示例#1
0
//------------------------------------------------------------
//
//  DictWrapper
//
//------------------------------------------------------------
DictWrapper::DictWrapper( Py::Dict result_wrappers, const std::string &wrapper_name )
: m_wrapper_name( wrapper_name )
, m_have_wrapper( false )
, m_wrapper()
{
    if( result_wrappers.hasKey( wrapper_name ) )
    {
        m_wrapper = result_wrappers[ wrapper_name ];
        m_have_wrapper = true;
    }
}
示例#2
0
/* ------------ module methods ------------- */
Py::Object _backend_agg_module::new_renderer (const Py::Tuple &args, 
					      const Py::Dict &kws)
{
  
  if (args.length() != 3 )
    {
      throw Py::RuntimeError("Incorrect # of args to RendererAgg(width, height, dpi).");
    }
  
  int debug;
  if ( kws.hasKey("debug") ) debug = Py::Int( kws["debug"] );
  else debug=0;
  
  int width = Py::Int(args[0]);
  int height = Py::Int(args[1]);
  double dpi = Py::Float(args[2]);
  return Py::asObject(new RendererAgg(width, height, dpi, debug));
}
示例#3
0
QMap<QString, CallTip> CallTipsList::extractTips(const QString& context) const
{
    Base::PyGILStateLocker lock;
    QMap<QString, CallTip> tips;
    if (context.isEmpty())
        return tips;

    try {
        Py::Module module("__main__");
        Py::Dict dict = module.getDict();
#if 0
        QStringList items = context.split(QLatin1Char('.'));
        QString modname = items.front();
        items.pop_front();
        if (!dict.hasKey(std::string(modname.toLatin1())))
            return tips; // unknown object

        // get the Python object we need
        Py::Object obj = dict.getItem(std::string(modname.toLatin1()));
        while (!items.isEmpty()) {
            QByteArray name = items.front().toLatin1();
            std::string attr = name.constData();
            items.pop_front();
            if (obj.hasAttr(attr))
                obj = obj.getAttr(attr);
            else
                return tips;
        }
#else
        // Don't use hasattr & getattr because if a property is bound to a method this will be executed twice.
        PyObject* code = Py_CompileString(static_cast<const char*>(context.toLatin1()), "<CallTipsList>", Py_eval_input);
        if (!code) {
            PyErr_Clear();
            return tips;
        }

        PyObject* eval = 0;
        if (PyCode_Check(code)) {
            eval = PyEval_EvalCode(reinterpret_cast<PyCodeObject*>(code), dict.ptr(), dict.ptr());
        }
        Py_DECREF(code);
        if (!eval) {
            PyErr_Clear();
            return tips;
        }
        Py::Object obj(eval, true);
#endif

        // Checks whether the type is a subclass of PyObjectBase because to get the doc string
        // of a member we must get it by its type instead of its instance otherwise we get the
        // wrong string, namely that of the type of the member. 
        // Note: 3rd party libraries may use their own type object classes so that we cannot 
        // reliably use Py::Type. To be on the safe side we should use Py::Object to assign
        // the used type object to.
        //Py::Object type = obj.type();
        Py::Object type(PyObject_Type(obj.ptr()), true);
        Py::Object inst = obj; // the object instance 
        union PyType_Object typeobj = {&Base::PyObjectBase::Type};
        union PyType_Object typedoc = {&App::DocumentObjectPy::Type};
        union PyType_Object basetype = {&PyBaseObject_Type};

        if (PyObject_IsSubclass(type.ptr(), typedoc.o) == 1) {
            // From the template Python object we don't query its type object because there we keep
            // a list of additional methods that we won't see otherwise. But to get the correct doc
            // strings we query the type's dict in the class itself.
            // To see if we have a template Python object we check for the existence of supportedProperties
            if (!type.hasAttr("supportedProperties")) {
                obj = type;
            }
        }
        else if (PyObject_IsSubclass(type.ptr(), typeobj.o) == 1) {
            obj = type;
        }
        else if (PyInstance_Check(obj.ptr())) {
            // instances of old style classes
            PyInstanceObject* inst = reinterpret_cast<PyInstanceObject*>(obj.ptr());
            PyObject* classobj = reinterpret_cast<PyObject*>(inst->in_class);
            obj = Py::Object(classobj);
        }
        else if (PyObject_IsInstance(obj.ptr(), basetype.o) == 1) {
            // New style class which can be a module, type, list, tuple, int, float, ...
            // Make sure it's not a type objec
            union PyType_Object typetype = {&PyType_Type};
            if (PyObject_IsInstance(obj.ptr(), typetype.o) != 1) {
                // this should be now a user-defined Python class
                // http://stackoverflow.com/questions/12233103/in-python-at-runtime-determine-if-an-object-is-a-class-old-and-new-type-instan
                if (Py_TYPE(obj.ptr())->tp_flags & Py_TPFLAGS_HEAPTYPE) {
                    obj = type;
                }
            }
        }

