists = (AnimationAsset->SourceRawAnimationData.Num() > 0); TArray<struct FRawAnimSequenceTrack>& RawAnimationData = bSourceDataExists ? AnimationAsset->SourceRawAnimationData : AnimationAsset->RawAnimationData; int32 TotalNumKeys = 0; for (const FSpriterTimeline& Timeline : Animation.Timelines) { if (Timeline.ObjectType != ESpriterObjectType::Bone) { continue; } const FName BoneName = Entity.Objects[Timeline.ObjectIndex].ObjectName; const int32 RefBoneIndex = EntitySkeleton->GetReferenceSkeleton().FindBoneIndex(BoneName); check(RefBoneIndex != INDEX_NONE); FRawAnimSequenceTrack RawTrack; RawTrack.PosKeys.Empty(); RawTrack.RotKeys.Empty(); RawTrack.ScaleKeys.Empty(); int32 NumKeysForTrack = 0; //@TODO: Quick and dirty resampling code that needs to be replaced (totally ignores curve type, edge cases, etc...) const float ResampleFPS = 30.0f; int32 DesiredNumKeys = FMath::CeilToInt(ResampleFPS * DurationInSeconds); const float TimePerKey = 1.0f / ResampleFPS; float CurrentSampleTime = 0.0f; for (int32 FrameIndex = 0; FrameIndex < DesiredNumKeys; ++FrameIndex) { int32 LowerKeyIndex = 0; for (; LowerKeyIndex < Timeline.Keys.Num(); ++LowerKeyIndex) { if (Timeline.Keys[LowerKeyIndex].TimeInMS * 0.001f > CurrentSampleTime) { --LowerKeyIndex; break; } } if (LowerKeyIndex >= Timeline.Keys.Num()) { LowerKeyIndex = Timeline.Keys.Num() - 1; } int32 UpperKeyIndex = LowerKeyIndex + 1; float UpperKeyTime = 0.0f; if (UpperKeyIndex >= Timeline.Keys.Num()) { UpperKeyTime = DurationInSeconds; if (Animation.bIsLooping) { UpperKeyIndex = 0; } else { UpperKeyIndex = Timeline.Keys.Num() - 1; } } else { UpperKeyTime = Timeline.Keys[UpperKeyIndex].TimeInMS * 0.001f; } const FSpriterFatTimelineKey& TimelineKey0 = Timeline.Keys[LowerKeyIndex]; const FSpriterFatTimelineKey& TimelineKey1 = Timeline.Keys[UpperKeyIndex]; const float LowerKeyTime = TimelineKey0.TimeInMS * 0.001f; const FTransform LocalTransform0 = TimelineKey0.Info.ConvertToTransform(); const FTransform LocalTransform1 = TimelineKey1.Info.ConvertToTransform(); FTransform LocalTransform = LocalTransform0; if (LowerKeyIndex != UpperKeyIndex) { const float Alpha = (CurrentSampleTime - LowerKeyTime) / (UpperKeyTime - LowerKeyTime); LocalTransform.Blend(LocalTransform0, LocalTransform1, Alpha); } RawTrack.ScaleKeys.Add(LocalTransform.GetScale3D()); RawTrack.PosKeys.Add(LocalTransform.GetTranslation()); RawTrack.RotKeys.Add(LocalTransform.GetRotation()); ++NumKeysForTrack; CurrentSampleTime += TimePerKey; } // // for (const FSpriterFatTimelineKey& TimelineKey : Timeline.Keys) // { // //@TODO: Ignoring TimeInMS // const FTransform LocalTransform = TimelineKey.Info.ConvertToTransform(); // // RawTrack.ScaleKeys.Add(LocalTransform.GetScale3D()); // RawTrack.PosKeys.Add(LocalTransform.GetTranslation()); // RawTrack.RotKeys.Add(LocalTransform.GetRotation()); // // ++NumKeysForTrack; // } // RawAnimationData.Add(RawTrack); AnimationAsset->AnimationTrackNames.Add(BoneName); // add mapping to skeleton bone track AnimationAsset->TrackToSkeletonMapTable.Add(FTrackToSkeletonMap(RefBoneIndex)); TotalNumKeys = FMath::Max(TotalNumKeys, NumKeysForTrack); } AnimationAsset->NumFrames = TotalNumKeys; AnimationAsset->MarkRawDataAsModified(); // compress animation { GWarn->BeginSlowTask(LOCTEXT("BeginCompressAnimation", "Compress Animation"), true); GWarn->StatusForceUpdate(1, 1, LOCTEXT("CompressAnimation", "Compressing Animation")); // if source data exists, you should bake it to Raw to apply if (bSourceDataExists) { AnimationAsset->BakeTrackCurvesToRawAnimation(); } else { // otherwise just compress AnimationAsset->PostProcessSequence(); } // run debug mode GWarn->EndSlowTask(); } // NewAnimation = FFbxImporter->ImportAnimations(Skeleton, Outer, SortedLinks, AnimName, TemplateImportData, FBXMeshNodeArray); // // if (NewAnimation) // { // // since to know full path, reimport will need to do same // UFbxAnimSequenceImportData* ImportData = UFbxAnimSequenceImportData::GetImportDataForAnimSequence(NewAnimation, TemplateImportData); // ImportData->SourceFilePath = FReimportManager::SanitizeImportFilename(UFactory::CurrentFilename, NewAnimation); // ImportData->SourceFileTimestamp = IFileManager::Get().GetTimeStamp(*UFactory::CurrentFilename).ToString(); // } } } Result->PostEditChange(); } else { // Failed to parse the JSON bLoadedSuccessfully = false; } if (Result != nullptr) { //@TODO: Need to do this // Store the current file path and timestamp for re-import purposes // UAssetImportData* ImportData = UTileMapAssetImportData::GetImportDataForTileMap(Result); // ImportData->SourceFilePath = FReimportManager::SanitizeImportFilename(CurrentFilename, Result); // ImportData->SourceFileTimestamp = IFileManager::Get().GetTimeStamp(*CurrentFilename).ToString(); } FEditorDelegates::OnAssetPostImport.Broadcast(this, Result); return Result; }