mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ZoomCameraSynchronizedAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayZoomEvent().CheckEvent(&displayInteractorEvent)) { const DisplayZoomEvent* displayActionEvent = dynamic_cast<const DisplayZoomEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } if (1.0 != displayActionEvent->GetZoomFactor()) { auto allRenderWindows = sendingRenderer->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { if (BaseRenderer::GetInstance(renderWindow)->GetMapperID() == BaseRenderer::Standard2D) { BaseRenderer* currentRenderer = BaseRenderer::GetInstance(renderWindow); currentRenderer->GetCameraController()->Zoom(displayActionEvent->GetZoomFactor(), displayActionEvent->GetStartCoordinate()); currentRenderer->GetRenderingManager()->RequestUpdate(currentRenderer->GetRenderWindow()); } } } } }; return actionFunction; }
bool mitk::DisplayInteractor::Zoom(StateMachineAction*, InteractionEvent* interactionEvent) { const BaseRenderer::Pointer sender = interactionEvent->GetSender(); InteractionPositionEvent* positionEvent = dynamic_cast<InteractionPositionEvent*>(interactionEvent); if (positionEvent == NULL) { MITK_WARN<< "DisplayVectorInteractor cannot process the event: " << interactionEvent->GetNameOfClass(); return false; } float factor = 1.0; float distance = 0; if (m_ZoomDirection == "leftright") { distance = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; } else { distance = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; } // set zooming speed if (distance < 0.0) { factor = 1.0 / m_ZoomFactor; } else if (distance > 0.0) { factor = 1.0 * m_ZoomFactor; } sender->GetDisplayGeometry()->ZoomWithFixedWorldCoordinates(factor, m_StartDisplayCoordinate, m_StartCoordinateInMM); sender->GetRenderingManager()->RequestUpdate(sender->GetRenderWindow()); m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); return true; }
mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::SetCrosshairSynchronizedAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplaySetCrosshairEvent().CheckEvent(&displayInteractorEvent)) { const DisplaySetCrosshairEvent* displayActionEvent = dynamic_cast<const DisplaySetCrosshairEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } auto allRenderWindows = sendingRenderer->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { if (BaseRenderer::GetInstance(renderWindow)->GetMapperID() == BaseRenderer::Standard2D) { BaseRenderer::GetInstance(renderWindow)->GetSliceNavigationController()->SelectSliceByPoint(displayActionEvent->GetPosition()); } } } }; return actionFunction; }
bool mitk::AffineDataInteractor3D::ColorizeSurface(BaseRenderer::Pointer renderer, double scalar) { BaseData::Pointer data = this->GetDataNode()->GetData(); if(data.IsNull()) { MITK_ERROR << "AffineInteractor3D: No data object present!"; return false; } // Get the timestep to also support 3D+t int timeStep = 0; if (renderer.IsNotNull()) timeStep = renderer->GetTimeStep(data); // If data is an mitk::Surface, extract it Surface::Pointer surface = dynamic_cast< Surface* >(data.GetPointer()); vtkPolyData* polyData = NULL; if (surface.IsNotNull()) polyData = surface->GetVtkPolyData(timeStep); if (polyData == NULL) { MITK_ERROR << "AffineInteractor3D: No poly data present!"; return false; } vtkPointData* pointData = polyData->GetPointData(); if (pointData == NULL) { MITK_ERROR << "AffineInteractor3D: No point data present!"; return false; } vtkDataArray* scalars = pointData->GetScalars(); if (scalars == NULL) { MITK_ERROR << "AffineInteractor3D: No scalars for point data present!"; return false; } for (unsigned int i = 0; i < pointData->GetNumberOfTuples(); ++i) { scalars->SetComponent(i, 0, scalar); } polyData->Modified(); pointData->Update(); return true; }