        // If we have an instance of PyObjectBase then determine whether it's valid or not
        if (PyObject_IsInstance(inst.ptr(), typeobj.o) == 1) {
            Base::PyObjectBase* baseobj = static_cast<Base::PyObjectBase*>(inst.ptr());
            const_cast<CallTipsList*>(this)->validObject = baseobj->isValid();
        }
        else {
            // PyObject_IsInstance might set an exception
            PyErr_Clear();
        }

        Py::List list(obj.dir());

        // If we derive from PropertyContainerPy we can search for the properties in the
        // C++ twin class.
        union PyType_Object proptypeobj = {&App::PropertyContainerPy::Type};
        if (PyObject_IsSubclass(type.ptr(), proptypeobj.o) == 1) {
            // These are the attributes of the instance itself which are NOT accessible by
            // its type object
            extractTipsFromProperties(inst, tips);
        }

        // If we derive from App::DocumentPy we have direct access to the objects by their internal
        // names. So, we add these names to the list, too.
        union PyType_Object appdoctypeobj = {&App::DocumentPy::Type};
        if (PyObject_IsSubclass(type.ptr(), appdoctypeobj.o) == 1) {
            App::DocumentPy* docpy = (App::DocumentPy*)(inst.ptr());
            App::Document* document = docpy->getDocumentPtr();
            // Make sure that the C++ object is alive
            if (document) {
                std::vector<App::DocumentObject*> objects = document->getObjects();
                Py::List list;
                for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it)
                    list.append(Py::String((*it)->getNameInDocument()));
                extractTipsFromObject(inst, list, tips);
            }
        }

        // If we derive from Gui::DocumentPy we have direct access to the objects by their internal
        // names. So, we add these names to the list, too.
        union PyType_Object guidoctypeobj = {&Gui::DocumentPy::Type};
        if (PyObject_IsSubclass(type.ptr(), guidoctypeobj.o) == 1) {
            Gui::DocumentPy* docpy = (Gui::DocumentPy*)(inst.ptr());
            if (docpy->getDocumentPtr()) {
                App::Document* document = docpy->getDocumentPtr()->getDocument();
                // Make sure that the C++ object is alive
                if (document) {
                    std::vector<App::DocumentObject*> objects = document->getObjects();
                    Py::List list;
                    for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it)
                        list.append(Py::String((*it)->getNameInDocument()));
                    extractTipsFromObject(inst, list, tips);
                }
            }
        }

        // These are the attributes from the type object
        extractTipsFromObject(obj, list, tips);
    }
    catch (Py::Exception& e) {
        // Just clear the Python exception
        e.clear();
    }

    return tips;
}
示例#4
0
文件: CallTips.cpp 项目: 5263/FreeCAD
QMap<QString, CallTip> CallTipsList::extractTips(const QString& context) const
{
    Base::PyGILStateLocker lock;
    QMap<QString, CallTip> tips;
    if (context.isEmpty())
        return tips;

    try {
        QStringList items = context.split(QLatin1Char('.'));
        Py::Module module("__main__");
        Py::Dict dict = module.getDict();
        QString modname = items.front();
        items.pop_front();
        if (!dict.hasKey(std::string(modname.toAscii())))
            return tips; // unknown object

        // get the Python object we need
        Py::Object obj = dict.getItem(std::string(modname.toAscii()));
        while (!items.isEmpty()) {
            QByteArray name = items.front().toAscii();
            std::string attr = name.constData();
            items.pop_front();
            if (obj.hasAttr(attr))
                obj = obj.getAttr(attr);
            else
                return tips;
        }
        
