void ValueEnumerator::incorporateFunction(const Function &F) { InstructionCount = 0; NumModuleValues = Values.size(); NumModuleMDs = MDs.size(); // Adding function arguments to the value table. for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) EnumerateValue(I); FirstFuncConstantID = Values.size(); // Add all function-level constants to the value table. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || isa<InlineAsm>(*OI)) EnumerateValue(*OI); } BasicBlocks.push_back(BB); ValueMap[BB] = BasicBlocks.size(); } // Optimize the constant layout. OptimizeConstants(FirstFuncConstantID, Values.size()); // Add the function's parameter attributes so they are available for use in // the function's instruction. EnumerateAttributes(F.getAttributes()); FirstInstID = Values.size(); SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; // Add all of the instructions. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if (auto *MD = dyn_cast<MetadataAsValue>(&*OI)) if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) // Enumerate metadata after the instructions they might refer to. FnLocalMDVector.push_back(Local); } if (!I->getType()->isVoidTy()) EnumerateValue(I); } } // Add all of the function-local metadata. for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); }
/// isUsedInBasicBlock - Return true if this value is used in the specified /// basic block. bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { // This can be computed either by scanning the instructions in BB, or by // scanning the use list of this Value. Both lists can be very long, but // usually one is quite short. // // Scan both lists simultaneously until one is exhausted. This limits the // search to the shorter list. BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); const_user_iterator UI = user_begin(), UE = user_end(); for (; BI != BE && UI != UE; ++BI, ++UI) { // Scan basic block: Check if this Value is used by the instruction at BI. if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end()) return true; // Scan use list: Check if the use at UI is in BB. const Instruction *User = dyn_cast<Instruction>(*UI); if (User && User->getParent() == BB) return true; } return false; }
/// isUsedInBasicBlock - Return true if this value is used in the specified /// basic block. bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { // Start by scanning over the instructions looking for a use before we start // the expensive use iteration. unsigned MaxBlockSize = 3; for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (std::find(I->op_begin(), I->op_end(), this) != I->op_end()) return true; if (MaxBlockSize-- == 0) // If the block is larger fall back to use_iterator break; } if (MaxBlockSize != 0) // We scanned the entire block and found no use. return false; for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) { const Instruction *User = dyn_cast<Instruction>(*I); if (User && User->getParent() == BB) return true; } return false; }
void NaClValueEnumerator::incorporateFunction(const Function &F) { InstructionCount = 0; NumModuleValues = Values.size(); // Make sure no insertions outside of a function. assert(FnForwardTypeRefs.empty()); // Adding function arguments to the value table. for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) EnumerateValue(I); FirstFuncConstantID = Values.size(); // Add all function-level constants to the value table. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { if (const SwitchInst *SI = dyn_cast<SwitchInst>(I)) { // Handle switch instruction specially, so that we don't write // out unnecessary vector/array constants used to model case selectors. if (isa<Constant>(SI->getCondition())) { EnumerateValue(SI->getCondition()); } } else { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || isa<InlineAsm>(*OI)) EnumerateValue(*OI); } } } BasicBlocks.push_back(BB); ValueMap[BB] = BasicBlocks.size(); } // Optimize the constant layout. OptimizeConstants(FirstFuncConstantID, Values.size()); FirstInstID = Values.size(); // Add all of the instructions. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { if (!I->getType()->isVoidTy()) EnumerateValue(I); } } }
void ValueEnumerator::incorporateFunction(const Function &F) { NumModuleValues = Values.size(); // Adding function arguments to the value table. for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) EnumerateValue(I); FirstFuncConstantID = Values.size(); // Add all function-level constants to the value table. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || isa<InlineAsm>(*OI)) EnumerateValue(*OI); } BasicBlocks.push_back(BB); ValueMap[BB] = BasicBlocks.size(); } // Optimize the constant layout. OptimizeConstants(FirstFuncConstantID, Values.size()); // Add the function's parameter attributes so they are available for use in // the function's instruction. EnumerateAttributes(F.getAttributes()); FirstInstID = Values.size(); // Add all of the instructions. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { if (I->getType() != Type::getVoidTy(F.getContext())) EnumerateValue(I); } } }
