dgJacobian dgDynamicBody::IntegrateForceAndToque(const dgVector& force, const dgVector& torque, const dgVector& timestep)
{
	dgJacobian velocStep;
	if (m_gyroTorqueOn) {
		dgVector dtHalf(timestep * dgVector::m_half);
		dgMatrix matrix(m_gyroRotation, dgVector::m_wOne);

		dgVector localOmega(matrix.UnrotateVector(m_omega));
		dgVector localTorque(matrix.UnrotateVector(torque - m_gyroTorque));

		// derivative at half time step. (similar to midpoint Euler so that it does not loses too much energy)
		dgVector dw(localOmega * dtHalf);
		dgMatrix jacobianMatrix(
			dgVector(m_mass[0], (m_mass[2] - m_mass[1]) * dw[2], (m_mass[2] - m_mass[1]) * dw[1], dgFloat32(0.0f)),
			dgVector((m_mass[0] - m_mass[2]) * dw[2], m_mass[1], (m_mass[0] - m_mass[2]) * dw[0], dgFloat32(1.0f)),
			dgVector((m_mass[1] - m_mass[0]) * dw[1], (m_mass[1] - m_mass[0]) * dw[0], m_mass[2], dgFloat32(1.0f)),
			dgVector::m_wOne);

		// and solving for alpha we get the angular acceleration at t + dt
		// calculate gradient at a full time step
		//dgVector gradientStep(localTorque * timestep);
		dgVector gradientStep(jacobianMatrix.SolveByGaussianElimination(localTorque * timestep));

		dgVector omega(matrix.RotateVector(localOmega + gradientStep));
		dgAssert(omega.m_w == dgFloat32(0.0f));

		// integrate rotation here
		dgFloat32 omegaMag2 = omega.DotProduct(omega).GetScalar() + dgFloat32(1.0e-12f);
		dgFloat32 invOmegaMag = dgRsqrt(omegaMag2);
		dgVector omegaAxis(omega.Scale(invOmegaMag));
		dgFloat32 omegaAngle = invOmegaMag * omegaMag2 * timestep.GetScalar();
		dgQuaternion deltaRotation(omegaAxis, omegaAngle);
		m_gyroRotation = m_gyroRotation * deltaRotation;
		dgAssert((m_gyroRotation.DotProduct(m_gyroRotation) - dgFloat32(1.0f)) < dgFloat32(1.0e-5f));

		matrix = dgMatrix(m_gyroRotation, dgVector::m_wOne);
		localOmega = matrix.UnrotateVector(omega);
		//dgVector angularMomentum(inertia * localOmega);
		//body->m_gyroTorque = matrix.RotateVector(localOmega.CrossProduct(angularMomentum));
		//body->m_gyroAlpha = body->m_invWorldInertiaMatrix.RotateVector(body->m_gyroTorque);
		dgVector localGyroTorque(localOmega.CrossProduct(m_mass * localOmega));
		m_gyroTorque = matrix.RotateVector(localGyroTorque);
		m_gyroAlpha = matrix.RotateVector(localGyroTorque * m_invMass);

		velocStep.m_angular = matrix.RotateVector(gradientStep);
	} else {
		velocStep.m_angular = m_invWorldInertiaMatrix.RotateVector(torque) * timestep;
		//velocStep.m_angular = velocStep.m_angular * dgVector::m_half;
	}

	velocStep.m_linear = force.Scale(m_invMass.m_w) * timestep;
	return velocStep;
}
dgVector dgCollisionChamferCylinder::SupportVertex (const dgVector& dir, dgInt32* const vertexIndex) const
{
	dgAssert (dgAbsf(dir % dir - dgFloat32 (1.0f)) < dgFloat32 (1.0e-3f));

	dgFloat32 x = dir.GetScalar();
	if (dgAbsf (x) > dgFloat32 (0.9999f)) {
		return dgVector ((x > dgFloat32 (0.0f)) ? m_height : - m_height, dgFloat32 (0.0f), dgFloat32 (0.0f), dgFloat32 (0.0f)); 
	}

	dgVector sideDir (m_yzMask & dir);
	sideDir = sideDir.CompProduct4(sideDir.InvMagSqrt());
	return sideDir.Scale4(m_radius) + dir.Scale4 (m_height);
}
dgVector dgCollisionChamferCylinder::SupportVertexSpecial (const dgVector& dir, dgFloat32 skinThickness, dgInt32* const vertexIndex) const
{
	dgAssert (dir.m_w == dgFloat32 (0.0f));
	dgAssert (dgAbs(dir.DotProduct(dir).GetScalar() - dgFloat32 (1.0f)) < dgFloat32 (1.0e-3f));

	dgFloat32 x = dir.GetScalar();
	if (dgAbs (x) > dgFloat32 (0.99995f)) {
		return dgVector (dgFloat32 (0.0f), m_radius, dgFloat32 (0.0f), dgFloat32 (0.0f)); 
	}

