/** * Calculate the transform required to get a marker's path object in the * right place for particular path segment on a shape. * * \see sp_shape_marker_update_marker_view. * * From SVG spec: * The axes of the temporary new user coordinate system are aligned according to the orient attribute on the 'marker' * element and the slope of the curve at the given vertex. (Note: if there is a discontinuity at a vertex, the slope * is the average of the slopes of the two segments of the curve that join at the given vertex. If a slope cannot be * determined, the slope is assumed to be zero.) * * Reference: http://www.w3.org/TR/SVG11/painting.html#MarkerElement, the `orient' attribute. * Reference for behaviour of zero-length segments: * http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes */ Geom::Affine sp_shape_marker_get_transform(Geom::Curve const & c1, Geom::Curve const & c2) { Geom::Point p = c1.pointAt(1); Geom::Curve * c1_reverse = c1.reverse(); Geom::Point tang1 = - c1_reverse->unitTangentAt(0); delete c1_reverse; Geom::Point tang2 = c2.unitTangentAt(0); double const angle1 = Geom::atan2(tang1); double const angle2 = Geom::atan2(tang2); double ret_angle = .5 * (angle1 + angle2); if ( fabs( angle2 - angle1 ) > M_PI ) { /* ret_angle is in the middle of the larger of the two sectors between angle1 and * angle2, so flip it by 180degrees to force it to the middle of the smaller sector. * * (Imagine a circle with rays drawn at angle1 and angle2 from the centre of the * circle. Those two rays divide the circle into two sectors.) */ ret_angle += M_PI; } return Geom::Rotate(ret_angle) * Geom::Translate(p); }
void PrintLatex::print_2geomcurve(SVGOStringStream &os, Geom::Curve const &c) { using Geom::X; using Geom::Y; if( is_straight_curve(c) ) { os << "\\lineto(" << c.finalPoint()[X] << "," << c.finalPoint()[Y] << ")\n"; } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const*>(&c)) { std::vector<Geom::Point> points = cubic_bezier->points(); os << "\\curveto(" << points[1][X] << "," << points[1][Y] << ")(" << points[2][X] << "," << points[2][Y] << ")(" << points[3][X] << "," << points[3][Y] << ")\n"; } else { //this case handles sbasis as well as all other curve types Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { print_2geomcurve(os, *iter); } } }
static void geom_curve_bbox_wind_distance(Geom::Curve const & c, Geom::Affine const &m, Geom::Point const &pt, Geom::Rect *bbox, int *wind, Geom::Coord *dist, Geom::Coord tolerance, Geom::Rect const *viewbox, Geom::Point &p0) // pass p0 through as it represents the last endpoint added (the finalPoint of last curve) { if( is_straight_curve(c) ) { Geom::Point pe = c.finalPoint() * m; if (bbox) { bbox->expandTo(pe); } if (dist || wind) { if (wind) { // we need to pick fill, so do what we're told geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist); } else { // only stroke is being picked; skip this segment if it's totally outside the viewbox Geom::Rect swept(p0, pe); if (!viewbox || swept.intersects(*viewbox)) geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist); } } p0 = pe; } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const *>(&c)) { Geom::Point p1 = (*cubic_bezier)[1] * m; Geom::Point p2 = (*cubic_bezier)[2] * m; Geom::Point p3 = (*cubic_bezier)[3] * m; // get approximate bbox from handles (convex hull property of beziers): Geom::Rect swept(p0, p3); swept.expandTo(p1); swept.expandTo(p2); if (!viewbox || swept.intersects(*viewbox)) { // we see this segment, so do full processing geom_cubic_bbox_wind_distance ( p0[X], p0[Y], p1[X], p1[Y], p2[X], p2[Y], p3[X], p3[Y], pt, bbox, wind, dist, tolerance); } else { if (wind) { // if we need fill, we can just pretend it's a straight line geom_line_wind_distance (p0[X], p0[Y], p3[X], p3[Y], pt, wind, dist); } else { // otherwise, skip it completely } } p0 = p3; } else { //this case handles sbasis as well as all other curve types Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); //recurse to convert the new path resulting from the sbasis to svgd for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { geom_curve_bbox_wind_distance(*iter, m, pt, bbox, wind, dist, tolerance, viewbox, p0); } } }
