MapType CyPy_Element::dictAsElement(const Py::Dict& dict) { MapType map; for (auto key : dict.keys()) { map.emplace(key.str(), asElement(dict.getItem(key))); } return map; }
PyObject* Application::sAddCommand(PyObject * /*self*/, PyObject *args,PyObject * /*kwd*/) { char* pName; char* pSource=0; PyObject* pcCmdObj; if (!PyArg_ParseTuple(args, "sO|s", &pName,&pcCmdObj,&pSource)) // convert args: Python->C return NULL; // NULL triggers exception #if 0 std::string source = (pSource ? pSource : ""); if (source.empty()) { try { Py::Module module(PyImport_ImportModule("inspect"),true); Py::Dict dict = module.getDict(); Py::Callable call(dict.getItem("getsourcelines")); Py::Tuple arg(1); arg.setItem(0, Py::Object(pcCmdObj).getAttr("Activated")); Py::Tuple tuple(call.apply(arg)); Py::List lines(tuple[0]); int pos=0; std::string code = (std::string)(Py::String(lines[1])); while (code[pos] == ' ' || code[pos] == '\t') pos++; for (Py::List::iterator it = lines.begin()+1; it != lines.end(); ++it) { Py::String str(*it); source += ((std::string)str).substr(pos); } } catch (Py::Exception& e) { e.clear(); } } Application::Instance->commandManager().addCommand(new PythonCommand(pName,pcCmdObj,source.c_str())); #else try { Application::Instance->commandManager().addCommand(new PythonCommand(pName,pcCmdObj,pSource)); } catch (const Base::Exception& e) { PyErr_SetString(Base::BaseExceptionFreeCADError, e.what()); return 0; } catch (...) { PyErr_SetString(Base::BaseExceptionFreeCADError, "Unknown C++ exception raised in Application::sAddCommand()"); return 0; } #endif Py_INCREF(Py_None); return Py_None; }
MeshObject* MeshObject::createSphere(float radius, int sampling) { // load the 'BuildRegularGeoms' module Base::PyGILStateLocker lock; try { Py::Module module(PyImport_ImportModule("BuildRegularGeoms"),true); Py::Dict dict = module.getDict(); Py::Callable call(dict.getItem("Sphere")); Py::Tuple args(2); args.setItem(0, Py::Float(radius)); args.setItem(1, Py::Int(sampling)); Py::List list(call.apply(args)); return createMeshFromList(list); } catch (Py::Exception& e) { e.clear(); } return 0; }
MeshObject* MeshObject::createCube(float length, float width, float height) { // load the 'BuildRegularGeoms' module Base::PyGILStateLocker lock; try { Py::Module module(PyImport_ImportModule("BuildRegularGeoms"),true); Py::Dict dict = module.getDict(); Py::Callable call(dict.getItem("Cube")); Py::Tuple args(3); args.setItem(0, Py::Float(length)); args.setItem(1, Py::Float(width)); args.setItem(2, Py::Float(height)); Py::List list(call.apply(args)); return createMeshFromList(list); } catch (Py::Exception& e) { e.clear(); } return 0; }
MeshObject* MeshObject::createCylinder(float radius, float length, int closed, float edgelen, int sampling) { // load the 'BuildRegularGeoms' module Base::PyGILStateLocker lock; try { Py::Module module(PyImport_ImportModule("BuildRegularGeoms"),true); Py::Dict dict = module.getDict(); Py::Callable call(dict.getItem("Cylinder")); Py::Tuple args(5); args.setItem(0, Py::Float(radius)); args.setItem(1, Py::Float(length)); args.setItem(2, Py::Int(closed)); args.setItem(3, Py::Float(edgelen)); args.setItem(4, Py::Int(sampling)); Py::List list(call.apply(args)); return createMeshFromList(list); } catch (Py::Exception& e) { e.clear(); } return 0; }
QMap<QString, CallTip> CallTipsList::extractTips(const QString& context) const { Base::PyGILStateLocker lock; QMap<QString, CallTip> tips; if (context.isEmpty()) return tips; try { Py::Module module("__main__"); Py::Dict dict = module.getDict(); #if 0 QStringList items = context.split(QLatin1Char('.')); QString modname = items.front(); items.pop_front(); if (!dict.hasKey(std::string(modname.toLatin1()))) return tips; // unknown object // get the Python object we need Py::Object obj = dict.getItem(std::string(modname.toLatin1())); while (!items.isEmpty()) { QByteArray name = items.front().toLatin1(); std::string attr = name.constData(); items.pop_front(); if (obj.hasAttr(attr)) obj = obj.getAttr(attr); else return tips; } #else // Don't use hasattr & getattr because if a property is bound to a method this will be executed twice. PyObject* code = Py_CompileString(static_cast<const char*>(context.toLatin1()), "<CallTipsList>", Py_eval_input); if (!code) { PyErr_Clear(); return tips; } PyObject* eval = 0; if (PyCode_Check(code)) { eval = PyEval_EvalCode(reinterpret_cast<PyCodeObject*>(code), dict.ptr(), dict.ptr()); } Py_DECREF(code); if (!eval) { PyErr_Clear(); return tips; } Py::Object obj(eval, true); #endif // Checks whether the type is a subclass of PyObjectBase because to get the doc string // of a member we must get it by its type instead of its instance otherwise we get the // wrong string, namely that of the type of the member. // Note: 3rd party libraries may use their own type object classes so that we cannot // reliably use Py::Type. To be on the safe side we should use Py::Object to assign // the used type object to. //Py::Object type = obj.type(); Py::Object type(PyObject_Type(obj.ptr()), true); Py::Object inst = obj; // the object instance union PyType_Object typeobj = {&Base::PyObjectBase::Type}; union PyType_Object typedoc = {&App::DocumentObjectPy::Type}; union PyType_Object basetype = {&PyBaseObject_Type}; if (PyObject_IsSubclass(type.ptr(), typedoc.o) == 1) { // From the template Python object we don't query its type object because there we keep // a list of additional methods that we won't see otherwise. But to get the correct doc // strings we query the type's dict in the class itself. // To see if we have a template Python object we check for the existence of supportedProperties if (!type.hasAttr("supportedProperties")) { obj = type; } } else if (PyObject_IsSubclass(type.ptr(), typeobj.o) == 1) { obj = type; } else if (PyInstance_Check(obj.ptr())) { // instances of old style classes PyInstanceObject* inst = reinterpret_cast<PyInstanceObject*>(obj.ptr()); PyObject* classobj = reinterpret_cast<PyObject*>(inst->in_class); obj = Py::Object(classobj); } else if (PyObject_IsInstance(obj.ptr(), basetype.o) == 1) { // New style class which can be a module, type, list, tuple, int, float, ... // Make sure it's not a type objec union PyType_Object typetype = {&PyType_Type}; if (PyObject_IsInstance(obj.ptr(), typetype.o) != 1) { // this should be now a user-defined Python class // http://stackoverflow.com/questions/12233103/in-python-at-runtime-determine-if-an-object-is-a-class-old-and-new-type-instan if (Py_TYPE(obj.ptr())->tp_flags & Py_TPFLAGS_HEAPTYPE) { obj = type; } } } // If we have an instance of PyObjectBase then determine whether it's valid or not if (PyObject_IsInstance(inst.ptr(), typeobj.o) == 1) { Base::PyObjectBase* baseobj = static_cast<Base::PyObjectBase*>(inst.ptr()); const_cast<CallTipsList*>(this)->validObject = baseobj->isValid(); } else { // PyObject_IsInstance might set an exception PyErr_Clear(); } Py::List list(obj.dir()); // If we derive from PropertyContainerPy we can search for the properties in the // C++ twin class. union PyType_Object proptypeobj = {&App::PropertyContainerPy::Type}; if (PyObject_IsSubclass(type.ptr(), proptypeobj.o) == 1) { // These are the attributes of the instance itself which are NOT accessible by // its type object extractTipsFromProperties(inst, tips); } // If we derive from App::DocumentPy we have direct access to the objects by their internal // names. So, we add these names to the list, too. union PyType_Object appdoctypeobj = {&App::DocumentPy::Type}; if (PyObject_IsSubclass(type.ptr(), appdoctypeobj.o) == 1) { App::DocumentPy* docpy = (App::DocumentPy*)(inst.ptr()); App::Document* document = docpy->getDocumentPtr(); // Make sure that the C++ object is alive if (document) { std::vector<App::DocumentObject*> objects = document->getObjects(); Py::List