	dgVector sideDir (m_yzMask & dir);
	dgAssert (sideDir.DotProduct(sideDir).GetScalar() > dgFloat32 (0.0f));
	return sideDir.Normalize().Scale(m_radius);
}
dgVector dgCollisionChamferCylinder::SupportVertexSpecial (const dgVector& dir, dgInt32* const vertexIndex) const
{
	*vertexIndex = -1;
	dgAssert (dgAbsf(dir % dir - dgFloat32 (1.0f)) < dgFloat32 (1.0e-3f));

	dgFloat32 x = dir.GetScalar();
	if (dgAbsf (x) > dgFloat32 (0.99995f)) {
		return dgVector::m_zero; 
	}

	dgVector sideDir (m_yzMask & dir);
	dgAssert ((sideDir % sideDir) > dgFloat32 (0.0f));
	return sideDir.CompProduct4(sideDir.InvMagSqrt()).Scale4(m_radius);
}
dgVector dgCollisionChamferCylinder::ConvexConicSupporVertex (const dgVector& dir) const
{
	dgAssert (dgAbsf(dir % dir - dgFloat32 (1.0f)) < dgFloat32 (1.0e-3f));

	dgFloat32 x = dir.GetScalar();
	//if (dgAbsf (dir.m_x) > dgFloat32 (0.99995f)) {
	if (dgAbsf (x) > dgFloat32 (0.99995f)) {
		return dgVector (dgFloat32 (0.0f), m_radius, dgFloat32 (0.0f), dgFloat32 (0.0f)); 
	}

	//dgVector sideDir (dgFloat32 (0.0f), dir.m_y, dir.m_z, dgFloat32 (0.0f));
	dgVector sideDir (m_yzMask & dir);
	dgAssert ((sideDir % sideDir) > dgFloat32 (0.0f));
	//return sideDir.Scale3 (m_radius * dgRsqrt (sideDir % sideDir));
	return sideDir.CompProduct4(sideDir.InvMagSqrt()).Scale4(m_radius);
}
dgVector dgCollisionChamferCylinder::SupportVertex (const dgVector& dir, dgInt32* const vertexIndex) const
{
	dgAssert (dir.m_w == dgFloat32 (0.0f));
	dgAssert (dgAbs(dir.DotProduct(dir).GetScalar() - dgFloat32 (1.0f)) < dgFloat32 (1.0e-3f));

	dgFloat32 x = dir.GetScalar();
	if (dgAbs (x) > dgFloat32 (0.9999f)) {
		//return dgVector ((x > dgFloat32 (0.0f)) ? m_height : - m_height, dgFloat32 (0.0f), dgFloat32 (0.0f), dgFloat32 (0.0f)); 
		return dgVector (dgSign (x) * m_height, m_radius, dgFloat32 (0.0f), dgFloat32 (0.0f)); 
	}

	dgVector sideDir (m_yzMask & dir);
	//sideDir = sideDir * sideDir.InvMagSqrt();
	sideDir = sideDir.Normalize();
	return sideDir.Scale(m_radius) + dir.Scale (m_height);
}
dgVector dgCollisionChamferCylinder::SupportVertex (const dgVector& dir, dgInt32* const vertexIndex) const
{
	dgAssert (dgAbsf(dir % dir - dgFloat32 (1.0f)) < dgFloat32 (1.0e-3f));

	dgFloat32 x = dir.GetScalar();
	if (dgAbsf (x) > dgFloat32 (0.9999f)) {
		dgFloat32 x0 = (x >= dgFloat32 (0.0f)) ? m_height : -m_height;
		return dgVector (x0, dgFloat32 (0.0f), m_radius, dgFloat32 (0.0f)); 
	}

//	dgVector sideDir (dgFloat32 (0.0f), dir.m_y, dir.m_z, dgFloat32 (0.0f));
	dgVector sideDir (m_yzMask & dir);
//	sideDir = sideDir.Scale3 (m_radius * dgRsqrt (sideDir % sideDir + dgFloat32 (1.0e-18f)));
	sideDir = sideDir.CompProduct4(sideDir.InvMagSqrt());
//	return sideDir + dir.Scale3 (m_height);
	return sideDir.Scale4(m_radius) + dir.Scale4 (m_height);
}
示例#8
0
DG_INLINE void dgSolver::BuildJacobianMatrix(dgJointInfo* const jointInfo, dgLeftHandSide* const leftHandSide, dgRightHandSide* const rightHandSide)
{
	const dgInt32 m0 = jointInfo->m_m0;
	const dgInt32 m1 = jointInfo->m_m1;
	const dgInt32 index = jointInfo->m_pairStart;
	const dgInt32 count = jointInfo->m_pairCount;
	const dgDynamicBody* const body0 = (dgDynamicBody*)m_bodyArray[m0].m_body;
	const dgDynamicBody* const body1 = (dgDynamicBody*)m_bodyArray[m1].m_body;
	const bool isBilateral = jointInfo->m_joint->IsBilateral();

