void NaoMarkServiceDetection::callback(const std::string &key, const AL::ALValue &value, const AL::ALValue &msg) { AL::ALValue marks = fMemoryProxy.getData("LandmarkDetected"); if(marks.getSize() > 0 && !_isMarkFound) { int TimeStampField = marks[0][1]; if((int)marks[1][0][1][0] == _markToFind) { if((float)marks[1][0][0][3] < 0.2f) { if(_isAllowedToMove) motionProxy->moveToward(0.5f,0,marks[1][0][0][1]); _naoMarkDetected = true; } else { motionProxy->moveToward(0,0,0); _isMarkFound = true; } } else motionProxy->moveToward(0,0,0); } }
void NaoMarkServiceDetection::init() { try { fMemoryProxy.subscribeToEvent("LandmarkDetected", "Events", "userDataToIdentifyEvent", "callback"); } catch (const AL::ALError& e) { qiLogError("module.example") << e.what() << std::endl; } }
void Bumper::init() { try { /** Create a proxy to ALMemory. */ fMemoryProxy = AL::ALMemoryProxy(getParentBroker()); fState = fMemoryProxy.getData("RightBumperPressed"); /** Subscribe to event LeftBumperPressed * Arguments: * - name of the event * - name of the module to be called for the callback * - name of the bound method to be called on event */ fMemoryProxy.subscribeToEvent("RightBumperPressed", "Bumper", "onRightBumperPressed"); } catch (const AL::ALError& e) { qiLogError("module.example") << e.what() << std::endl; } }
void Bumper::onRightBumperPressed() { qiLogInfo("module.example") << "Executing callback method on right bumper event" << std::endl; /** * As long as this is defined, the code is thread-safe. */ AL::ALCriticalSection section(fCallbackMutex); /** * Check that the bumper is pressed. */ fState = fMemoryProxy.getData("RightBumperPressed"); if (fState > 0.5f) { return; } try { fTtsProxy = AL::ALTextToSpeechProxy(getParentBroker()); fTtsProxy.say("Right bumper pressed"); } catch (const AL::ALError& e) { qiLogError("module.example") << e.what() << std::endl; } }
/** * The constructor sets up the structures required to communicate with NAOqi. * @param pBroker A NAOqi broker that allows accessing other NAOqi modules. */ GameCtrl(boost::shared_ptr<AL::ALBroker> pBroker) : ALModule(pBroker, "GameCtrl"), proxy(0), memory(0), udp(0), teamNumber(0) { setModuleDescription("A module that provides packets from the GameController."); assert(numOfButtons == sizeof(buttonNames) / sizeof(*buttonNames)); assert(numOfLEDs == sizeof(ledNames) / sizeof(*ledNames)); init(); try { memory = new AL::ALMemoryProxy(pBroker); proxy = new AL::DCMProxy(pBroker); AL::ALValue params; AL::ALValue result; params.arraySetSize(1); params.arraySetSize(2); params[0] = std::string("leds"); params[1].arraySetSize(numOfLEDs); for(int i = 0; i < numOfLEDs; ++i) params[1][i] = std::string(ledNames[i]); result = proxy->createAlias(params); assert(result == params); ledRequest.arraySetSize(6); ledRequest[0] = std::string("leds"); ledRequest[1] = std::string("ClearAll"); ledRequest[2] = std::string("time-separate"); ledRequest[3] = 0; ledRequest[4].arraySetSize(1); ledRequest[5].arraySetSize(numOfLEDs); for(int i = 0; i < numOfLEDs; ++i) ledRequest[5][i].arraySetSize(1); for(int i = 0; i < numOfButtons; ++i) buttons[i] = (float*) memory->getDataPtr(buttonNames[i]); // If no color was set, set it to black (no LED). // This actually has a race condition. if(memory->getDataList("GameCtrl/teamColour").empty()) memory->insertData("GameCtrl/teamColour", TEAM_BLACK); playerNumber = (int*) memory->getDataPtr("GameCtrl/playerNumber"); teamNumberPtr = (int*) memory->getDataPtr("GameCtrl/teamNumber"); defaultTeamColour = (int*) memory->getDataPtr("GameCtrl/teamColour"); // register "onPreProcess" and "onPostProcess" callbacks theInstance = this; proxy->getGenericProxy()->getModule()->atPreProcess(&onPreProcess); proxy->getGenericProxy()->getModule()->atPostProcess(&onPostProcess); udp = new UdpComm(); if(!udp->setBlocking(false) || !udp->setBroadcast(true) || !udp->bind("0.0.0.0", GAMECONTROLLER_DATA_PORT) || !udp->setLoopback(false)) { fprintf(stderr, "libgamectrl: Could not open UDP port\n"); delete udp; udp = 0; // continue, because button interface will still work } publish(); } catch(AL::ALError& e) { fprintf(stderr, "libgamectrl: %s\n", e.what()); close(); } }
/** * Publishes the current state of the GameController packet in ALMemory. */ void publish() { AL::ALValue value((const char*) &gameCtrlData, sizeof(gameCtrlData)); memory->insertData("GameCtrl/RoboCupGameControlData", value); }
/** * Handles the button interface. * Resets the internal state when a new team number was set. * Receives packets from the GameController. * Initializes gameCtrlData when teamNumber and playerNumber are available. */ void handleInput() { unsigned now = (unsigned) proxy->getTime(0); if(*teamNumberPtr != 0) { // new team number was set -> reset internal structure teamNumber = *teamNumberPtr; memory->insertData("GameCtrl/teamNumber", 0); init(); } if(receive()) { if(!whenPacketWasReceived) previousState = (uint8_t) -1; // force LED update on first packet received whenPacketWasReceived = now; publish(); } if(teamNumber && *playerNumber) { // init gameCtrlData if invalid if(gameCtrlData.teams[0].teamNumber != teamNumber && gameCtrlData.teams[1].teamNumber != teamNumber) { uint8_t teamColour = (uint8_t) *defaultTeamColour; if(teamColour != TEAM_BLUE && teamColour != TEAM_RED && teamColour != TEAM_YELLOW && teamColour != TEAM_WHITE && teamColour != TEAM_GREEN && teamColour != TEAM_ORANGE && teamColour != TEAM_PURPLE && teamColour != TEAM_BROWN && teamColour != TEAM_GRAY) teamColour = TEAM_BLACK; gameCtrlData.teams[0].teamNumber = (uint8_t) teamNumber; gameCtrlData.teams[0].teamColour = teamColour; gameCtrlData.teams[1].teamColour = teamColour ^ 1; // we don't know better if(!gameCtrlData.playersPerTeam) gameCtrlData.playersPerTeam = (uint8_t) *playerNumber; // we don't know better publish(); } TeamInfo& team = gameCtrlData.teams[gameCtrlData.teams[0].teamNumber == teamNumber ? 0 : 1]; if(*playerNumber <= gameCtrlData.playersPerTeam) { bool chestButtonPressed = *buttons[chest] != 0.f; if(chestButtonPressed != previousChestButtonPressed && now - whenChestButtonStateChanged >= BUTTON_DELAY) { if(chestButtonPressed && whenChestButtonStateChanged && now - whenPacketWasReceived >= GAMECONTROLLER_TIMEOUT) // ignore first press, e.g. for getting up { RobotInfo& player = team.players[*playerNumber - 1]; if(player.penalty == PENALTY_NONE) { player.penalty = PENALTY_MANUAL; } else { player.penalty = PENALTY_NONE; gameCtrlData.state = STATE_PLAYING; } publish(); } previousChestButtonPressed = chestButtonPressed; whenChestButtonStateChanged = now; } if(gameCtrlData.state == STATE_INITIAL) { bool leftFootButtonPressed = *buttons[leftFootLeft] != 0.f || *buttons[leftFootRight] != 0.f; if(leftFootButtonPressed != previousLeftFootButtonPressed && now - whenLeftFootButtonStateChanged >= BUTTON_DELAY) { if(leftFootButtonPressed) { team.teamColour = (team.teamColour + 1) % 10; // cycle between TEAM_BLUE .. TEAM_GRAY publish(); } previousLeftFootButtonPressed = leftFootButtonPressed; whenLeftFootButtonStateChanged = now; } bool rightFootButtonPressed = *buttons[rightFootLeft] != 0.f || *buttons[rightFootRight] != 0.f; if(rightFootButtonPressed != previousRightFootButtonPressed && now - whenRightFootButtonStateChanged >= BUTTON_DELAY) { if(rightFootButtonPressed) { if(gameCtrlData.gamePhase == GAME_PHASE_NORMAL) { gameCtrlData.gamePhase = GAME_PHASE_PENALTYSHOOT; gameCtrlData.kickingTeam = team.teamNumber; } else if(gameCtrlData.kickingTeam == team.teamNumber) gameCtrlData.kickingTeam = 0; else gameCtrlData.gamePhase = GAME_PHASE_NORMAL; publish(); } previousRightFootButtonPressed = rightFootButtonPressed; whenRightFootButtonStateChanged = now; } } } else fprintf(stderr, "Player number %d too big. Maximum number is %d.\n", *playerNumber, gameCtrlData.playersPerTeam); } }
/** * The constructor initializes the shared memory for communicating with bhuman. * It also establishes a communication with NaoQi and prepares all data structures * required for this communication. * @param pBroker A NaoQi broker that allows accessing other NaoQi modules. */ BHuman(boost::shared_ptr<AL::ALBroker> pBroker) : ALModule(pBroker, "BHuman"), data((LBHData*) MAP_FAILED), sem(SEM_FAILED), proxy(0), memory(0), dcmTime(0), lastReadingActuators(-1), actuatorDrops(0), frameDrops(allowedFrameDrops + 1), state(sitting), phase(0.f), ledIndex(0), rightEarLEDsChangedTime(0), startPressedTime(0), lastBHumanStartTime(0) { setModuleDescription("A module that provides basic ipc NaoQi DCM access using shared memory."); fprintf(stderr, "libbhuman: Starting.\n"); assert(lbhNumOfSensorIds == sizeof(sensorNames) / sizeof(*sensorNames)); assert(lbhNumOfActuatorIds == sizeof(actuatorNames) / sizeof(*actuatorNames)); assert(lbhNumOfTeamInfoIds == sizeof(teamInfoNames) / sizeof(*teamInfoNames)); // create shared memory memoryHandle = shm_open(LBH_MEM_NAME, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); if(memoryHandle == -1) perror("libbhuman: shm_open"); else if(ftruncate(memoryHandle, sizeof(LBHData)) == -1) perror("libbhuman: ftruncate"); else { // map the shared memory data = (LBHData*) mmap(NULL, sizeof(LBHData), PROT_READ | PROT_WRITE, MAP_SHARED, memoryHandle, 0); if(data == MAP_FAILED) perror("libbhuman: mmap"); else { memset(data, 0, sizeof(LBHData)); // open semaphore sem = sem_open(LBH_SEM_NAME, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR, 0); if(sem == SEM_FAILED) perror("libbhuman: sem_open"); else try { // get the robot name memory = new AL::ALMemoryProxy(pBroker); std::string robotName = (std::string) memory->getData("Device/DeviceList/ChestBoard/BodyNickName", 0); strncpy(data->robotName, robotName.c_str(), sizeof(data->robotName)); // create "positionRequest" and "hardnessRequest" alias proxy = new AL::DCMProxy(pBroker); AL::ALValue params; AL::ALValue result; params.arraySetSize(1); params.arraySetSize(2); params[0] = std::string("positionActuators"); params[1].arraySetSize(lbhNumOfPositionActuatorIds); for(int i = 0; i < lbhNumOfPositionActuatorIds; ++i) params[1][i] = std::string(actuatorNames[i]); result = proxy->createAlias(params); params[0] = std::string("hardnessActuators"); params[1].arraySetSize(lbhNumOfHardnessActuatorIds); for(int