list; for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it) list.append(Py::String((*it)->getNameInDocument())); extractTipsFromObject(inst, list, tips); } } // If we derive from Gui::DocumentPy we have direct access to the objects by their internal // names. So, we add these names to the list, too. union PyType_Object guidoctypeobj = {&Gui::DocumentPy::Type}; if (PyObject_IsSubclass(type.ptr(), guidoctypeobj.o) == 1) { Gui::DocumentPy* docpy = (Gui::DocumentPy*)(inst.ptr()); if (docpy->getDocumentPtr()) { App::Document* document = docpy->getDocumentPtr()->getDocument(); // Make sure that the C++ object is alive if (document) { std::vector<App::DocumentObject*> objects = document->getObjects(); Py::List list; for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it) list.append(Py::String((*it)->getNameInDocument())); extractTipsFromObject(inst, list, tips); } } } // These are the attributes from the type object extractTipsFromObject(obj, list, tips); } catch (Py::Exception& e) { // Just clear the Python exception e.clear(); } return tips; }
QMap<QString, CallTip> CallTipsList::extractTips(const QString& context) const { Base::PyGILStateLocker lock; QMap<QString, CallTip> tips; if (context.isEmpty()) return tips; try { QStringList items = context.split(QLatin1Char('.')); Py::Module module("__main__"); Py::Dict dict = module.getDict(); QString modname = items.front(); items.pop_front(); if (!dict.hasKey(std::string(modname.toAscii()))) return tips; // unknown object // get the Python object we need Py::Object obj = dict.getItem(std::string(modname.toAscii())); while (!items.isEmpty()) { QByteArray name = items.front().toAscii(); std::string attr = name.constData(); items.pop_front(); if (obj.hasAttr(attr)) obj = obj.getAttr(attr); else return tips; } // Checks whether the type is a subclass of PyObjectBase because to get the doc string // of a member we must get it by its type instead of its instance otherwise we get the // wrong string, namely that of the type of the member. // Note: 3rd party libraries may use their own type object classes so that we cannot // reliably use Py::Type. To be on the safe side we should use Py::Object to assign // the used type object to. //Py::Object type = obj.type(); Py::Object type(PyObject_Type(obj.ptr()), true); Py::Object inst = obj; // the object instance union PyType_Object typeobj = {&Base::PyObjectBase::Type}; union PyType_Object typedoc = {&App::DocumentObjectPy::Type}; if (PyObject_IsSubclass(type.ptr(), typedoc.o) == 1) { // From the template Python object we don't query its type object because there we keep // a list of additional methods that we won't see otherwise. But to get the correct doc // strings we query the type's dict in the class itself. // To see if we have a template Python object we check for the existence of supportedProperties if (!type.hasAttr("supportedProperties")) { obj = type; } } else if (PyObject_IsSubclass(type.ptr(), typeobj.o) == 1) { obj = type; } // If we have an instance of PyObjectBase then determine whether it's valid or not if (PyObject_IsInstance(inst.ptr(), typeobj.o) == 1) { Base::PyObjectBase* baseobj = static_cast<Base::PyObjectBase*>(inst.ptr()); const_cast<CallTipsList*>(this)->validObject = baseobj->isValid(); } else { // PyObject_IsInstance might set an exception PyErr_Clear(); } Py::List list(PyObject_Dir(obj.ptr()), true); // If we derive from PropertyContainerPy we can search for the properties in the // C++ twin class. union PyType_Object proptypeobj = {&App::PropertyContainerPy::Type}; if (PyObject_IsSubclass(type.ptr(), proptypeobj.o) == 1) { // These are the attributes of the instance itself which are NOT accessible by // its type object extractTipsFromProperties(inst, tips); } // If we derive from App::DocumentPy we have direct access to the objects by their internal // names. So, we add these names to the