/// NaClValueEnumerator - Enumerate module-level information. NaClValueEnumerator::NaClValueEnumerator(const Module *M) { // Create map for counting frequency of types, and set field // TypeCountMap accordingly. Note: Pointer field TypeCountMap is // used to deal with the fact that types are added through various // method calls in this routine. Rather than pass it as an argument, // we use a field. The field is a pointer so that the memory // footprint of count_map can be garbage collected when this // constructor completes. TypeCountMapType count_map; TypeCountMap = &count_map; IntPtrType = IntegerType::get(M->getContext(), PNaClIntPtrTypeBitSize); // Enumerate the functions. Note: We do this before global // variables, so that global variable initializations can refer to // the functions without a forward reference. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { EnumerateValue(I); } // Enumerate the global variables. FirstGlobalVarID = Values.size(); for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); NumGlobalVarIDs = Values.size() - FirstGlobalVarID; // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Skip global variable initializers since they are handled within // WriteGlobalVars of file NaClBitcodeWriter.cpp. // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Insert constants that are named at module level into the slot // pool so that the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ // Don't generate types for elided pointer casts! if (IsElidedCast(I)) continue; if (const SwitchInst *SI = dyn_cast<SwitchInst>(I)) { // Handle switch instruction specially, so that we don't // write out unnecessary vector/array types used to model case // selectors. EnumerateOperandType(SI->getCondition()); } else { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { EnumerateOperandType(*OI); } } EnumerateType(I->getType()); } } // Optimized type indicies to put "common" expected types in with small // indices. OptimizeTypes(M); TypeCountMap = NULL; // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); }
/// ValueEnumerator - Enumerate module-level information. ValueEnumerator::ValueEnumerator(const Module *M) { // Enumerate the global variables. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); // Enumerate the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { EnumerateValue(I); EnumerateAttributes(cast<Function>(I)->getAttributes()); } // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Insert constants and metadata that are named at module level into the slot // pool so that the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); EnumerateNamedMetadata(M); SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if (MDNode *MD = dyn_cast<MDNode>(*OI)) if (MD->isFunctionLocal() && MD->getFunction()) // These will get enumerated during function-incorporation. continue; EnumerateOperandType(*OI); } EnumerateType(I->getType()); if (const CallInst *CI = dyn_cast<CallInst>(I)) EnumerateAttributes(CI->getAttributes()); else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) EnumerateAttributes(II->getAttributes()); // Enumerate metadata attached with this instruction. MDs.clear(); I->getAllMetadataOtherThanDebugLoc(MDs); for (unsigned i = 0, e = MDs.size(); i != e; ++i) EnumerateMetadata(MDs[i].second); if (!I->getDebugLoc().isUnknown()) { MDNode *Scope, *IA; I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); if (Scope) EnumerateMetadata(Scope); if (IA) EnumerateMetadata(IA); } } } // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); }
/// NaClValueEnumerator - Enumerate module-level information. NaClValueEnumerator::NaClValueEnumerator(const Module *M) { // Create map for counting frequency of types, and set field // TypeCountMap accordingly. Note: Pointer field TypeCountMap is // used to deal with the fact that types are added through various // method calls in this routine. Rather than pass it as an argument, // we use a field. The field is a pointer so that the memory // footprint of count_map can be garbage collected when this // constructor completes. TypeCountMapType count_map; TypeCountMap = &count_map; // Enumerate the global variables. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); // Enumerate the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { EnumerateValue(I); EnumerateAttributes(cast<Function>(I)->getAttributes()); } // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Insert constants and metadata that are named at module level into the slot // pool so that the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); EnumerateNamedMetadata(M); SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if (MDNode *MD = dyn_cast<MDNode>(*OI)) if (MD->isFunctionLocal() && MD->getFunction()) // These will get enumerated during function-incorporation. continue; EnumerateOperandType(*OI); } EnumerateType(I->getType()); if (const CallInst *CI = dyn_cast<CallInst>(I)) EnumerateAttributes(CI->getAttributes()); else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) EnumerateAttributes(II->getAttributes()); // Enumerate metadata attached with this instruction. MDs.clear(); I->getAllMetadataOtherThanDebugLoc(MDs); for (unsigned i = 0, e = MDs.size(); i != e; ++i) EnumerateMetadata(MDs[i].second); if (!I->getDebugLoc().isUnknown()) { MDNode *Scope, *IA; I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); if (Scope) EnumerateMetadata(Scope); if (IA) EnumerateMetadata(IA); } } } // Optimized type indicies to put "common" expected types in with small // indices. OptimizeTypes(M); TypeCountMap = NULL; // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); }
