示例#1
0
label addCellZone(const polyMesh& mesh, const word& name)
{
    label zoneID = mesh.cellZones().findZoneID(name);

    if (zoneID != -1)
    {
        Info<< "Reusing existing cellZone " << mesh.cellZones()[zoneID].name()
            << " at index " << zoneID << endl;
    }
    else
    {
        cellZoneMesh& cellZones = const_cast<polyMesh&>(mesh).cellZones();
        zoneID = cellZones.size();
        Info<< "Adding cellZone " << name << " at index " << zoneID << endl;

        cellZones.setSize(zoneID+1);
        cellZones.set
        (
            zoneID,
            new cellZone
            (
                name,
                labelList(0),
                zoneID,
                cellZones
            )
        );
    }
    return zoneID;
}
示例#2
0
Foam::sampledPlane::sampledPlane
(
    const word& name,
    const polyMesh& mesh,
    const dictionary& dict
)
:
    sampledSurface(name, mesh, dict),
    cuttingPlane(plane(dict)),
    zoneKey_(keyType::null),
    triangulate_(dict.lookupOrDefault("triangulate", true)),
    needsUpdate_(true)
{
    // Make plane relative to the coordinateSystem (Cartesian)
    // allow lookup from global coordinate systems
    if (dict.found("coordinateSystem"))
    {
        coordinateSystem cs(mesh, dict.subDict("coordinateSystem"));

        point  base = cs.globalPosition(planeDesc().refPoint());
        vector norm = cs.globalVector(planeDesc().normal());

        // Assign the plane description
        static_cast<plane&>(*this) = plane(base, norm);
    }

    dict.readIfPresent("zone", zoneKey_);

    if (debug && zoneKey_.size() && mesh.cellZones().findIndex(zoneKey_) < 0)
    {
        Info<< "cellZone " << zoneKey_
            << " not found - using entire mesh" << endl;
    }
}
Foam::sampledIsoSurface::sampledIsoSurface
(
    const word& name,
    const polyMesh& mesh,
    const dictionary& dict
)
:
    sampledSurface(name, mesh, dict),
    isoField_(dict.lookup("isoField")),
    isoVal_(readScalar(dict.lookup("isoValue"))),
    mergeTol_(dict.lookupOrDefault("mergeTol", 1e-6)),
    regularise_(dict.lookupOrDefault("regularise", true)),
    average_(dict.lookupOrDefault("average", false)),
    zoneID_(dict.lookupOrDefault("zone", word::null), mesh.cellZones()),
    exposedPatchName_(word::null),
    surfPtr_(NULL),
    facesPtr_(NULL),
    prevTimeIndex_(-1),
    storedVolFieldPtr_(NULL),
    volFieldPtr_(NULL),
    storedPointFieldPtr_(NULL),
    pointFieldPtr_(NULL)
{
    if (!sampledSurface::interpolate())
    {
        FatalIOErrorIn
        (
            "sampledIsoSurface::sampledIsoSurface"
            "(const word&, const polyMesh&, const dictionary&)",
            dict
        )   << "Non-interpolated iso surface not supported since triangles"
            << " span across cells." << exit(FatalIOError);
    }

    if (zoneID_.index() != -1)
    {
        dict.lookup("exposedPatchName") >> exposedPatchName_;

        if (mesh.boundaryMesh().findPatchID(exposedPatchName_) == -1)
        {
            FatalIOErrorIn
            (
                "sampledIsoSurface::sampledIsoSurface"
                "(const word&, const polyMesh&, const dictionary&)",
                dict
            )   << "Cannot find patch " << exposedPatchName_
                << " in which to put exposed faces." << endl
                << "Valid patches are " << mesh.boundaryMesh().names()
                << exit(FatalIOError);
        }

        if (debug && zoneID_.index() != -1)
        {
            Info<< "Restricting to cellZone " << zoneID_.name()
                << " with exposed internal faces into patch "
                << exposedPatchName_ << endl;
        }
    }
示例#4
0
Foam::sampledPlane::sampledPlane
(
    const word& name,
    const polyMesh& mesh,
    const plane& planeDesc,
    const keyType& zoneKey
)
:
    sampledSurface(name, mesh),
    cuttingPlane(planeDesc),
    zoneKey_(zoneKey),
    needsUpdate_(true)
{
    if (debug && zoneKey_.size() && mesh.cellZones().findIndex(zoneKey_) < 0)
    {
        Info<< "cellZone " << zoneKey_
            << " not found - using entire mesh" << endl;
    }
}
Foam::sampledPlane::sampledPlane
(
    const word& name,
    const polyMesh& mesh,
    const plane& planeDesc,
    const word& zoneName
)
:
    sampledSurface(name, mesh),
    cuttingPlane(planeDesc),
    zoneName_(zoneName),
    needsUpdate_(true)
{
    if (debug && zoneName_.size())
    {
        if (mesh.cellZones().findZoneID(zoneName_) < 0)
        {
            Info<< "cellZone \"" << zoneName_
                << "\" not found - using entire mesh" << endl;
        }
    }
}
Foam::sampledPlane::sampledPlane
(
    const word& name,
    const polyMesh& mesh,
    const dictionary& dict
)
:
    sampledSurface(name, mesh, dict),
    cuttingPlane(plane(dict.lookup("basePoint"), dict.lookup("normalVector"))),
    zoneName_(word::null),
    needsUpdate_(true)
{
    // make plane relative to the coordinateSystem (Cartesian)
    // allow lookup from global coordinate systems
    if (dict.found("coordinateSystem"))
    {
        coordinateSystem cs(dict, mesh);

        point  base = cs.globalPosition(planeDesc().refPoint());
        vector norm = cs.globalVector(planeDesc().normal());

