示例#1
0
/**
 * Calculate the transform required to get a marker's path object in the
 * right place for particular path segment on a shape.
 *
 * \see sp_shape_marker_update_marker_view.
 *
 * From SVG spec:
 * The axes of the temporary new user coordinate system are aligned according to the orient attribute on the 'marker'
 * element and the slope of the curve at the given vertex. (Note: if there is a discontinuity at a vertex, the slope
 * is the average of the slopes of the two segments of the curve that join at the given vertex. If a slope cannot be
 * determined, the slope is assumed to be zero.)
 *
 * Reference: http://www.w3.org/TR/SVG11/painting.html#MarkerElement, the `orient' attribute.
 * Reference for behaviour of zero-length segments:
 * http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
 */
Geom::Affine sp_shape_marker_get_transform(Geom::Curve const & c1, Geom::Curve const & c2)
{
    Geom::Point p = c1.pointAt(1);
    Geom::Curve * c1_reverse = c1.reverse();
    Geom::Point tang1 = - c1_reverse->unitTangentAt(0);
    delete c1_reverse;
    Geom::Point tang2 = c2.unitTangentAt(0);

    double const angle1 = Geom::atan2(tang1);
    double const angle2 = Geom::atan2(tang2);

    double ret_angle = .5 * (angle1 + angle2);

    if ( fabs( angle2 - angle1 ) > M_PI ) {
        /* ret_angle is in the middle of the larger of the two sectors between angle1 and
         * angle2, so flip it by 180degrees to force it to the middle of the smaller sector.
         *
         * (Imagine a circle with rays drawn at angle1 and angle2 from the centre of the
         * circle.  Those two rays divide the circle into two sectors.)
         */
        ret_angle += M_PI;
    }

    return Geom::Rotate(ret_angle) * Geom::Translate(p);
}
void
PrintLatex::print_2geomcurve(SVGOStringStream &os, Geom::Curve const &c)
{
    using Geom::X;
    using Geom::Y;

    if( is_straight_curve(c) )
    {
        os << "\\lineto(" << c.finalPoint()[X] << "," << c.finalPoint()[Y] << ")\n";
    }
    else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const*>(&c)) {
        std::vector<Geom::Point> points = cubic_bezier->points();
        os << "\\curveto(" << points[1][X] << "," << points[1][Y] << ")("
                           << points[2][X] << "," << points[2][Y] << ")("
                           << points[3][X] << "," << points[3][Y] << ")\n";
    }                                             
    else {
        //this case handles sbasis as well as all other curve types
        Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1);

        for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) {
            print_2geomcurve(os, *iter);
        }
    }
}
示例#3
0
文件: geom.cpp 项目: Spin0za/inkscape
static void
geom_curve_bbox_wind_distance(Geom::Curve const & c, Geom::Affine const &m,
                 Geom::Point const &pt,
                 Geom::Rect *bbox, int *wind, Geom::Coord *dist,
                 Geom::Coord tolerance, Geom::Rect const *viewbox,
                 Geom::Point &p0) // pass p0 through as it represents the last endpoint added (the finalPoint of last curve)
{
    if( is_straight_curve(c) )
    {
        Geom::Point pe = c.finalPoint() * m;
        if (bbox) {
            bbox->expandTo(pe);
        }
        if (dist || wind) {
            if (wind) { // we need to pick fill, so do what we're told
                geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist);
            } else { // only stroke is being picked; skip this segment if it's totally outside the viewbox
                Geom::Rect swept(p0, pe);
                if (!viewbox || swept.intersects(*viewbox))
                    geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist);
            }
        }
        p0 = pe;
    }
    else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const  *>(&c)) {
        Geom::Point p1 = (*cubic_bezier)[1] * m;
        Geom::Point p2 = (*cubic_bezier)[2] * m;
        Geom::Point p3 = (*cubic_bezier)[3] * m;