/// ValueEnumerator - Enumerate module-level information. ValueEnumerator::ValueEnumerator(const Module *M) { InstructionCount = 0; // Enumerate the global variables. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); // Enumerate the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { EnumerateValue(I); EnumerateAttributes(cast<Function>(I)->getAttributes()); } // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Enumerate types used by the type symbol table. EnumerateTypeSymbolTable(M->getTypeSymbolTable()); // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); MetadataContext &TheMetadata = F->getContext().getMetadata(); typedef SmallVector<std::pair<unsigned, TrackingVH<MDNode> >, 2> MDMapTy; MDMapTy MDs; for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) EnumerateOperandType(*OI); EnumerateType(I->getType()); if (const CallInst *CI = dyn_cast<CallInst>(I)) EnumerateAttributes(CI->getAttributes()); else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) EnumerateAttributes(II->getAttributes()); // Enumerate metadata attached with this instruction. MDs.clear(); TheMetadata.getMDs(I, MDs); for (MDMapTy::const_iterator MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) EnumerateMetadata(MI->second); } } // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); // Sort the type table by frequency so that most commonly used types are early // in the table (have low bit-width). std::stable_sort(Types.begin(), Types.end(), CompareByFrequency); // Partition the Type ID's so that the single-value types occur before the // aggregate types. This allows the aggregate types to be dropped from the // type table after parsing the global variable initializers. std::partition(Types.begin(), Types.end(), isSingleValueType); // Now that we rearranged the type table, rebuild TypeMap. for (unsigned i = 0, e = Types.size(); i != e; ++i) TypeMap[Types[i].first] = i+1; }
/// ValueEnumerator - Enumerate module-level information. ValueEnumerator::ValueEnumerator(const Module *M) { // Enumerate the global variables. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); // Enumerate the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { EnumerateValue(I); EnumerateParamAttrs(cast<Function>(I)->getParamAttrs()); } // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Enumerate types used by the type symbol table. EnumerateTypeSymbolTable(M->getTypeSymbolTable()); // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) EnumerateOperandType(*OI); EnumerateType(I->getType()); if (const CallInst *CI = dyn_cast<CallInst>(I)) EnumerateParamAttrs(CI->getParamAttrs()); else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) EnumerateParamAttrs(II->getParamAttrs()); } } // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); // Sort the type table by frequency so that most commonly used types are early // in the table (have low bit-width). std::stable_sort(Types.begin(), Types.end(), CompareByFrequency); // Partition the Type ID's so that the first-class types occur before the // aggregate types. This allows the aggregate types to be dropped from the // type table after parsing the global variable initializers. std::partition(Types.begin(), Types.end(), isFirstClassType); // Now that we rearranged the type table, rebuild TypeMap. for (unsigned i = 0, e = Types.size(); i != e; ++i) TypeMap[Types[i].first] = i+1; }
/// ValueEnumerator - Enumerate module-level information. ValueEnumerator::ValueEnumerator(const Module *M) { // Enumerate the global variables. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) EnumerateValue(I); // Enumerate the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { EnumerateValue(I); EnumerateAttributes(cast<Function>(I)->getAttributes()); } // Enumerate the aliases. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I); // Remember what is the cutoff between globalvalue's and other constants. unsigned FirstConstant = Values.size(); // Enumerate the global variable initializers. for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) EnumerateValue(I->getInitializer()); // Enumerate the aliasees. for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) EnumerateValue(I->getAliasee()); // Enumerate types used by the type symbol table. EnumerateTypeSymbolTable(M->getTypeSymbolTable()); // Insert constants and metadata that are named at module level into the slot // pool so that the module symbol table can refer to them... EnumerateValueSymbolTable(M->getValueSymbolTable()); EnumerateNamedMetadata(M); SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; // Enumerate types used by function bodies and argument lists. for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) EnumerateType(I->getType()); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if (MDNode *MD = dyn_cast<MDNode>(*OI)) if (MD->isFunctionLocal() && MD->getFunction()) // These will get enumerated during function-incorporation. continue; EnumerateOperandType(*OI); } EnumerateType(I->getType()); if (const CallInst *CI = dyn_cast<CallInst>(I)) EnumerateAttributes(CI->getAttributes()); else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) EnumerateAttributes(II->getAttributes()); // Enumerate metadata attached with this instruction. MDs.clear(); I->getAllMetadataOtherThanDebugLoc(MDs); for (unsigned i = 0, e = MDs.size(); i != e; ++i) EnumerateMetadata(MDs[i].second); if (!I->getDebugLoc().isUnknown()) { MDNode *Scope, *IA; I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); if (Scope) EnumerateMetadata(Scope); if (IA) EnumerateMetadata(IA); } } } // Optimize constant ordering. OptimizeConstants(FirstConstant, Values.size()); // Sort the type table by frequency so that most commonly used types are early // in the table (have low bit-width). std::stable_sort(Types.begin(), Types.end(), CompareByFrequency); // Partition the Type ID's so that the single-value types occur before the // aggregate types. This allows the aggregate types to be dropped from the // type table after parsing the global variable initializers. std::partition(Types.begin(), Types.end(), isSingleValueType); // Now that we rearranged the type table, rebuild TypeMap. for (unsigned i = 0, e = Types.size(); i != e; ++i) TypeMap[Types[i].first] = i+1; }