i = 0; i < lbhNumOfHardnessActuatorIds; ++i) params[1][i] = std::string(actuatorNames[headYawHardnessActuator + i]); result = proxy->createAlias(params); params[0] = std::string("usRequest"); params[1].arraySetSize(1); params[1][0] = std::string(actuatorNames[usActuator]); result = proxy->createAlias(params); // prepare positionRequest positionRequest.arraySetSize(6); positionRequest[0] = std::string("positionActuators"); positionRequest[1] = std::string("ClearAll"); positionRequest[2] = std::string("time-separate"); positionRequest[3] = 0; positionRequest[4].arraySetSize(1); positionRequest[5].arraySetSize(lbhNumOfPositionActuatorIds); for(int i = 0; i < lbhNumOfPositionActuatorIds; ++i) positionRequest[5][i].arraySetSize(1); // prepare hardnessRequest hardnessRequest.arraySetSize(6); hardnessRequest[0] = std::string("hardnessActuators"); hardnessRequest[1] = std::string("ClearAll"); hardnessRequest[2] = std::string("time-separate"); hardnessRequest[3] = 0; hardnessRequest[4].arraySetSize(1); hardnessRequest[5].arraySetSize(lbhNumOfHardnessActuatorIds); for(int i = 0; i < lbhNumOfHardnessActuatorIds; ++i) hardnessRequest[5][i].arraySetSize(1); // prepare usRequest usRequest.arraySetSize(6); usRequest[0] = std::string("usRequest"); usRequest[1] = std::string("Merge"); // doesn't work with "ClearAll" usRequest[2] = std::string("time-separate"); usRequest[3] = 0; usRequest[4].arraySetSize(1); usRequest[5].arraySetSize(1); usRequest[5][0].arraySetSize(1); // prepare ledRequest ledRequest.arraySetSize(3); ledRequest[1] = std::string("ClearAll"); ledRequest[2].arraySetSize(1); ledRequest[2][0].arraySetSize(2); ledRequest[2][0][1] = 0; // prepare sensor pointers for(int i = 0; i < lbhNumOfSensorIds; ++i) sensorPtrs[i] = (float*) memory->getDataPtr(sensorNames[i]); resetUsMeasurements(); // initialize requested actuators memset(requestedActuators, 0, sizeof(requestedActuators)); for(int i = faceLedRedLeft0DegActuator; i < chestBoardLedRedActuator; ++i) requestedActuators[i] = -1.f; // register "onPreProcess" and "onPostProcess" callbacks theInstance = this; proxy->getGenericProxy()->getModule()->atPreProcess(&onPreProcess); proxy->getGenericProxy()->getModule()->atPostProcess(&onPostProcess); fprintf(stderr, "libbhuman: Started!\n"); return; // success } catch(AL::ALError& e) { fprintf(stderr, "libbhuman: %s\n", e.toString().c_str()); } } } close(); // error }
/** * The method reads all sensors. It also detects if the chest button was pressed * for at least three seconds. In that case, it shuts down the robot. */ void readSensors() { // get new sensor values and copy them to the shared memory block try { // copy sensor values into the shared memory block int writingSensors = 0; if(writingSensors == data->newestSensors) ++writingSensors; if(writingSensors == data->readingSensors) if(++writingSensors == data->newestSensors) ++writingSensors; assert(writingSensors != data->newestSensors); assert(writingSensors != data->readingSensors); float* sensors = data->sensors[writingSensors]; for(int i = 0; i < lbhNumOfSensorIds; ++i) sensors[i] = *sensorPtrs[i]; AL::ALValue value = memory->getData("GameCtrl/RoboCupGameControlData"); if(value.isBinary() && value.getSize() == sizeof(RoboCup::RoboCupGameControlData)) memcpy(&data->gameControlData[writingSensors], value, sizeof(RoboCup::RoboCupGameControlData)); data->newestSensors = writingSensors; // detect shutdown request via chest-button if(*sensorPtrs[chestButtonSensor] == 0.f) startPressedTime = dcmTime; else if(state != shuttingDown && startPressedTime && dcmTime - startPressedTime > 3000) { if(*sensorPtrs[rBumperRightSensor] != 0.f || *sensorPtrs[rBumperLeftSensor] != 0.f || *sensorPtrs[lBumperRightSensor] != 0.f || *sensorPtrs[lBumperLeftSensor] != 0.f) (void) !system("( /home/nao/bin/bhumand stop && sudo shutdown -r now ) &"); else (void) !system("( /home/nao/bin/bhumand stop && sudo shutdown -h now ) &"); state = preShuttingDown; } } catch(AL::ALError& e) { fprintf(stderr, "libbhuman: %s\n", e.toString().c_str()); } // raise the semaphore if(sem != SEM_FAILED) { int sval; if(sem_getvalue(sem, &sval) == 0) { if(sval < 1) { sem_post(sem); frameDrops = 0; } else { if(frameDrops == 0) fprintf(stderr, "libbhuman: dropped sensor data.\n"); ++frameDrops; } } } }
/** The method sets all actuators. */ void setActuators() { // set all actuator values according to the values in the shared memory block try { dcmTime = proxy->getTime(0); data->readingActuators = data->newestActuators; if(data->readingActuators == lastReadingActuators) { if(actuatorDrops == 0) fprintf(stderr, "libbhuman: missed actuator request.\n"); ++actuatorDrops; } else actuatorDrops = 0; lastReadingActuators = data->readingActuators; float* readingActuators = data->actuators[data->readingActuators]; float* actuators = handleState(readingActuators); if(state != standing) { if(frameDrops > 0 || state == shuttingDown) setEyeLeds(actuators); else copyNonServos(readingActuators, actuators); } setBatteryLeds(actuators); // set position actuators positionRequest[4][0] = dcmTime; // 0 delay! for(int i = 0; i < lbhNumOfPositionActuatorIds; ++i) positionRequest[5][i][0] = actuators[i]; proxy->setAlias(positionRequest); // set hardness actuators bool requestedHardness = false; for(int i = headYawHardnessActuator; i < headYawHardnessActuator + lbhNumOfHardnessActuatorIds; ++i) if(actuators[i] != requestedActuators[i]) { hardnessRequest[4][0] = dcmTime; // 0 delay! for(int j = 0; j < lbhNumOfHardnessActuatorIds; ++j) hardnessRequest[5][j][0] = requestedActuators[headYawHardnessActuator + j] = actuators[headYawHardnessActuator + j]; proxy->setAlias(hardnessRequest); requestedHardness = true; break; } // set us actuator bool requestedUs = false; if(requestedActuators[usActuator] != actuators[usActuator]) { requestedActuators[usActuator] = actuators[usActuator]; if(actuators[usActuator] >= 0.f) { resetUsMeasurements(); usRequest[4][0] = dcmTime; usRequest[5][0][0] = actuators[usActuator]; proxy->setAlias(usRequest); requestedUs = true; } } // set led if(!requestedHardness && !requestedUs) for(int i = 0; i < lbhNumOfLedActuatorIds; ++i) { int index = faceLedRedLeft0DegActuator + ledIndex; if(++ledIndex == lbhNumOfLedActuatorIds) ledIndex = 0; if(actuators[index] != requestedActuators[index]) { ledRequest[0] = std::string(actuatorNames[index]); ledRequest[2][0][0] = requestedActuators[index] = actuators[index]; ledRequest[2][0][1] = dcmTime; proxy->set(ledRequest); break; } } // set team info // since this should very rarely, we don't use a proxy here if(data->bhumanStartTime != lastBHumanStartTime) { for(int i = 0; i < lbhNumOfTeamInfoIds; ++i) memory->insertData(teamInfoNames[i], data->teamInfo[i]); lastBHumanStartTime = data->bhumanStartTime; } } catch(AL::ALError& e) { fprintf(stderr, "libbhuman: %s\n", e.toString().c_str()); } }