        // get approximate bbox from handles (convex hull property of beziers):
        Geom::Rect swept(p0, p3);
        swept.expandTo(p1);
        swept.expandTo(p2);

        if (!viewbox || swept.intersects(*viewbox)) { // we see this segment, so do full processing
            geom_cubic_bbox_wind_distance ( p0[X], p0[Y],
                                            p1[X], p1[Y],
                                            p2[X], p2[Y],
                                            p3[X], p3[Y],
                                            pt,
                                            bbox, wind, dist, tolerance);
        } else {
            if (wind) { // if we need fill, we can just pretend it's a straight line
                geom_line_wind_distance (p0[X], p0[Y], p3[X], p3[Y], pt, wind, dist);
            } else { // otherwise, skip it completely
            }
        }
        p0 = p3;
    } else { 
        //this case handles sbasis as well as all other curve types
        Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1);

        //recurse to convert the new path resulting from the sbasis to svgd
        for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) {
            geom_curve_bbox_wind_distance(*iter, m, pt, bbox, wind, dist, tolerance, viewbox, p0);
        }
    }
}
示例#4
0
Geom::Affine sp_shape_marker_get_transform_at_start(Geom::Curve const & c)
{
    Geom::Point p = c.pointAt(0);
    Geom::Affine ret = Geom::Translate(p);

    if ( !c.isDegenerate() ) {
        Geom::Point tang = c.unitTangentAt(0);
        double const angle = Geom::atan2(tang);
        ret = Geom::Rotate(angle) * Geom::Translate(p);
    } else {
        /* FIXME: the svg spec says to search for a better alternative than zero angle directionality:
         * http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes */
    }

    return ret;
}
示例#5
0
文件: geom.cpp 项目: asitti/inkscape
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
    if (pv.empty())
        return Geom::OptRect();

    Geom::Point initial = pv.front().initialPoint() * t;
    Geom::Rect bbox(initial, initial);        // obtain well defined bbox as starting point to unionWith

    for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
        bbox.expandTo(it->initialPoint() * t);

        // don't loop including closing segment, since that segment can never increase the bbox
        for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            Geom::Curve const &c = *cit;

            unsigned order = 0;
            if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) {
                order = b->order();
            }

            if (order == 1) { // line segment
                bbox.expandTo(c.finalPoint() * t);

            // TODO: we can make the case for quadratics faster by degree elevating them to
            // cubic and then taking the bbox of that.

            } else if (order == 3) { // cubic bezier
                Geom::CubicBezier const &cubic_bezier = static_cast<Geom::CubicBezier const&>(c);
                Geom::Point c0 = cubic_bezier[0] * t;
                Geom::Point c1 = cubic_bezier[1] * t;
                Geom::Point c2 = cubic_bezier[2] * t;
                Geom::Point c3 = cubic_bezier[3] * t;
                cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox);
            } else {
                // should handle all not-so-easy curves:
                Geom::Curve *ctemp = cit->transformed(t);
                bbox.unionWith( ctemp->boundsExact());
                delete ctemp;
            }
        }
    }
    //return Geom::bounds_exact(pv * t);
    return bbox;
}
示例#6
0
文件: geom.cpp 项目: Spin0za/inkscape
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
    if (pv.empty())
        return Geom::OptRect();

    Geom::Point initial = pv.front().initialPoint() * t;
    Geom::Rect bbox(initial, initial);        // obtain well defined bbox as starting point to unionWith

    for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
        bbox.expandTo(it->initialPoint() * t);

        // don't loop including closing segment, since that segment can never increase the bbox
        for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
            Geom::Curve const &c = *cit;