	const dgMatrix invInertia0 = body0->m_invWorldInertiaMatrix;
	const dgMatrix invInertia1 = body1->m_invWorldInertiaMatrix;
	const dgVector invMass0(body0->m_invMass[3]);
	const dgVector invMass1(body1->m_invMass[3]);

	dgSoaFloat force0(m_soaZero);
	if (body0->IsRTTIType(dgBody::m_dynamicBodyRTTI)) {
		force0 = dgSoaFloat(body0->m_externalForce, body0->m_externalTorque);
	}

	dgSoaFloat force1(m_soaZero);
	if (body1->IsRTTIType(dgBody::m_dynamicBodyRTTI)) {
		force1 = dgSoaFloat(body1->m_externalForce, body1->m_externalTorque);
	}

	jointInfo->m_preconditioner0 = dgFloat32(1.0f);
	jointInfo->m_preconditioner1 = dgFloat32(1.0f);
	if ((invMass0.GetScalar() > dgFloat32(0.0f)) && (invMass1.GetScalar() > dgFloat32(0.0f)) && !(body0->GetSkeleton() && body1->GetSkeleton())) {
		const dgFloat32 mass0 = body0->GetMass().m_w;
		const dgFloat32 mass1 = body1->GetMass().m_w;
		if (mass0 > (DG_DIAGONAL_PRECONDITIONER * mass1)) {
			jointInfo->m_preconditioner0 = mass0 / (mass1 * DG_DIAGONAL_PRECONDITIONER);
		} else if (mass1 > (DG_DIAGONAL_PRECONDITIONER * mass0)) {
			jointInfo->m_preconditioner1 = mass1 / (mass0 * DG_DIAGONAL_PRECONDITIONER);
		}
	}

	const dgFloat32 forceImpulseScale = dgFloat32(1.0f);
	const dgSoaFloat weight0(m_bodyProxyArray[m0].m_weight * jointInfo->m_preconditioner0);
	const dgSoaFloat weight1(m_bodyProxyArray[m1].m_weight * jointInfo->m_preconditioner0);
	for (dgInt32 i = 0; i < count; i++) {
		dgLeftHandSide* const row = &leftHandSide[index + i];
		dgRightHandSide* const rhs = &rightHandSide[index + i];

		row->m_JMinv.m_jacobianM0.m_linear = row->m_Jt.m_jacobianM0.m_linear * invMass0;
		row->m_JMinv.m_jacobianM0.m_angular = invInertia0.RotateVector(row->m_Jt.m_jacobianM0.m_angular);
		row->m_JMinv.m_jacobianM1.m_linear = row->m_Jt.m_jacobianM1.m_linear * invMass1;
		row->m_JMinv.m_jacobianM1.m_angular = invInertia1.RotateVector(row->m_Jt.m_jacobianM1.m_angular);

		const dgSoaFloat& JMinvM0 = (dgSoaFloat&)row->m_JMinv.m_jacobianM0;
		const dgSoaFloat& JMinvM1 = (dgSoaFloat&)row->m_JMinv.m_jacobianM1;
		const dgSoaFloat tmpAccel((JMinvM0 * force0).MulAdd(JMinvM1, force1));

		dgFloat32 extenalAcceleration = -tmpAccel.AddHorizontal();
		rhs->m_deltaAccel = extenalAcceleration * forceImpulseScale;
		rhs->m_coordenateAccel += extenalAcceleration * forceImpulseScale;
		dgAssert(rhs->m_jointFeebackForce);
		const dgFloat32 force = rhs->m_jointFeebackForce->m_force * forceImpulseScale;
		rhs->m_force = isBilateral ? dgClamp(force, rhs->m_lowerBoundFrictionCoefficent, rhs->m_upperBoundFrictionCoefficent) : force;
		rhs->m_maxImpact = dgFloat32(0.0f);

		const dgSoaFloat& JtM0 = (dgSoaFloat&)row->m_Jt.m_jacobianM0;
		const dgSoaFloat& JtM1 = (dgSoaFloat&)row->m_Jt.m_jacobianM1;
		const dgSoaFloat tmpDiag((weight0 * JMinvM0 * JtM0).MulAdd(weight1, JMinvM1 * JtM1));

		dgFloat32 diag = tmpDiag.AddHorizontal();
		dgAssert(diag > dgFloat32(0.0f));
		rhs->m_diagDamp = diag * rhs->m_stiffness;
		diag *= (dgFloat32(1.0f) + rhs->m_stiffness);
		//rhs->m_jinvMJt = diag;
		rhs->m_invJinvMJt = dgFloat32(1.0f) / diag;
	}
}