        // Checks whether the type is a subclass of PyObjectBase because to get the doc string
        // of a member we must get it by its type instead of its instance otherwise we get the
        // wrong string, namely that of the type of the member. 
        // Note: 3rd party libraries may use their own type object classes so that we cannot 
        // reliably use Py::Type. To be on the safe side we should use Py::Object to assign
        // the used type object to.
        //Py::Object type = obj.type();
        Py::Object type(PyObject_Type(obj.ptr()), true);
        Py::Object inst = obj; // the object instance 
        union PyType_Object typeobj = {&Base::PyObjectBase::Type};
        union PyType_Object typedoc = {&App::DocumentObjectPy::Type};
        if (PyObject_IsSubclass(type.ptr(), typedoc.o) == 1) {
            // From the template Python object we don't query its type object because there we keep
            // a list of additional methods that we won't see otherwise. But to get the correct doc
            // strings we query the type's dict in the class itself.
            // To see if we have a template Python object we check for the existence of supportedProperties
            if (!type.hasAttr("supportedProperties")) {
                obj = type;
            }
        }
        else if (PyObject_IsSubclass(type.ptr(), typeobj.o) == 1) {
            obj = type;
        }
        
        // If we have an instance of PyObjectBase then determine whether it's valid or not
        if (PyObject_IsInstance(inst.ptr(), typeobj.o) == 1) {
            Base::PyObjectBase* baseobj = static_cast<Base::PyObjectBase*>(inst.ptr());
            const_cast<CallTipsList*>(this)->validObject = baseobj->isValid();
        }
        else {
            // PyObject_IsInstance might set an exception
            PyErr_Clear();
        }

        Py::List list(PyObject_Dir(obj.ptr()), true);

        // If we derive from PropertyContainerPy we can search for the properties in the
        // C++ twin class.
        union PyType_Object proptypeobj = {&App::PropertyContainerPy::Type};
        if (PyObject_IsSubclass(type.ptr(), proptypeobj.o) == 1) {
            // These are the attributes of the instance itself which are NOT accessible by
            // its type object
            extractTipsFromProperties(inst, tips);
        }

        // If we derive from App::DocumentPy we have direct access to the objects by their internal
        // names. So, we add these names to the list, too.
        union PyType_Object appdoctypeobj = {&App::DocumentPy::Type};
        if (PyObject_IsSubclass(type.ptr(), appdoctypeobj.o) == 1) {
            App::DocumentPy* docpy = (App::DocumentPy*)(inst.ptr());
            App::Document* document = docpy->getDocumentPtr();
            // Make sure that the C++ object is alive
            if (document) {
                std::vector<App::DocumentObject*> objects = document->getObjects();
                Py::List list;
                for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it)
                    list.append(Py::String((*it)->getNameInDocument()));
                extractTipsFromObject(inst, list, tips);
            }
        }

        // If we derive from Gui::DocumentPy we have direct access to the objects by their internal
        // names. So, we add these names to the list, too.
        union PyType_Object guidoctypeobj = {&Gui::DocumentPy::Type};
        if (PyObject_IsSubclass(type.ptr(), guidoctypeobj.o) == 1) {
            Gui::DocumentPy* docpy = (Gui::DocumentPy*)(inst.ptr());
            if (docpy->getDocumentPtr()) {
                App::Document* document = docpy->getDocumentPtr()->getDocument();
                // Make sure that the C++ object is alive
                if (document) {
                    std::vector<App::DocumentObject*> objects = document->getObjects();
                    Py::List list;
                    for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it)
                        list.append(Py::String((*it)->getNameInDocument()));
                    extractTipsFromObject(inst, list, tips);
                }
            }
        }

        // These are the attributes from the type object
        extractTipsFromObject(obj, list, tips);
    }
    catch (Py::Exception& e) {
        // Just clear the Python exception
        e.clear();
    }

    return tips;
}
示例#5
0
Py::Object
Image::resize(const Py::Tuple& args, const Py::Dict& kwargs) {
  _VERBOSE("Image::resize");

  args.verify_length(2);

  int norm = 1;
  if ( kwargs.hasKey("norm") ) norm = Py::Int( kwargs["norm"] );

  double radius = 4.0;
  if ( kwargs.hasKey("radius") ) radius = Py::Float( kwargs["radius"] );

  if (bufferIn ==NULL)
    throw Py::RuntimeError("You must first load the image");

  int numcols = Py::Int(args[0]);
  int numrows = Py::Int(args[1]);

  colsOut = numcols;
  rowsOut = numrows;


  size_t NUMBYTES(numrows * numcols * BPP);

  delete [] bufferOut;
  bufferOut = new agg::int8u[NUMBYTES];
  if (bufferOut ==NULL) //todo: also handle allocation throw
    throw Py::MemoryError("Image::resize could not allocate memory");

  delete rbufOut;
  rbufOut = new agg::rendering_buffer;
  rbufOut->attach(bufferOut, numcols, numrows, numcols * BPP);