        // assign the plane description
        static_cast<plane&>(*this) = plane(base, norm);
    }

    dict.readIfPresent("zone", zoneName_);

    if (debug && zoneName_.size())
    {
        if (mesh.cellZones().findZoneID(zoneName_) < 0)
        {
            Info<< "cellZone \"" << zoneName_
                << "\" not found - using entire mesh" << endl;
        }
    }

}
void Foam::meshReader::addCellZones(polyMesh& mesh) const
{
    cellTable_.addCellZones(mesh, cellTableId_);
    warnDuplicates("cellZones", mesh.cellZones().names());
}
示例#8
0
void Foam::printMeshStats(const polyMesh& mesh, const bool allTopology)
{
    Info<< "Mesh stats" << nl
        << "    points:           "
        << returnReduce(mesh.points().size(), sumOp<label>()) << nl;

    label nInternalPoints = returnReduce
    (
        mesh.nInternalPoints(),
        sumOp<label>()
    );

    if (nInternalPoints != -Pstream::nProcs())
    {
        Info<< "    internal points:  " << nInternalPoints << nl;

        if (returnReduce(mesh.nInternalPoints(), minOp<label>()) == -1)
        {
            WarningIn("Foam::printMeshStats(const polyMesh&, const bool)")
                << "Some processors have their points sorted into internal"
                << " and external and some do not." << endl
                << "This can cause problems later on." << endl;
        }
    }

    if (allTopology && nInternalPoints != -Pstream::nProcs())
    {
        label nEdges = returnReduce(mesh.nEdges(), sumOp<label>());
        label nInternalEdges = returnReduce
        (
            mesh.nInternalEdges(),
            sumOp<label>()
        );
        label nInternal1Edges = returnReduce
        (
            mesh.nInternal1Edges(),
            sumOp<label>()
        );
        label nInternal0Edges = returnReduce
        (
            mesh.nInternal0Edges(),
            sumOp<label>()
        );

        Info<< "    edges:            " << nEdges << nl
            << "    internal edges:   " << nInternalEdges << nl
            << "    internal edges using one boundary point:   "
            << nInternal1Edges-nInternal0Edges << nl
            << "    internal edges using two boundary points:  "
            << nInternalEdges-nInternal1Edges << nl;
    }

    label nFaces = returnReduce(mesh.faces().size(), sumOp<label>());
    label nIntFaces = returnReduce(mesh.faceNeighbour().size(), sumOp<label>());
    label nCells = returnReduce(mesh.cells().size(), sumOp<label>());

    Info<< "    faces:            " << nFaces << nl
        << "    internal faces:   " << nIntFaces << nl
        << "    cells:            " << nCells << nl
        << "    faces per cell:   "
        << scalar(nFaces + nIntFaces)/max(1, nCells) << nl
        << "    boundary patches: " << mesh.boundaryMesh().size() << nl
        << "    point zones:      " << mesh.pointZones().size() << nl
        << "    face zones:       " << mesh.faceZones().size() << nl
        << "    cell zones:       " << mesh.cellZones().size() << nl
        << endl;

    // Construct shape recognizers
    hexMatcher hex;
    prismMatcher prism;
    wedgeMatcher wedge;
    pyrMatcher pyr;
    tetWedgeMatcher tetWedge;
    tetMatcher tet;

    // Counters for different cell types
    label nHex = 0;
    label nWedge = 0;
    label nPrism = 0;
    label nPyr = 0;
    label nTet = 0;
    label nTetWedge = 0;
    label nUnknown = 0;

    Map<label> polyhedralFaces;

    for (label cellI = 0; cellI < mesh.nCells(); cellI++)
    {
        if (hex.isA(mesh, cellI))
        {
            nHex++;
        }
        else if (tet.isA(mesh, cellI))
        {
            nTet++;
        }
        else if (pyr.isA(mesh, cellI))
        {
            nPyr++;
        }
        else if (prism.isA(mesh, cellI))
        {
            nPrism++;
        }
        else if (wedge.isA(mesh, cellI))
        {
            nWedge++;
        }
        else if (tetWedge.isA(mesh, cellI))
        {
            nTetWedge++;
        }
        else
        {
            nUnknown++;
            polyhedralFaces(mesh.cells()[cellI].size())++;
        }
    }

    reduce(nHex,sumOp<label>());
    reduce(nPrism,sumOp<label>());
    reduce(nWedge,sumOp<label>());
    reduce(nPyr,sumOp<label>());
    reduce(nTetWedge,sumOp<label>());
    reduce(nTet,sumOp<label>());
    reduce(nUnknown,sumOp<label>());

    Info<< "Overall number of cells of each type:" << nl
        << "    hexahedra:     " << nHex << nl
        << "    prisms:        " << nPrism << nl
        << "    wedges:        " << nWedge << nl
        << "    pyramids:      " << nPyr << nl
        << "    tet wedges:    " << nTetWedge << nl
        << "    tetrahedra:    " << nTet << nl
        << "    polyhedra:     " << nUnknown
        << endl;

    if (nUnknown > 0)
    {
        Pstream::mapCombineGather(polyhedralFaces, plusEqOp<label>());

        Info<< "    Breakdown of polyhedra by number of faces:" << nl
            << "        faces" << "   number of cells" << endl;

        const labelList sortedKeys = polyhedralFaces.sortedToc();

        forAll(sortedKeys, keyI)
        {
            const label nFaces = sortedKeys[keyI];

            Info<< setf(std::ios::right) << setw(13)
                << nFaces << "   " << polyhedralFaces[nFaces] << nl;
        }
    }