Geom::Affine sp_shape_marker_get_transform_at_start(Geom::Curve const & c) { Geom::Point p = c.pointAt(0); Geom::Affine ret = Geom::Translate(p); if ( !c.isDegenerate() ) { Geom::Point tang = c.unitTangentAt(0); double const angle = Geom::atan2(tang); ret = Geom::Rotate(angle) * Geom::Translate(p); } else { /* FIXME: the svg spec says to search for a better alternative than zero angle directionality: * http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes */ } return ret; }
Geom::OptRect bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { if (pv.empty()) return Geom::OptRect(); Geom::Point initial = pv.front().initialPoint() * t; Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) { bbox.expandTo(it->initialPoint() * t); // don't loop including closing segment, since that segment can never increase the bbox for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) { Geom::Curve const &c = *cit; unsigned order = 0; if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) { order = b->order(); } if (order == 1) { // line segment bbox.expandTo(c.finalPoint() * t); // TODO: we can make the case for quadratics faster by degree elevating them to // cubic and then taking the bbox of that. } else if (order == 3) { // cubic bezier Geom::CubicBezier const &cubic_bezier = static_cast<Geom::CubicBezier const&>(c); Geom::Point c0 = cubic_bezier[0] * t; Geom::Point c1 = cubic_bezier[1] * t; Geom::Point c2 = cubic_bezier[2] * t; Geom::Point c3 = cubic_bezier[3] * t; cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox); } else { // should handle all not-so-easy curves: Geom::Curve *ctemp = cit->transformed(t); bbox.unionWith( ctemp->boundsExact()); delete ctemp; } } } //return Geom::bounds_exact(pv * t); return bbox; }
Geom::OptRect bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t) { if (pv.empty()) return Geom::OptRect(); Geom::Point initial = pv.front().initialPoint() * t; Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) { bbox.expandTo(it->initialPoint() * t); // don't loop including closing segment, since that segment can never increase the bbox for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) { Geom::Curve const &c = *cit; if( is_straight_curve(c) ) { bbox.expandTo( c.finalPoint() * t ); } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const *>(&c)) { Geom::Point c0 = (*cubic_bezier)[0] * t; Geom::Point c1 = (*cubic_bezier)[1] * t; Geom::Point c2 = (*cubic_bezier)[2] * t; Geom::Point c3 = (*cubic_bezier)[3] * t; cubic_bbox( c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox ); } else { // should handle all not-so-easy curves: Geom::Curve *ctemp = cit->transformed(t); bbox.unionWith( ctemp->boundsExact()); delete ctemp; } } } //return Geom::bounds_exact(pv * t); return bbox; }
void tangents_old(Geom::Point tang[2], Geom::Curve const& incoming, Geom::Curve const& outgoing) { Geom::Point tang1 = Geom::unitTangentAt(reverse(incoming.toSBasis()), 0.); Geom::Point tang2 = outgoing.unitTangentAt(0.); tang[0] = tang1, tang[1] = tang2; }
/* * Can be called recursively. * If optimize_stroke == false, the view Rect is not used. */ static void feed_curve_to_cairo(cairo_t *cr, Geom::Curve const &c, Geom::Affine const & trans, Geom::Rect view, bool optimize_stroke) { if( is_straight_curve(c) ) { Geom::Point end_tr = c.finalPoint() * trans; if (!optimize_stroke) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { Geom::Rect swept(c.initialPoint()*trans, end_tr); if (swept.intersects(view)) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { cairo_move_to(cr, end_tr[0], end_tr[1]); } } } else if(Geom::QuadraticBezier const *quadratic_bezier = dynamic_cast<Geom::QuadraticBezier const*>(&c)) { std::vector<Geom::Point> points = quadratic_bezier->points(); points[0] *= trans; points[1] *= trans; points[2] *= trans; Geom::Point b1 = points[0] + (2./3) * (points[1] - points[0]); Geom::Point b2 = b1 + (1./3) * (points[2] - points[0]); if (!optimize_stroke) { cairo_curve_to(cr, b1[0], b1[1], b2[0], b2[1], points[2][0], points[2][1]); } else { Geom::Rect swept(points[0], points[2]); swept.expandTo(points[1]); if (swept.intersects(view)) { cairo_curve_to(cr, b1[0], b1[1], b2[0], b2[1], points[2][0], points[2][1]); } else { cairo_move_to(cr, points[2][0], points[2][1]); } } } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const*>(&c)) { std::vector<Geom::Point> points = cubic_bezier->points(); //points[0] *= trans; // don't do this one here for fun: it is only needed for optimized strokes points[1] *= trans; points[2] *= trans; points[3] *= trans; if (!optimize_stroke) { cairo_curve_to(cr, points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1]); } else { points[0] *= trans; // didn't transform this point yet Geom::Rect swept(points[0], points[3]); swept.expandTo(points[1]); swept.expandTo(points[2]); if (swept.intersects(view)) { cairo_curve_to(cr, points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1]); } else { cairo_move_to(cr, points[3][0], points[3][1]); } } } // else if(Geom::SVGEllipticalArc const *svg_elliptical_arc = dynamic_cast<Geom::SVGEllipticalArc *>(c)) { // //TODO: get at the innards and spit them out to cairo // } else { //this case handles sbasis as well as all other curve types Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); //recurse to convert the new path resulting from the sbasis to svgd for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { feed_curve_to_cairo(cr, *iter, trans, view, optimize_stroke); } } }
/* * Can be called recursively. * If optimize_stroke == false, the view Rect is not used. */ static void feed_curve_to_cairo(cairo_t *cr, Geom::Curve const &c, Geom::Affine const & trans, Geom::Rect view, bool optimize_stroke) { using Geom::X; using Geom::Y; unsigned order = 0; if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) { order = b->order(); } // handle the three typical curve cases switch (order) { case 1: { Geom::Point end_tr = c.finalPoint() * trans; if (!optimize_stroke) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { Geom::Rect swept(c.initialPoint()*trans, end_tr); if (swept.intersects(view)) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { cairo_move_to(cr, end_tr[0], end_tr[1]); } } } break; case 2: { Geom::QuadraticBezier const *quadratic_bezier = static_cast<Geom::QuadraticBezier const*>(&c); std::vector<Geom::Point> points = quadratic_bezier->controlPoints(); points[0] *= trans; points[1] *= trans; points[2] *= trans; // degree-elevate to cubic Bezier, since Cairo doesn't do quadratic Beziers Geom::Point b1 = points[0] + (2./3) * (points[1] - points[0]); Geom::Point b2 = b1 + (1./3) * (points[2] - points[0]); if (!optimize_stroke) { cairo_curve_to(cr, b1[X], b1[Y], b2[X], b2[Y], points[2][X], points[2][Y]); } else { Geom::Rect swept(points[0], points[2]); swept.expandTo(points[1]); if (swept.intersects(view)) { cairo_curve_to(cr, b1[X], b1[Y], b2[X], b2[Y], points[2][X], points[2][Y]); } else { cairo_move_to(cr, points[2][X], points[2][Y]); } } } break; case 3: { Geom::CubicBezier const *cubic_bezier = static_cast<Geom::CubicBezier const*>(&c); std::vector<Geom::Point> points = cubic_bezier->controlPoints(); //points[0] *= trans; // don't do this one here for fun: it is only needed for optimized strokes points[1] *= trans; points[2] *= trans; points[3] *= trans; if (!optimize_stroke) { cairo_curve_to(cr, points[1][X], points[1][Y], points[2][X], points[2][Y], points[3][X], points[3][Y]); } else { points[0] *= trans; // didn't transform this point yet Geom::Rect swept(points[0], points[3]); swept.expandTo(points[1]); swept.expandTo(points[2]); if (swept.intersects(view)) { cairo_curve_to(cr, points[1][X], points[1][Y], points[2][X], points[2][Y], points[3][X], points[3][Y]); } else { cairo_move_to(cr, points[3][X], points[3][Y]); } } } break; default: { if (Geom::EllipticalArc const *a = dynamic_cast<Geom::EllipticalArc const*>(&c)) { //if (!optimize_stroke || a->boundsFast().intersects(view)) { Geom::Affine xform = a->unitCircleTransform() * trans; Geom::Point ang(a->initialAngle().radians(), a->finalAngle().radians()); // Apply the transformation to the current context cairo_matrix_t cm; cm.xx = xform[0]; cm.xy = xform[2]; cm.x0 = xform[4]; cm.yx = xform[1]; cm.yy = xform[3]; cm.y0 = xform[5]; cairo_save(cr); cairo_transform(cr, &cm); // Draw the circle if (a->sweep()) { cairo_arc(cr, 0, 0, 1, ang[0], ang[1]); } else { cairo_arc_negative(cr, 0, 0, 1, ang[0], ang[1]); } // Revert the current context cairo_restore(cr); //} else { // Geom::Point f = a->finalPoint() * trans; // cairo_move_to(cr, f[X], f[Y]); //} } else { // handles sbasis as well as all other curve types // this is very slow Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); // recurse to convert the new path resulting from the sbasis to svgd for (Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { feed_curve_to_cairo(cr, *iter, trans, view, optimize_stroke); } } } break; } }