            if( is_straight_curve(c) )
            {
                bbox.expandTo( c.finalPoint() * t );
            }
            else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const  *>(&c))
            {
                Geom::Point c0 = (*cubic_bezier)[0] * t;
                Geom::Point c1 = (*cubic_bezier)[1] * t;
                Geom::Point c2 = (*cubic_bezier)[2] * t;
                Geom::Point c3 = (*cubic_bezier)[3] * t;
                cubic_bbox( c0[0], c0[1],
                            c1[0], c1[1],
                            c2[0], c2[1],
                            c3[0], c3[1],
                            bbox );
            }
            else
            {
                // should handle all not-so-easy curves:
                Geom::Curve *ctemp = cit->transformed(t);
                bbox.unionWith( ctemp->boundsExact());
                delete ctemp;
            }
        }
    }
    //return Geom::bounds_exact(pv * t);
    return bbox;
}
示例#7
0
void tangents_old(Geom::Point tang[2], Geom::Curve const& incoming, Geom::Curve const& outgoing)
{
    Geom::Point tang1 = Geom::unitTangentAt(reverse(incoming.toSBasis()), 0.);
    Geom::Point tang2 = outgoing.unitTangentAt(0.);
    tang[0] = tang1, tang[1] = tang2;
}
示例#8
0
/*
 * Can be called recursively.
 * If optimize_stroke == false, the view Rect is not used.
 */
static void
feed_curve_to_cairo(cairo_t *cr, Geom::Curve const &c, Geom::Affine const & trans, Geom::Rect view, bool optimize_stroke)
{
    if( is_straight_curve(c) )
    {
        Geom::Point end_tr = c.finalPoint() * trans;
        if (!optimize_stroke) {
            cairo_line_to(cr, end_tr[0], end_tr[1]);
        } else {
            Geom::Rect swept(c.initialPoint()*trans, end_tr);
            if (swept.intersects(view)) {
                cairo_line_to(cr, end_tr[0], end_tr[1]);
            } else {
                cairo_move_to(cr, end_tr[0], end_tr[1]);
            }
        }
    }
    else if(Geom::QuadraticBezier const *quadratic_bezier = dynamic_cast<Geom::QuadraticBezier const*>(&c)) {
        std::vector<Geom::Point> points = quadratic_bezier->points();
        points[0] *= trans;
        points[1] *= trans;
        points[2] *= trans;
        Geom::Point b1 = points[0] + (2./3) * (points[1] - points[0]);
        Geom::Point b2 = b1 + (1./3) * (points[2] - points[0]);
        if (!optimize_stroke) {
            cairo_curve_to(cr, b1[0], b1[1], b2[0], b2[1], points[2][0], points[2][1]);
        } else {
            Geom::Rect swept(points[0], points[2]);
            swept.expandTo(points[1]);
            if (swept.intersects(view)) {
                cairo_curve_to(cr, b1[0], b1[1], b2[0], b2[1], points[2][0], points[2][1]);
            } else {
                cairo_move_to(cr, points[2][0], points[2][1]);
            }
        }
    }
    else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const*>(&c)) {
        std::vector<Geom::Point> points = cubic_bezier->points();
        //points[0] *= trans; // don't do this one here for fun: it is only needed for optimized strokes
        points[1] *= trans;
        points[2] *= trans;
        points[3] *= trans;
        if (!optimize_stroke) {
            cairo_curve_to(cr, points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1]);
        } else {
            points[0] *= trans;  // didn't transform this point yet
            Geom::Rect swept(points[0], points[3]);
            swept.expandTo(points[1]);
            swept.expandTo(points[2]);
            if (swept.intersects(view)) {
                cairo_curve_to(cr, points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1]);
            } else {
                cairo_move_to(cr, points[3][0], points[3][1]);
            }
        }
    }
//    else if(Geom::SVGEllipticalArc const *svg_elliptical_arc = dynamic_cast<Geom::SVGEllipticalArc *>(c)) {
//        //TODO: get at the innards and spit them out to cairo
//    }
    else {
        //this case handles sbasis as well as all other curve types
        Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1);

        //recurse to convert the new path resulting from the sbasis to svgd
        for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) {
            feed_curve_to_cairo(cr, *iter, trans, view, optimize_stroke);
        }
    }
}
示例#9
0
/*
 * Can be called recursively.
 * If optimize_stroke == false, the view Rect is not used.
 */
static void
feed_curve_to_cairo(cairo_t *cr, Geom::Curve const &c, Geom::Affine const & trans, Geom::Rect view, bool optimize_stroke)
{
    using Geom::X;
    using Geom::Y;

    unsigned order = 0;
    if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) {
        order = b->order();
    }