  // init the output rendering/rasterizing stuff
  pixfmt pixf(*rbufOut);
  renderer_base rb(pixf);
  rb.clear(bg);
  agg::rasterizer_scanline_aa<> ras;
  agg::scanline_u8 sl;


  //srcMatrix *= resizingMatrix;
  //imageMatrix *= resizingMatrix;
  imageMatrix.invert();
  interpolator_type interpolator(imageMatrix);

  typedef agg::span_allocator<agg::rgba8> span_alloc_type;
  span_alloc_type sa;
  agg::rgba8 background(agg::rgba8(int(255*bg.r),
				   int(255*bg.g),
				   int(255*bg.b),
				   int(255*bg.a)));

  // the image path
  agg::path_storage path;
  agg::int8u *bufferPad = NULL;
  agg::rendering_buffer rbufPad;

  double x0, y0, x1, y1;

  x0 = 0.0;
  x1 = colsIn;
  y0 = 0.0;
  y1 = rowsIn;

  path.move_to(x0, y0);
  path.line_to(x1, y0);
  path.line_to(x1, y1);
  path.line_to(x0, y1);
  path.close_polygon();
  agg::conv_transform<agg::path_storage> imageBox(path, srcMatrix);
  ras.add_path(imageBox);

  typedef agg::wrap_mode_reflect reflect_type;
  typedef agg::image_accessor_wrap<pixfmt, reflect_type, reflect_type> img_accessor_type;

  pixfmt pixfmtin(*rbufIn);
  img_accessor_type ia(pixfmtin);
  switch(interpolation)
    {

    case NEAREST:
      {
	typedef agg::span_image_filter_rgba_nn<img_accessor_type, interpolator_type> span_gen_type;
	typedef agg::renderer_scanline_aa<renderer_base, span_alloc_type, span_gen_type> renderer_type;
	span_gen_type sg(ia, interpolator);
	renderer_type ri(rb, sa, sg);
	agg::render_scanlines(ras, sl, ri);
      }
      break;
        case BILINEAR:
        case BICUBIC:
        case SPLINE16:
        case SPLINE36:
        case HANNING:
        case HAMMING:
        case HERMITE:
        case KAISER:
        case QUADRIC:
        case CATROM:
        case GAUSSIAN:
        case BESSEL:
        case MITCHELL:
        case SINC:
        case LANCZOS:
        case BLACKMAN:
            {
                agg::image_filter_lut filter;
                switch(interpolation)
                {
                case BILINEAR:  filter.calculate(agg::image_filter_bilinear(), norm); break;
                case BICUBIC:  filter.calculate(agg::image_filter_bicubic(), norm); break;
                case SPLINE16:  filter.calculate(agg::image_filter_spline16(), norm); break;
                case SPLINE36:  filter.calculate(agg::image_filter_spline36(), norm); break;
                case HANNING:  filter.calculate(agg::image_filter_hanning(), norm); break;
                case HAMMING:  filter.calculate(agg::image_filter_hamming(), norm); break;
                case HERMITE:  filter.calculate(agg::image_filter_hermite(), norm); break;
                case KAISER:  filter.calculate(agg::image_filter_kaiser(), norm); break;
                case QUADRIC:  filter.calculate(agg::image_filter_quadric(), norm); break;
                case CATROM: filter.calculate(agg::image_filter_catrom(), norm); break;
                case GAUSSIAN: filter.calculate(agg::image_filter_gaussian(), norm); break;
                case BESSEL: filter.calculate(agg::image_filter_bessel(), norm); break;
                case MITCHELL: filter.calculate(agg::image_filter_mitchell(), norm); break;
                case SINC: filter.calculate(agg::image_filter_sinc(radius), norm); break;
                case LANCZOS: filter.calculate(agg::image_filter_lanczos(radius), norm); break;
                case BLACKMAN: filter.calculate(agg::image_filter_blackman(radius), norm); break;
                }
	typedef agg::span_image_filter_rgba_2x2<img_accessor_type, interpolator_type> span_gen_type;
	typedef agg::renderer_scanline_aa<renderer_base, span_alloc_type, span_gen_type> renderer_type;
	span_gen_type sg(ia, interpolator, filter);
	renderer_type ri(rb, sa, sg);
	agg::render_scanlines(ras, sl, ri);
      }
      break;