list, too. union PyType_Object appdoctypeobj = {&App::DocumentPy::Type}; if (PyObject_IsSubclass(type.ptr(), appdoctypeobj.o) == 1) { App::DocumentPy* docpy = (App::DocumentPy*)(inst.ptr()); App::Document* document = docpy->getDocumentPtr(); // Make sure that the C++ object is alive if (document) { std::vector<App::DocumentObject*> objects = document->getObjects(); Py::List list; for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it) list.append(Py::String((*it)->getNameInDocument())); extractTipsFromObject(inst, list, tips); } } // If we derive from Gui::DocumentPy we have direct access to the objects by their internal // names. So, we add these names to the list, too. union PyType_Object guidoctypeobj = {&Gui::DocumentPy::Type}; if (PyObject_IsSubclass(type.ptr(), guidoctypeobj.o) == 1) { Gui::DocumentPy* docpy = (Gui::DocumentPy*)(inst.ptr()); if (docpy->getDocumentPtr()) { App::Document* document = docpy->getDocumentPtr()->getDocument(); // Make sure that the C++ object is alive if (document) { std::vector<App::DocumentObject*> objects = document->getObjects(); Py::List list; for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it) list.append(Py::String((*it)->getNameInDocument())); extractTipsFromObject(inst, list, tips); } } } // These are the attributes from the type object extractTipsFromObject(obj, list, tips); } catch (Py::Exception& e) { // Just clear the Python exception e.clear(); } return tips; }
PythonInterpreter::PythonInterpreter(Kross::InterpreterInfo* info) : Kross::Interpreter(info) , d(new PythonInterpreterPrivate()) { // Initialize the python interpreter. initialize(); // Set name of the program. Py_SetProgramName(const_cast<char*>("Kross")); /* // Set arguments. //char* comm[0]; const char* comm = const_cast<char*>("kross"); // name. PySys_SetArgv(1, comm); */ // In the python sys.path are all module-directories are // listed in. QString path; // First import the sys-module to remember it's sys.path // list in our path QString. Py::Module sysmod( PyImport_ImportModule( (char*)"sys" ), true ); Py::Dict sysmoddict = sysmod.getDict(); Py::Object syspath = sysmoddict.getItem("path"); if(syspath.isList()) { Py::List syspathlist = syspath; for(Py::List::iterator it = syspathlist.begin(); it != syspathlist.end(); ++it) { if( ! (*it).isString() ) continue; QString s = PythonType<QString>::toVariant(*it); path.append( s + PYPATHDELIMITER ); } } else path = Py_GetPath(); #if 0 // Determinate additional module-paths we like to add. // First add the global Kross modules-path. QStringList krossdirs = KGlobal::dirs()->findDirs("data", "kross/python"); for(QStringList::Iterator krossit = krossdirs.begin(); krossit != krossdirs.end(); ++krossit) path.append(*krossit + PYPATHDELIMITER); // Then add the application modules-path. QStringList appdirs = KGlobal::dirs()->findDirs("appdata", "kross/python"); for(QStringList::Iterator appit = appdirs.begin(); appit != appdirs.end(); ++appit) path.append(*appit + PYPATHDELIMITER); #endif // Set the extended sys.path. PySys_SetPath( (char*) path.toLatin1().data() ); #ifdef KROSS_PYTHON_INTERPRETER_DEBUG krossdebug(QString("Python ProgramName: %1").arg(Py_GetProgramName())); krossdebug(QString("Python ProgramFullPath: %1").arg(Py_GetProgramFullPath())); krossdebug(QString("Python Version: %1").arg(Py_GetVersion())); krossdebug(QString("Python Platform: %1").arg(Py_GetPlatform())); krossdebug(QString("Python Prefix: %1").arg(Py_GetPrefix())); krossdebug(QString("Python ExecPrefix: %1").arg(Py_GetExecPrefix())); //krossdebug(QString("Python Path: %1").arg(Py_GetPath())); //krossdebug(QString("Python System Path: %1").arg(path)); #endif // Initialize the main module. d->mainmodule = new PythonModule(this); // The main dictonary. Py::Dict moduledict = d->mainmodule->getDict(); //TODO moduledict["KrossPythonVersion"] = Py::Int(KROSS_PYTHON_VERSION); // Prepare the interpreter. QString