void Foam::cellPointWeight::findTetrahedron ( const polyMesh& mesh, const vector& position, const label cellIndex ) { if (debug) { Pout<< "\nFoam::cellPointWeight::findTetrahedron" << nl << "position = " << position << nl << "cellIndex = " << cellIndex << endl; } // Initialise closest triangle variables scalar minUVWClose = VGREAT; label pointIClose = 0; label faceClose = 0; const vector& P0 = mesh.cellCentres()[cellIndex]; const labelList& cellFaces = mesh.cells()[cellIndex]; const scalar cellVolume = mesh.cellVolumes()[cellIndex]; // Find the tet that the point occupies forAll(cellFaces, faceI) { // Decompose each face into triangles, making a tet when // augmented by the cell centre const labelList& facePoints = mesh.faces()[cellFaces[faceI]]; label pointI = 1; while ((pointI + 1) < facePoints.size()) { // Cartesian co-ordinates of the triangle vertices const vector& P1 = mesh.points()[facePoints[0]]; const vector& P2 = mesh.points()[facePoints[pointI]]; const vector& P3 = mesh.points()[facePoints[pointI + 1]]; // Edge vectors const vector e1 = P1 - P0; const vector e2 = P2 - P0; const vector e3 = P3 - P0; // Solve for interpolation weighting factors // Source term const vector rhs = position - P0; // Determinant of coefficients matrix // Note: if det(A) = 0 the tet is degenerate const scalar detA = e1.x()*e2.y()*e3.z() + e2.x()*e3.y()*e1.z() + e3.x()*e1.y()*e2.z() - e1.x()*e3.y()*e2.z() - e2.x()*e1.y()*e3.z() - e3.x()*e2.y()*e1.z(); if (mag(detA/cellVolume) > tol) { // Solve using Cramers' rule const scalar u = ( rhs.x()*e2.y()*e3.z() + e2.x()*e3.y()*rhs.z() + e3.x()*rhs.y()*e2.z() - rhs.x()*e3.y()*e2.z() - e2.x()*rhs.y()*e3.z() - e3.x()*e2.y()*rhs.z() )/detA; const scalar v = ( e1.x()*rhs.y()*e3.z() + rhs.x()*e3.y()*e1.z() + e3.x()*e1.y()*rhs.z() - e1.x()*e3.y()*rhs.z() - rhs.x()*e1.y()*e3.z() - e3.x()*rhs.y()*e1.z() )/detA; const scalar w = ( e1.x()*e2.y()*rhs.z() + e2.x()*rhs.y()*e1.z() + rhs.x()*e1.y()*e2.z() - e1.x()*rhs.y()*e2.z() - e2.x()*e1.y()*rhs.z() - rhs.x()*e2.y()*e1.z() )/detA; // Check if point is in tet // value = 0 indicates position lies on a tet face if ( (u + tol > 0) && (v + tol > 0) && (w + tol > 0) && (u + v + w < 1 + tol) ) { faceVertices_[0] = facePoints[0]; faceVertices_[1] = facePoints[pointI]; faceVertices_[2] = facePoints[pointI + 1]; weights_[0] = u; weights_[1] = v; weights_[2] = w; weights_[3] = 1.0 - (u + v + w); return; } else { scalar minU = mag(u); scalar minV = mag(v); scalar minW = mag(w); if (minU > 1.0) { minU -= 1.0; } if (minV > 1.0) { minV -= 1.0; } if (minW > 1.0) { minW -= 1.0; } const scalar minUVW = mag(minU + minV + minW); if (minUVW < minUVWClose) { minUVWClose = minUVW; pointIClose = pointI; faceClose = faceI; } } } pointI++; } } if (debug) { Pout<< "cellPointWeight::findTetrahedron" << nl << " Tetrahedron search failed; using closest tet values to " << "point " << nl << " cell: " << cellIndex << nl << endl; } const labelList& facePointsClose = mesh.faces()[cellFaces[faceClose]]; faceVertices_[0] = facePointsClose[0]; faceVertices_[1] = facePointsClose[pointIClose]; faceVertices_[2] = facePointsClose[pointIClose + 1]; weights_[0] = 0.25; weights_[1] = 0.25; weights_[2] = 0.25; weights_[3] = 0.25; }
void Foam::cellPointWeight::findTetrahedron ( const polyMesh& mesh, const vector& position, const label celli ) { if (debug) { Pout<< nl << "Foam::cellPointWeight::findTetrahedron" << nl << "position = " << position << nl << "celli = " << celli << endl; } List<tetIndices> cellTets = polyMeshTetDecomposition::cellTetIndices ( mesh, celli ); const scalar cellVolume = mesh.cellVolumes()[celli]; forAll(cellTets, tetI) { const tetIndices& tetIs = cellTets[tetI]; // Barycentric coordinates of the position scalar det = tetIs.tet(mesh).pointToBarycentric(position, weights_); if (mag(det/cellVolume) > tol) { const scalar& u = weights_[0]; const scalar& v = weights_[1]; const scalar& w = weights_[2]; if ( (u + tol > 0) && (v + tol > 0) && (w + tol > 0) && (u + v + w < 1 + tol) ) { faceVertices_ = tetIs.faceTriIs(mesh); return; } } } // A suitable point in a tetrahedron was not found, find the // nearest. scalar minNearDist = vGreat; label nearestTetI = -1; forAll(cellTets, tetI) { const tetIndices& tetIs = cellTets[tetI]; scalar nearDist = tetIs.tet(mesh).nearestPoint(position).distance(); if (nearDist < minNearDist) { minNearDist = nearDist; nearestTetI = tetI; } } if (debug) { Pout<< "cellPointWeight::findTetrahedron" << nl << " Tetrahedron search failed; using closest tet to point " << position << nl << " cell: " << celli << nl << endl; } const tetIndices& tetIs = cellTets[nearestTetI]; // Barycentric coordinates of the position, ignoring if the // determinant is suitable. If not, the return from barycentric // to weights_ is safe. weights_ = tetIs.tet(mesh).pointToBarycentric(position); faceVertices_ = tetIs.faceTriIs(mesh); }
bool Foam::motionSmootherAlgo::checkMesh ( const bool report, const polyMesh& mesh, const dictionary& dict, const labelList& checkFaces, const List<labelPair>& baffles, labelHashSet& wrongFaces ) { const scalar maxNonOrtho ( readScalar(dict.lookup("maxNonOrtho", true)) ); const scalar minVol ( readScalar(dict.lookup("minVol", true)) ); const scalar minTetQuality ( readScalar(dict.lookup("minTetQuality", true)) ); const scalar maxConcave ( readScalar(dict.lookup("maxConcave", true)) ); const scalar minArea ( readScalar(dict.lookup("minArea", true)) ); const scalar maxIntSkew ( readScalar(dict.lookup("maxInternalSkewness", true)) ); const scalar maxBounSkew ( readScalar(dict.lookup("maxBoundarySkewness", true)) ); const scalar minWeight ( readScalar(dict.lookup("minFaceWeight", true)) ); const scalar minVolRatio ( readScalar(dict.lookup("minVolRatio", true)) ); const scalar minTwist ( readScalar(dict.lookup("minTwist", true)) ); const scalar minTriangleTwist ( readScalar(dict.lookup("minTriangleTwist", true)) ); scalar minFaceFlatness = -1.0; dict.readIfPresent("minFaceFlatness", minFaceFlatness, true); const scalar minDet ( readScalar(dict.lookup("minDeterminant", true)) ); label nWrongFaces = 0; Info<< "Checking faces in error :" << endl; //Pout.setf(ios_base::left); if (maxNonOrtho < 180.0-SMALL) { polyMeshGeometry::checkFaceDotProduct ( report, maxNonOrtho, mesh, mesh.cellCentres(), mesh.faceAreas(), checkFaces, baffles, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " non-orthogonality > " << setw(3) << maxNonOrtho << " degrees : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minVol > -GREAT) { polyMeshGeometry::checkFacePyramids ( report, minVol, mesh, mesh.cellCentres(), mesh.points(), checkFaces, baffles, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with face pyramid volume < " << setw(5) << minVol << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minTetQuality > -GREAT) { polyMeshGeometry::checkFaceTets ( report, minTetQuality, mesh, mesh.cellCentres(), mesh.faceCentres(), mesh.points(), checkFaces, baffles, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with face-decomposition tet quality < " << setw(5) << minTetQuality << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (maxConcave < 180.0-SMALL) { polyMeshGeometry::checkFaceAngles ( report, maxConcave, mesh, mesh.faceAreas(), mesh.points(), checkFaces, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with concavity > " << setw(3) << maxConcave << " degrees : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minArea > -SMALL) { polyMeshGeometry::checkFaceArea ( report, minArea, mesh, mesh.faceAreas(), checkFaces, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with area < " << setw(5) << minArea << " m^2 : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (maxIntSkew > 0 || maxBounSkew > 0) { polyMeshGeometry::checkFaceSkewness ( report, maxIntSkew, maxBounSkew, mesh, mesh.points(), mesh.cellCentres(), mesh.faceCentres(), mesh.faceAreas(), checkFaces, baffles, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with skewness > " << setw(3) << maxIntSkew << " (internal) or " << setw(3) << maxBounSkew << " (boundary) : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minWeight >= 0 && minWeight < 1) { polyMeshGeometry::checkFaceWeights ( report, minWeight, mesh, mesh.cellCentres(), mesh.faceCentres(), mesh.faceAreas(), checkFaces, baffles, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with