    }

  delete [] bufferPad;
  return Py::Object();

}
示例#6
-1
Py::Object
Transformation::nonlinear_only_numerix(const Py::Tuple & args, const Py::Dict &kwargs) {
  _VERBOSE("Transformation::nonlinear_only_numerix");
  args.verify_length(2);

  int returnMask = false;
  if (kwargs.hasKey("returnMask")) {
    returnMask = Py::Int(kwargs["returnMask"]);
  }

  Py::Object xo = args[0];
  Py::Object yo = args[1];

  PyArrayObject *x = (PyArrayObject *) PyArray_ContiguousFromObject(xo.ptr(), PyArray_DOUBLE, 1, 1);

  if (x==NULL)
    throw Py::TypeError("Transformation::nonlinear_only_numerix expected numerix array");


  PyArrayObject *y = (PyArrayObject *) PyArray_ContiguousFromObject(yo.ptr(), PyArray_DOUBLE, 1, 1);

  if (y==NULL)
    throw Py::TypeError("Transformation::nonlinear_only_numerix expected numerix array");


  size_t Nx = x->dimensions[0];
  size_t Ny = y->dimensions[0];

  if (Nx!=Ny)
    throw Py::ValueError("x and y must be equal length sequences");

  int dimensions[1];
  dimensions[0] = Nx;


  PyArrayObject *retx = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_DOUBLE);
  if (retx==NULL) {
    Py_XDECREF(x);
    Py_XDECREF(y);
    throw Py::RuntimeError("Could not create return x array");
  }

  PyArrayObject *rety = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_DOUBLE);
  if (rety==NULL) {
    Py_XDECREF(x);
    Py_XDECREF(y);
    Py_XDECREF(retx);
    throw Py::RuntimeError("Could not create return x array");
  }

  PyArrayObject *retmask = NULL;

  if (returnMask) {
    retmask = (PyArrayObject *)PyArray_FromDims(1,dimensions,PyArray_UBYTE);
    if (retmask==NULL) {
      Py_XDECREF(x);
      Py_XDECREF(y);
      Py_XDECREF(retx);
      Py_XDECREF(rety);
      throw Py::RuntimeError("Could not create return mask array");
    }

  }


  for (size_t i=0; i< Nx; ++i) {

    double thisx = *(double *)(x->data + i*x->strides[0]);
    double thisy = *(double *)(y->data + i*y->strides[0]);
    try {
      this->nonlinear_only_api(&thisx, &thisy);
    }
    catch(...) {

      if (returnMask) {
	*(unsigned char *)(retmask->data + i*retmask->strides[0]) = 0;
	*(double *)(retx->data + i*retx->strides[0]) = 0.0;
	*(double *)(rety->data + i*rety->strides[0]) = 0.0;
	continue;
      }
      else {
	throw Py::ValueError("Domain error on this->nonlinear_only_api(&thisx, &thisy) in Transformation::nonlinear_only_numerix");
      }
    }

    *(double *)(retx->data + i*retx->strides[0]) = thisx;
    *(double *)(rety->data + i*rety->strides[0]) = thisy;
    if (returnMask) {
      *(unsigned char *)(retmask->data + i*retmask->strides[0]) = 1;
    }

  }

  Py_XDECREF(x);
  Py_XDECREF(y);

  if (returnMask) {
    Py::Tuple ret(3);
    ret[0] = Py::Object((PyObject*)retx);
    ret[1] = Py::Object((PyObject*)rety);
    ret[2] = Py::Object((PyObject*)retmask);
    Py_XDECREF(retx);
    Py_XDECREF(rety);
    Py_XDECREF(retmask);
    return ret;
  }
  else {
    Py::Tuple ret(2);
    ret[0] = Py::Object((PyObject*)retx);
    ret[1] = Py::Object((PyObject*)rety);
    Py_XDECREF(retx);
    Py_XDECREF(rety);
    return ret;

  }


}