s = //"# -*- coding: iso-8859-1 -*-\n" //"import locale\n" //"locale.setlocale(locale.LC_ALL, '')\n" //"# -*- coding: latin-1 -*\n" //"# -*- coding: utf-8 -*-\n" //"import locale\n" //"locale.setlocale(locale.LC_ALL, '')\n" //"from __future__ import absolute_import\n" "import sys\n" //"import os, os.path\n" //"sys.setdefaultencoding('latin-1')\n" // Dirty hack to get sys.argv defined. Needed for e.g. TKinter. "sys.argv = ['']\n" // On the try to read something from stdin always return an empty // string. That way such reads don't block our script. // Deactivated since sys.stdin has the encoding attribute needed // by e.g. LiquidWeather and those attr is missing in StringIO // and cause it's buildin we can't just add it but would need to // implement our own class. Grrrr, what a stupid design :-/ //"try:\n" //" import cStringIO\n" //" sys.stdin = cStringIO.StringIO()\n" //"except:\n" //" pass\n" // Class to redirect something. We use this class e.g. to redirect // <stdout> and <stderr> to a c++ event. //"class Redirect:\n" //" def __init__(self, target):\n" //" self.target = target\n" //" def write(self, s):\n" //" self.target.call(s)\n" // Wrap builtin __import__ method. All import requests are // first redirected to our PythonModule.import method and // if the call returns None, then we call the original // python import mechanism. "import __builtin__\n" "import __main__\n" "import traceback\n" "sys.modules['_oldmain'] = sys.modules['__main__']\n" "_main_builtin_import_ = __main__.__builtin__.__import__\n" "class _Importer:\n" " def __init__(self, script):\n" " self.script = script\n" " self.realImporter = __main__.__builtin__.__import__\n" " __main__.__builtin__.__import__ = self._import\n" " def _import(self, name, globals=None, locals=None, fromlist=[], level = -1):\n" //" try:\n" //" print \"1===========> _Importer name=%s fromlist=%s\" % (name,fromlist)\n" #if PY_MAJOR_VERSION >= 3 || (PY_MAJOR_VERSION >= 2 && PY_MINOR_VERSION >= 5) " mod = __main__._import(self.script, name, globals, locals, fromlist, level)\n" #else " mod = __main__._import(self.script, name, globals, locals, fromlist)\n" #endif " if mod == None:\n" " if name == 'qt':\n" " raise ImportError('Import of the PyQt3 module is not allowed. Please use PyQt4 instead.')\n" " if name == 'dcop':\n" " raise ImportError('Import of the KDE3 DCOP module is not allowed. Please use PyQt4 DBUS instead.')\n" #if PY_MAJOR_VERSION >= 3 || (PY_MAJOR_VERSION >= 2 && PY_MINOR_VERSION >= 5) " mod = self.realImporter(name, globals, locals, fromlist, level)\n" #else " mod = self.realImporter(name, globals, locals, fromlist)\n" #endif " if mod != None:\n" //" print \"3===========> _Importer name=%s fromlist=%s\" % (name,fromlist)\n" " if globals != None and (not fromlist or len(fromlist)==0 or '*' in fromlist):\n" " globals[name] = mod\n" " return mod\n" //" except ImportError:\n" //" except:\n" //" print \"9===========> _Importer Trying ImportError with name=%s fromlist=%s insysmodules=%s\" % (name,fromlist,name in sys.modules)\n" //" print \" \".join( traceback.format_exception(sys.exc_info()[0],sys.exc_info()[1],sys.exc_info()[2]) )\n" //" return None\n" /* " print \"_Importer name=%s fromlist=%s\" % (name,fromlist)\n" " if fromlist == None:\n" " mod = __main__._import(self.script, name, globals, locals, fromlist)\n" " if mod != None:\n" " print \"2===========> _Importer name=%s fromlist=%s\" % (name,fromlist)\n" " globals[name] = mod\n" " return mod\n" //" if name in sys.modules:\n" // hack to preserve module paths, needed e.g. for "import os.path" //" print \"3===========> _Importer name=%s fromlist=%s\" % (name,fromlist)\n" //" return sys.modules[name]\n" " print \"3===========> _Importer Trying realImporter with name=%s fromlist=%s insysmodules=%s\" % (name,fromlist,name in sys.modules)\n" " try:\n" " mod = self.realImporter(name, globals, locals, fromlist)\n" " print \"4===========> _Importer Trying realImporter with name=%s fromlist=%s insysmodules=%s module=%s\" % (name,fromlist,name in sys.modules,mod)\n" //" mod.