bool mitk::DisplayInteractor::AdjustLevelWindow(StateMachineAction*, InteractionEvent* interactionEvent) { BaseRenderer::Pointer sender = interactionEvent->GetSender(); InteractionPositionEvent* positionEvent = dynamic_cast<InteractionPositionEvent*>(interactionEvent); if (positionEvent == NULL) { MITK_WARN<< "DisplayVectorInteractor::Scroll cannot process the event: " << interactionEvent->GetNameOfClass(); return false; } m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // search for active image mitk::DataStorage::Pointer storage = sender->GetDataStorage(); mitk::DataNode::Pointer node = NULL; mitk::DataStorage::SetOfObjects::ConstPointer allImageNodes = storage->GetSubset(mitk::NodePredicateDataType::New("Image")); for (unsigned int i = 0; i < allImageNodes->size(); i++) { bool isActiveImage = false; bool propFound = allImageNodes->at(i)->GetBoolProperty("imageForLevelWindow", isActiveImage); if (propFound && isActiveImage) { node = allImageNodes->at(i); continue; } } if (node.IsNull()) { node = storage->GetNode(mitk::NodePredicateDataType::New("Image")); } if (node.IsNull()) { return false; } mitk::LevelWindow lv = mitk::LevelWindow(); node->GetLevelWindow(lv); ScalarType level = lv.GetLevel(); ScalarType window = lv.GetWindow(); // calculate adjustments from mouse movements level += (m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]) * static_cast<ScalarType>(2); window += (m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]) * static_cast<ScalarType>(2); lv.SetLevelWindow(level, window); dynamic_cast<mitk::LevelWindowProperty*>(node->GetProperty("levelwindow"))->SetLevelWindow(lv); sender->GetRenderingManager()->RequestUpdateAll(); return true; }
mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ScrollSliceStepperSynchronizedAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayScrollEvent().CheckEvent(&displayInteractorEvent)) { const DisplayScrollEvent* displayActionEvent = dynamic_cast<const DisplayScrollEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } auto allRenderWindows = sendingRenderer->GetRenderingManager()->GetAllRegisteredRenderWindows(); for (auto renderWindow : allRenderWindows) { if (BaseRenderer::GetInstance(renderWindow)->GetMapperID() == BaseRenderer::Standard2D) { mitk::SliceNavigationController* sliceNavigationController = BaseRenderer::GetInstance(renderWindow)->GetSliceNavigationController(); if (nullptr == sliceNavigationController) { return; } if (sliceNavigationController->GetSliceLocked()) { return; } mitk::Stepper* sliceStepper = sliceNavigationController->GetSlice(); if (nullptr == sliceStepper) { return; } // if only a single slice image was loaded, scrolling will affect the time steps if (sliceStepper->GetSteps() <= 1) { sliceStepper = sliceNavigationController->GetTime(); } sliceStepper->MoveSlice(displayActionEvent->GetSliceDelta()); } } } }; return actionFunction; }
mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::SetLevelWindowAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplaySetLevelWindowEvent().CheckEvent(&displayInteractorEvent)) { const DisplaySetLevelWindowEvent* displayActionEvent = dynamic_cast<const DisplaySetLevelWindowEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } // get the the topmost visible image of the sending renderer DataStorage::Pointer storage = sendingRenderer->GetDataStorage(); DataStorage::SetOfObjects::ConstPointer allImageNodes = storage->GetSubset(NodePredicateDataType::New("Image")); Point3D worldposition; const auto* positionEvent = dynamic_cast<const InteractionPositionEvent*>(displayActionEvent->GetInteractionEvent()); sendingRenderer->DisplayToWorld(positionEvent->GetPointerPositionOnScreen(), worldposition); auto globalCurrentTimePoint = sendingRenderer->GetTime(); DataNode::Pointer node = FindTopmostVisibleNode(allImageNodes, worldposition, globalCurrentTimePoint, sendingRenderer); if (node.IsNull()) { return; } LevelWindow levelWindow = LevelWindow(); node->GetLevelWindow(levelWindow); ScalarType level = levelWindow.GetLevel(); ScalarType window = levelWindow.GetWindow(); level += displayActionEvent->GetLevel(); window += displayActionEvent->GetWindow(); levelWindow.SetLevelWindow(level, window); auto* levelWindowProperty = dynamic_cast<LevelWindowProperty*>(node->GetProperty("levelwindow")); if (nullptr != levelWindowProperty) { levelWindowProperty->SetLevelWindow(levelWindow); sendingRenderer->GetRenderingManager()->RequestUpdateAll(); } } }; return actionFunction; }
mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::SetCrosshairAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplaySetCrosshairEvent().CheckEvent(&displayInteractorEvent)) { const DisplaySetCrosshairEvent* displayActionEvent = dynamic_cast<const DisplaySetCrosshairEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } BaseRenderer::GetInstance(sendingRenderer->GetRenderWindow())->GetSliceNavigationController()->SelectSliceByPoint(displayActionEvent->GetPosition()); } }; return actionFunction; }
bool mitk::DisplayInteractor::Zoom(StateMachineAction*, InteractionEvent* interactionEvent) { const BaseRenderer::Pointer sender = interactionEvent->GetSender(); InteractionPositionEvent* positionEvent = static_cast<InteractionPositionEvent*>(interactionEvent); float factor = 1.0; float distance = 0; if (m_ZoomDirection == "updown") { distance = m_CurrentDisplayCoordinate[1] - m_LastDisplayCoordinate[1]; } else { distance = m_CurrentDisplayCoordinate[0] - m_LastDisplayCoordinate[0]; } if ( m_InvertZoomDirection ) { distance *= -1.0; } // set zooming speed if (distance < 0.0) { factor = 1.0 / m_ZoomFactor; } else if (distance > 0.0) { factor = 1.0 * m_ZoomFactor; } if (factor != 1.0) { sender->GetDisplayGeometry()->ZoomWithFixedWorldCoordinates(factor, m_StartDisplayCoordinate, m_StartCoordinateInMM); sender->GetRenderingManager()->RequestUpdate(sender->GetRenderWindow()); } m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); return true; }
////////////////////////////////////////////////////////////////////////// // STANDARD FUNCTIONS ////////////////////////////////////////////////////////////////////////// mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::MoveSenderCameraAction() { mitk::StdFunctionCommand::ActionFunction actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayMoveEvent().CheckEvent(&displayInteractorEvent)) { const DisplayMoveEvent* displayActionEvent = dynamic_cast<const DisplayMoveEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } sendingRenderer->GetCameraController()->MoveBy(displayActionEvent->GetMoveVector()); sendingRenderer->GetRenderingManager()->RequestUpdate(sendingRenderer->GetRenderWindow()); } }; return actionFunction; }
mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ScrollSliceStepperAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayScrollEvent().CheckEvent(&displayInteractorEvent)) { const DisplayScrollEvent* displayActionEvent = dynamic_cast<const DisplayScrollEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } mitk::SliceNavigationController* sliceNavigationController = sendingRenderer->GetSliceNavigationController(); if (nullptr == sliceNavigationController) { return; } if (sliceNavigationController->GetSliceLocked()) { return; } mitk::Stepper* sliceStepper = sliceNavigationController->GetSlice(); if (nullptr == sliceStepper) { return; } // if only a single slice image was loaded, scrolling will affect the time steps if (sliceStepper->GetSteps() <= 1) { sliceStepper = sliceNavigationController->GetTime(); } sliceStepper->MoveSlice(displayActionEvent->GetSliceDelta()); } }; return actionFunction; }