/** * Handles the button interface. * Resets the internal state when a new team number was set. * Receives packets from the GameController. * Initializes gameCtrlData when teamNumber and playerNumber are available. */ void handleInput() { unsigned now = (unsigned) proxy->getTime(0); if(*teamNumberPtr != 0) { // new team number was set -> reset internal structure teamNumber = *teamNumberPtr; memory->insertData("GameCtrl/teamNumber", 0); init(); } if(receive()) { if(!whenPacketWasReceived) previousState = (uint8_t) -1; // force LED update on first packet received whenPacketWasReceived = now; publish(); } if(teamNumber && *playerNumber) { // init gameCtrlData if invalid if(gameCtrlData.teams[0].teamNumber != teamNumber && gameCtrlData.teams[1].teamNumber != teamNumber) { uint8_t teamColour = *defaultTeamColour == TEAM_RED ? 1 : 0; gameCtrlData.teams[teamColour].teamNumber = (uint8_t) teamNumber; gameCtrlData.teams[teamColour].teamColour = teamColour; gameCtrlData.teams[1 - teamColour].teamColour = 1 - teamColour; if(!gameCtrlData.playersPerTeam) gameCtrlData.playersPerTeam = (uint8_t) *playerNumber; // we don't know better publish(); } TeamInfo& team = gameCtrlData.teams[gameCtrlData.teams[0].teamNumber == teamNumber ? 0 : 1]; if(*playerNumber <= gameCtrlData.playersPerTeam) { bool chestButtonPressed = *buttons[chest] != 0.f; if(chestButtonPressed != previousChestButtonPressed && now - whenChestButtonStateChanged >= BUTTON_DELAY) { if(chestButtonPressed && whenChestButtonStateChanged) // ignore first press, e.g. for getting up { RobotInfo& player = team.players[*playerNumber - 1]; if(player.penalty == PENALTY_NONE) { player.penalty = PENALTY_MANUAL; if(now - whenPacketWasReceived < GAMECONTROLLER_TIMEOUT && send(GAMECONTROLLER_RETURN_MSG_MAN_PENALISE)) whenPacketWasSent = now; } else { player.penalty = PENALTY_NONE; gameCtrlData.state = STATE_PLAYING; if(now - whenPacketWasReceived < GAMECONTROLLER_TIMEOUT && send(GAMECONTROLLER_RETURN_MSG_MAN_UNPENALISE)) whenPacketWasSent = now; } publish(); } previousChestButtonPressed = chestButtonPressed; whenChestButtonStateChanged = now; } if(gameCtrlData.state == STATE_INITIAL) { bool leftFootButtonPressed = *buttons[leftFootLeft] != 0.f || *buttons[leftFootRight] != 0.f; if(leftFootButtonPressed != previousLeftFootButtonPressed && now - whenLeftFootButtonStateChanged >= BUTTON_DELAY) { if(leftFootButtonPressed) { team.teamColour ^= 1; gameCtrlData.kickOffTeam ^= 1; publish(); } previousLeftFootButtonPressed = leftFootButtonPressed; whenLeftFootButtonStateChanged = now; } bool rightFootButtonPressed = *buttons[rightFootLeft] != 0.f || *buttons[rightFootRight] != 0.f; if(rightFootButtonPressed != previousRightFootButtonPressed && now - whenRightFootButtonStateChanged >= BUTTON_DELAY) { if(rightFootButtonPressed) { if(gameCtrlData.secondaryState == STATE2_NORMAL) { gameCtrlData.secondaryState = STATE2_PENALTYSHOOT; gameCtrlData.kickOffTeam = team.teamColour; } else if(gameCtrlData.kickOffTeam == team.teamColour) gameCtrlData.kickOffTeam ^= 1; else gameCtrlData.secondaryState = STATE2_NORMAL; publish(); } previousRightFootButtonPressed = rightFootButtonPressed; whenRightFootButtonStateChanged = now; } } } else fprintf(stderr, "Player number %d too big. Maximum number is %d.\n", *playerNumber, gameCtrlData.playersPerTeam); } }