interpolation weights (0..1) < " << setw(5) << minWeight << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minVolRatio >= 0) { polyMeshGeometry::checkVolRatio ( report, minVolRatio, mesh, mesh.cellVolumes(), checkFaces, baffles, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with volume ratio of neighbour cells < " << setw(5) << minVolRatio << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minTwist > -1) { //Pout<< "Checking face twist: dot product of face normal " // << "with face triangle normals" << endl; polyMeshGeometry::checkFaceTwist ( report, minTwist, mesh, mesh.cellCentres(), mesh.faceAreas(), mesh.faceCentres(), mesh.points(), checkFaces, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with face twist < " << setw(5) << minTwist << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minTriangleTwist > -1) { //Pout<< "Checking triangle twist: dot product of consecutive triangle" // << " normals resulting from face-centre decomposition" << endl; polyMeshGeometry::checkTriangleTwist ( report, minTriangleTwist, mesh, mesh.faceAreas(), mesh.faceCentres(), mesh.points(), checkFaces, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with triangle twist < " << setw(5) << minTriangleTwist << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minFaceFlatness > -SMALL) { polyMeshGeometry::checkFaceFlatness ( report, minFaceFlatness, mesh, mesh.faceAreas(), mesh.faceCentres(), mesh.points(), checkFaces, &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces with flatness < " << setw(5) << minFaceFlatness << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } if (minDet > -1) { polyMeshGeometry::checkCellDeterminant ( report, minDet, mesh, mesh.faceAreas(), checkFaces, polyMeshGeometry::affectedCells(mesh, checkFaces), &wrongFaces ); label nNewWrongFaces = returnReduce(wrongFaces.size(), sumOp<label>()); Info<< " faces on cells with determinant < " << setw(5) << minDet << " : " << nNewWrongFaces-nWrongFaces << endl; nWrongFaces = nNewWrongFaces; } //Pout.setf(ios_base::right); return nWrongFaces > 0; }
// Same check as snapMesh void checkSnapMesh ( const Time& runTime, const polyMesh& mesh, labelHashSet& wrongFaces ) { IOdictionary snapDict ( IOobject ( "snapMeshDict", runTime.system(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); // Max nonorthogonality allowed scalar maxNonOrtho(readScalar(snapDict.lookup("maxNonOrtho"))); primitiveMesh::nonOrthThreshold_ = maxNonOrtho; // Max concaveness allowed. scalar maxConcave(readScalar(snapDict.lookup("maxConcave"))); primitiveMesh::faceAngleThreshold_ = maxConcave; // Min volume allowed (factor of minimum cellVolume) scalar relMinVol(readScalar(snapDict.lookup("minVol"))); const scalar minCellVol = min(mesh.cellVolumes()); const scalar minPyrVol = relMinVol*minCellVol; // Min area scalar minArea(readScalar(snapDict.lookup("minArea"))); if (maxNonOrtho < 180.0 - SMALL) { Pout<< "Checking non orthogonality" << endl; label nOldSize = wrongFaces.size(); mesh.checkFaceOrthogonality(false, &wrongFaces); Pout<< "Detected " << wrongFaces.size() - nOldSize << " faces with non-orthogonality > " << maxNonOrtho << " degrees" << endl; } if (minPyrVol > -GREAT) { Pout<< "Checking face pyramids" << endl; label nOldSize = wrongFaces.size(); mesh.checkFacePyramids(false, minPyrVol, &wrongFaces); Pout<< "Detected additional " << wrongFaces.size() - nOldSize << " faces with illegal face pyramids" << endl; } if (maxConcave < 180.0 - SMALL) { Pout<< "Checking face angles" << endl; label nOldSize = wrongFaces.size(); mesh.checkFaceAngles(false, &wrongFaces); Pout<< "Detected additional " << wrongFaces.size() - nOldSize << " faces with concavity > " << maxConcave << " degrees" << endl; } if (minArea > -SMALL) { Pout<< "Checking face areas" << endl; label nOldSize = wrongFaces.size(); const scalarField magFaceAreas = mag(mesh.faceAreas()); forAll(magFaceAreas, faceI) { if (magFaceAreas[faceI] < minArea) { wrongFaces.insert(faceI); } } Pout<< "Detected additional " << wrongFaces.size() - nOldSize << " faces with area < " << minArea << " m^2" << endl; }