mitk::StdFunctionCommand::ActionFunction mitk::DisplayActionEventFunctions::ZoomSenderCameraAction() { auto actionFunction = [](const itk::EventObject& displayInteractorEvent) { if (DisplayZoomEvent().CheckEvent(&displayInteractorEvent)) { const DisplayZoomEvent* displayActionEvent = dynamic_cast<const DisplayZoomEvent*>(&displayInteractorEvent); const BaseRenderer::Pointer sendingRenderer = displayActionEvent->GetSender(); if (nullptr == sendingRenderer) { return; } if (1.0 != displayActionEvent->GetZoomFactor()) { sendingRenderer->GetCameraController()->Zoom(displayActionEvent->GetZoomFactor(), displayActionEvent->GetStartCoordinate()); sendingRenderer->GetRenderingManager()->RequestUpdate(sendingRenderer->GetRenderWindow()); } } }; return actionFunction; }
bool mitk::DisplayInteractor::AdjustLevelWindow(StateMachineAction*, InteractionEvent* interactionEvent) { BaseRenderer::Pointer sender = interactionEvent->GetSender(); InteractionPositionEvent* positionEvent = static_cast<InteractionPositionEvent*>(interactionEvent); m_LastDisplayCoordinate = m_CurrentDisplayCoordinate; m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen(); // search for active image mitk::DataStorage::Pointer storage = sender->GetDataStorage(); mitk::DataNode::Pointer node = NULL; mitk::DataStorage::SetOfObjects::ConstPointer allImageNodes = storage->GetSubset(mitk::NodePredicateDataType::New("Image")); for (unsigned int i = 0; i < allImageNodes->size(); i++) { bool isActiveImage = false; bool propFound = allImageNodes->at(i)->GetBoolProperty("imageForLevelWindow", isActiveImage); if (propFound && isActiveImage) { node = allImageNodes->at(i); continue; } } if (node.IsNull()) { node = storage->GetNode(mitk::NodePredicateDataType::New("Image")); } if (node.IsNull()) { return false; } mitk::LevelWindow lv = mitk::LevelWindow(); node->GetLevelWindow(lv); ScalarType level = lv.GetLevel(); ScalarType window = lv.GetWindow(); int levelIndex = 0; int windowIndex = 1; if ( m_LevelDirection != "leftright" ) { levelIndex = 1; windowIndex = 0; } int directionModifier = 1; if ( m_InvertLevelWindowDirection ) { directionModifier = -1; } // calculate adjustments from mouse movements level += (m_CurrentDisplayCoordinate[levelIndex] - m_LastDisplayCoordinate[levelIndex]) * static_cast<ScalarType>(2) * directionModifier; window += (m_CurrentDisplayCoordinate[windowIndex] - m_LastDisplayCoordinate[windowIndex]) * static_cast<ScalarType>(2) * directionModifier; lv.SetLevelWindow(level, window); dynamic_cast<mitk::LevelWindowProperty*>(node->GetProperty("levelwindow"))->SetLevelWindow(lv); sender->GetRenderingManager()->RequestUpdateAll(); return true; }
void Geometry2DDataVtkMapper3D::ProcessNode( DataNode * node, BaseRenderer* renderer, Surface * surface, LayerSortedActorList &layerSortedActors ) { if ( node != NULL ) { //we need to get the information from the 2D mapper to render the texture on the 3D plane ImageVtkMapper2D *imageMapper = dynamic_cast< ImageVtkMapper2D * >( node->GetMapper(1) ); //GetMapper(1) provides the 2D mapper for the data node //if there is a 2D mapper, which is not the standard image mapper... if(!imageMapper && node->GetMapper(1)) { //... check if it is the composite mapper std::string cname(node->GetMapper(1)->GetNameOfClass()); if(!cname.compare("CompositeMapper")) //string.compare returns 0 if the two strings are equal. { //get the standard image mapper. //This is a special case in MITK and does only work for the CompositeMapper. imageMapper = dynamic_cast<ImageVtkMapper2D* >( node->GetMapper(3) ); } } if ( (node->IsVisible(renderer)) && imageMapper ) { WeakPointerProperty::Pointer rendererProp = dynamic_cast< WeakPointerProperty * >(GetDataNode()->GetPropertyList()->GetProperty("renderer")); if ( rendererProp.IsNotNull() ) { BaseRenderer::Pointer planeRenderer = dynamic_cast< BaseRenderer * >(rendererProp->GetWeakPointer().GetPointer()); // Retrieve and update image to be mapped const ImageVtkMapper2D::LocalStorage* localStorage = imageMapper->GetLocalStorage(planeRenderer); if ( planeRenderer.IsNotNull() ) { // perform update of imagemapper if needed (maybe the respective 2D renderwindow is not rendered/update before) imageMapper->Update(planeRenderer); // If it has not been initialized already in a previous pass, // generate an actor and a texture object to // render the image associated with the ImageVtkMapper2D. vtkActor *imageActor; vtkDataSetMapper *dataSetMapper = NULL; vtkTexture *texture; if ( m_ImageActors.count( imageMapper ) == 0 ) { dataSetMapper = vtkDataSetMapper::New(); //Enable rendering without copying the image. dataSetMapper->ImmediateModeRenderingOn(); texture = vtkTexture::New(); texture->RepeatOff(); imageActor = vtkActor::New(); imageActor->SetMapper( dataSetMapper ); imageActor->SetTexture( texture ); // Make imageActor the sole owner of the mapper and texture // objects dataSetMapper->UnRegister( NULL ); texture->UnRegister( NULL ); // Store the actor so that it may be accessed in following // passes. m_ImageActors[imageMapper].Initialize(imageActor, imageMapper, m_ImageMapperDeletedCommand); } else { // Else, retrieve the actor and associated objects from the // previous pass. imageActor = m_ImageActors[imageMapper].m_Actor; dataSetMapper = (vtkDataSetMapper *)imageActor->GetMapper(); texture = imageActor->GetTexture(); } // Set poly data new each time its object changes (e.g. when // switching between planar and curved geometries) if ( (dataSetMapper != NULL) && (dataSetMapper->GetInput() != surface->GetVtkPolyData()) ) { dataSetMapper->SetInput( surface->GetVtkPolyData() ); } //Check if the m_ReslicedImage is NULL. //This is the case when no image geometry is met by //the reslicer. In that case, the texture has to be //empty (black) and we don't have to do anything. //See fixed bug #13275 if(localStorage->m_ReslicedImage != NULL) { bool binaryOutline = node->IsOn( "outline binary", renderer ); if( binaryOutline ) { texture->SetInput( localStorage->m_ReslicedImage ); } else { texture->SetInput( localStorage->m_Texture->GetInput() ); } // VTK (mis-)interprets unsigned char (binary) images as color images; // So, we must manually turn on their mapping through a (gray scale) lookup table; texture->SetMapColorScalarsThroughLookupTable( localStorage->m_Texture->GetMapColorScalarsThroughLookupTable() ); //re-use properties from the 2D image mapper imageActor->SetProperty( localStorage->m_Actor->GetProperty() ); imageActor->GetProperty()->SetAmbient(0.5); // Set texture interpolation on/off bool textureInterpolation = node->IsOn( "texture interpolation", renderer ); texture->SetInterpolate( textureInterpolation ); //get the lookuptable from the 2D image mapper texture->SetLookupTable( localStorage->m_Texture->GetLookupTable() ); // Store this actor to be added to the actor assembly, sort // by layer int layer = 1; node->GetIntProperty( "layer", layer ); layerSortedActors.insert(std::pair< int, vtkActor * >( layer, imageActor ) ); } } } } } }