__init__(name)\n" //" globals[name] = mod\n" //" sys.modules[name] = mod\n" " print \"5===========> _Importer Trying realImporter with name=%s fromlist=%s insysmodules=%s module=%s\" % (name,fromlist,name in sys.modules,mod)\n" " return mod\n" " except ImportError:\n" " print \"6===========> _Importer Trying ImportError with name=%s fromlist=%s insysmodules=%s\" % (name,fromlist,name in sys.modules)\n" " n = name.split('.')\n" " if len(n) >= 2:\n" " print \"7===========> _Importer Trying ImportError with name=%s fromlist=%s insysmodules=%s\" % (name,fromlist,name in sys.modules)\n" " m = self._import(\".\".join(n[:-1]),globals,locals,[n[-1],])\n" " print \"8===========> _Importer Trying ImportError with name=%s fromlist=%s insysmodules=%s\" % (name,fromlist,name in sys.modules)\n" " return self.realImporter(name, globals, locals, fromlist)\n" " print \"9===========> _Importer Trying ImportError with name=%s fromlist=%s insysmodules=%s\" % (name,fromlist,name in sys.modules)\n" " raise\n" */ ; PyObject* pyrun = PyRun_String(s.toLatin1().data(), Py_file_input, moduledict.ptr(), moduledict.ptr()); if(! pyrun) { Py::Object errobj = Py::value(Py::Exception()); // get last error setError( QString("Failed to prepare the __main__ module: %1").arg(errobj.as_string().c_str()) ); } Py_XDECREF(pyrun); // free the reference. }
void PythonInterpreter::extractException(QStringList& errorlist, int& lineno) { lineno = -1; PyObject *type, *value, *traceback; PyErr_Fetch(&type, &value, &traceback); Py_FlushLine(); PyErr_NormalizeException(&type, &value, &traceback); if(traceback) { Py::List tblist; try { Py::Module tbmodule( PyImport_Import(Py::String("traceback").ptr()), true ); Py::Dict tbdict = tbmodule.getDict(); Py::Callable tbfunc(tbdict.getItem("format_tb")); Py::Tuple args(1); args.setItem(0, Py::Object(traceback)); tblist = tbfunc.apply(args); uint length = tblist.length(); for(Py::List::size_type i = 0; i < length; ++i) errorlist.append( Py::Object(tblist[i]).as_string().c_str() ); } catch(Py::Exception& e) { QString err = Py::value(e).as_string().c_str(); e.clear(); // exception is handled. clear it now. #ifdef KROSS_PYTHON_EXCEPTION_DEBUG krosswarning( QString("Kross::PythonScript::toException() Failed to fetch a traceback: %1").arg(err) ); #endif } PyObject *next; while (traceback && traceback != Py_None) { PyFrameObject *frame = (PyFrameObject*)PyObject_GetAttrString(traceback, const_cast< char* >("tb_frame")); { PyObject *getobj = PyObject_GetAttrString(traceback, const_cast< char* >("tb_lineno") ); lineno = PyInt_AsLong(getobj); Py_DECREF(getobj); } if(Py_OptimizeFlag) { PyObject *getobj = PyObject_GetAttrString(traceback, const_cast< char* >("tb_lasti") ); int lasti = PyInt_AsLong(getobj); Py_DECREF(getobj); lineno = PyCode_Addr2Line(frame->f_code, lasti); } //const char* filename = PyString_AsString(frame->f_code->co_filename); //const char* name = PyString_AsString(frame->f_code->co_name); //errorlist.append( QString("%1#%2: \"%3\"").arg(filename).arg(lineno).arg(name) ); //Py_DECREF(frame); // don't free cause we don't own it. next = PyObject_GetAttrString(traceback, const_cast< char* >("tb_next") ); Py_DECREF(traceback); traceback = next; } } if(lineno < 0 && value && PyObject_HasAttrString(value, const_cast< char* >("lineno"))) { PyObject *getobj = PyObject_GetAttrString(value, const_cast< char* >("lineno") ); if(getobj) { lineno = PyInt_AsLong(getobj); Py_DECREF(getobj); } } #ifdef KROSS_PYTHON_EXCEPTION_DEBUG //krossdebug( QString("PythonInterpreter::extractException: %1").arg( Py::Object(value).as_string().c_str() ) ); krossdebug( QString("PythonInterpreter::extractException:\n%1").arg( errorlist.join("\n") ) ); #endif PyErr_Restore(type, value, traceback); }