    // handle the three typical curve cases
    switch (order) {
    case 1:
    {
        Geom::Point end_tr = c.finalPoint() * trans;
        if (!optimize_stroke) {
            cairo_line_to(cr, end_tr[0], end_tr[1]);
        } else {
            Geom::Rect swept(c.initialPoint()*trans, end_tr);
            if (swept.intersects(view)) {
                cairo_line_to(cr, end_tr[0], end_tr[1]);
            } else {
                cairo_move_to(cr, end_tr[0], end_tr[1]);
            }
        }
    }
    break;
    case 2:
    {
        Geom::QuadraticBezier const *quadratic_bezier = static_cast<Geom::QuadraticBezier const*>(&c);
        std::vector<Geom::Point> points = quadratic_bezier->controlPoints();
        points[0] *= trans;
        points[1] *= trans;
        points[2] *= trans;
        // degree-elevate to cubic Bezier, since Cairo doesn't do quadratic Beziers
        Geom::Point b1 = points[0] + (2./3) * (points[1] - points[0]);
        Geom::Point b2 = b1 + (1./3) * (points[2] - points[0]);
        if (!optimize_stroke) {
            cairo_curve_to(cr, b1[X], b1[Y], b2[X], b2[Y], points[2][X], points[2][Y]);
        } else {
            Geom::Rect swept(points[0], points[2]);
            swept.expandTo(points[1]);
            if (swept.intersects(view)) {
                cairo_curve_to(cr, b1[X], b1[Y], b2[X], b2[Y], points[2][X], points[2][Y]);
            } else {
                cairo_move_to(cr, points[2][X], points[2][Y]);
            }
        }
    }
    break;
    case 3:
    {
        Geom::CubicBezier const *cubic_bezier = static_cast<Geom::CubicBezier const*>(&c);
        std::vector<Geom::Point> points = cubic_bezier->controlPoints();
        //points[0] *= trans; // don't do this one here for fun: it is only needed for optimized strokes
        points[1] *= trans;
        points[2] *= trans;
        points[3] *= trans;
        if (!optimize_stroke) {
            cairo_curve_to(cr, points[1][X], points[1][Y], points[2][X], points[2][Y], points[3][X], points[3][Y]);
        } else {
            points[0] *= trans;  // didn't transform this point yet
            Geom::Rect swept(points[0], points[3]);
            swept.expandTo(points[1]);
            swept.expandTo(points[2]);
            if (swept.intersects(view)) {
                cairo_curve_to(cr, points[1][X], points[1][Y], points[2][X], points[2][Y], points[3][X], points[3][Y]);
            } else {
                cairo_move_to(cr, points[3][X], points[3][Y]);
            }
        }
    }
    break;
    default:
    {
        if (Geom::EllipticalArc const *a = dynamic_cast<Geom::EllipticalArc const*>(&c)) {
            //if (!optimize_stroke || a->boundsFast().intersects(view)) {
                Geom::Affine xform = a->unitCircleTransform() * trans;
                Geom::Point ang(a->initialAngle().radians(), a->finalAngle().radians());

                // Apply the transformation to the current context
                cairo_matrix_t cm;
                cm.xx = xform[0];
                cm.xy = xform[2];
                cm.x0 = xform[4];
                cm.yx = xform[1];
                cm.yy = xform[3];
                cm.y0 = xform[5];

                cairo_save(cr);
                cairo_transform(cr, &cm);

                // Draw the circle
                if (a->sweep()) {
                    cairo_arc(cr, 0, 0, 1, ang[0], ang[1]);
                } else {
                    cairo_arc_negative(cr, 0, 0, 1, ang[0], ang[1]);
                }
                // Revert the current context
                cairo_restore(cr);
            //} else {
            //    Geom::Point f = a->finalPoint() * trans;
            //    cairo_move_to(cr, f[X], f[Y]);
            //}
        } else {
            // handles sbasis as well as all other curve types
            // this is very slow
            Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1);

            // recurse to convert the new path resulting from the sbasis to svgd
            for (Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) {
                feed_curve_to_cairo(cr, *iter, trans, view, optimize_stroke);
            }
        }
    }
    break;
    }
}