void PlaneGeometryDataVtkMapper3D::ProcessNode(DataNode *node, BaseRenderer *renderer, Surface *surface, LayerSortedActorList &layerSortedActors) { if (node != nullptr) { // we need to get the information from the 2D mapper to render the texture on the 3D plane ImageVtkMapper2D *imageMapper = dynamic_cast<ImageVtkMapper2D *>(node->GetMapper(1)); // GetMapper(1) provides the 2D mapper for the data node // if there is a 2D mapper, which is not the standard image mapper... if (!imageMapper && node->GetMapper(1)) { //... check if it is the composite mapper std::string cname(node->GetMapper(1)->GetNameOfClass()); if (!cname.compare("CompositeMapper")) // string.compare returns 0 if the two strings are equal. { // get the standard image mapper. // This is a special case in MITK and does only work for the CompositeMapper. imageMapper = dynamic_cast<ImageVtkMapper2D *>(node->GetMapper(3)); } } if ((node->IsVisible(renderer)) && imageMapper) { WeakPointerProperty::Pointer rendererProp = dynamic_cast<WeakPointerProperty *>(GetDataNode()->GetPropertyList()->GetProperty("renderer")); if (rendererProp.IsNotNull()) { BaseRenderer::Pointer planeRenderer = dynamic_cast<BaseRenderer *>(rendererProp->GetWeakPointer().GetPointer()); // Retrieve and update image to be mapped const ImageVtkMapper2D::LocalStorage *localStorage = imageMapper->GetLocalStorage(planeRenderer); if (planeRenderer.IsNotNull()) { // perform update of imagemapper if needed (maybe the respective 2D renderwindow is not rendered/update // before) imageMapper->Update(planeRenderer); // If it has not been initialized already in a previous pass, // generate an actor and a texture object to // render the image associated with the ImageVtkMapper2D. vtkActor *imageActor; vtkDataSetMapper *dataSetMapper = nullptr; vtkTexture *texture; if (m_ImageActors.count(imageMapper) == 0) { dataSetMapper = vtkDataSetMapper::New(); // Enable rendering without copying the image. dataSetMapper->ImmediateModeRenderingOn(); texture = vtkNeverTranslucentTexture::New(); texture->RepeatOff(); imageActor = vtkActor::New(); imageActor->SetMapper(dataSetMapper); imageActor->SetTexture(texture); imageActor->GetProperty()->SetOpacity( 0.999); // HACK! otherwise VTK wouldn't recognize this as translucent // surface (if LUT values map to alpha < 255 // improvement: apply "opacity" property onle HERE and also in 2D image mapper. DO NOT change LUT to // achieve // translucent images (see method ChangeOpacity in image mapper 2D) // Make imageActor the sole owner of the mapper and texture // objects dataSetMapper->UnRegister(nullptr); texture->UnRegister(nullptr); // Store the actor so that it may be accessed in following // passes. m_ImageActors[imageMapper].Initialize(imageActor, imageMapper, m_ImageMapperDeletedCommand); } else { // Else, retrieve the actor and associated objects from the // previous pass. imageActor = m_ImageActors[imageMapper].m_Actor; dataSetMapper = (vtkDataSetMapper *)imageActor->GetMapper(); texture = imageActor->GetTexture(); } // Set poly data new each time its object changes (e.g. when // switching between planar and curved geometries) if ((dataSetMapper != nullptr) && (dataSetMapper->GetInput() != surface->GetVtkPolyData())) { dataSetMapper->SetInputData(surface->GetVtkPolyData()); } dataSetMapper->Update(); // Check if the m_ReslicedImage is nullptr. // This is the case when no image geometry is met by // the reslicer. In that case, the texture has to be // empty (black) and we don't have to do anything. // See fixed bug #13275 if (localStorage->m_ReslicedImage != nullptr) { texture->SetInputConnection(localStorage->m_LevelWindowFilter->GetOutputPort()); // do not use a VTK lookup table (we do that ourselves in m_LevelWindowFilter) texture->MapColorScalarsThroughLookupTableOff(); // re-use properties from the 2D image mapper imageActor->SetProperty(localStorage->m_Actor->GetProperty()); imageActor->GetProperty()->SetAmbient(0.5); // Set texture interpolation on/off bool textureInterpolation = node->IsOn("texture interpolation", renderer); texture->SetInterpolate(textureInterpolation); // Store this actor to be added to the actor assembly, sort // by layer int layer = 1; node->GetIntProperty("layer", layer); layerSortedActors.insert(std::pair<int, vtkActor *>(layer, imageActor)); } } } } } }