示例#1
0
文件: node.cpp 项目: ErolB/Sub8
  void timer_callback(const ros::TimerEvent &) {
    if (!c3trajectory) return;

    ros::Time now = ros::Time::now();

    if (actionserver.isPreemptRequested()) {
      current_waypoint = c3trajectory->getCurrentPoint();
      current_waypoint.r.qdot = subjugator::Vector6d::Zero();  // zero velocities
      current_waypoint_t = now;

      // don't try to make output c3 continuous when cancelled - instead stop as quickly as possible
      c3trajectory.reset(new subjugator::C3Trajectory(current_waypoint.r, limits));
      c3trajectory_t = now;
    }

    if (actionserver.isNewGoalAvailable()) {
      boost::shared_ptr<const uf_common::MoveToGoal> goal = actionserver.acceptNewGoal();
      current_waypoint = subjugator::C3Trajectory::Waypoint(
          Point_from_PoseTwist(goal->posetwist.pose, goal->posetwist.twist), goal->speed,
          !goal->uncoordinated);
      current_waypoint_t = now;  // goal->header.stamp;
      this->linear_tolerance = goal->linear_tolerance;
      this->angular_tolerance = goal->angular_tolerance;
      c3trajectory_t = now;
    }

    while ((c3trajectory_t + traj_dt < now) and ros::ok()) {
      // ROS_INFO("Acting");

      c3trajectory->update(traj_dt.toSec(), current_waypoint,
                           (c3trajectory_t - current_waypoint_t).toSec());
      c3trajectory_t += traj_dt;
    }

    PoseTwistStamped msg;
    msg.header.stamp = c3trajectory_t;
    msg.header.frame_id = fixed_frame;
    msg.posetwist = PoseTwist_from_PointWithAcceleration(c3trajectory->getCurrentPoint());
    trajectory_pub.publish(msg);

    PoseStamped posemsg;
    posemsg.header.stamp = c3trajectory_t;
    posemsg.header.frame_id = fixed_frame;
    posemsg.pose = Pose_from_Waypoint(current_waypoint);
    waypoint_pose_pub.publish(posemsg);

    if (actionserver.isActive() &&
        c3trajectory->getCurrentPoint().is_approximately(
            current_waypoint.r, max(1e-3, linear_tolerance), max(1e-3, angular_tolerance)) &&
        current_waypoint.r.qdot == subjugator::Vector6d::Zero()) {
      actionserver.setSucceeded();
    }
  }
示例#2
0
double PID::update(double input, double x, double dx, const ros::Duration& dt)
{
    if (!parameters_.enabled) return 0.0;
    double dt_sec = dt.toSec();

    // low-pass filter input
    if (std::isnan(state_.input)) state_.input = input;
    if (dt_sec + parameters_.time_constant > 0.0) {
        state_.dinput = (input - state_.input) / (dt_sec + parameters_.time_constant);
        state_.input  = (dt_sec * input + parameters_.time_constant * state_.input) / (dt_sec + parameters_.time_constant);
    }

    return update(state_.input - x, dx, dt);
}
示例#3
0
double Pid::updatePid(double error, ros::Duration dt)
{
  // Get the gain parameters from the realtime buffer
  Gains gains = *gains_buffer_.readFromRT();

  double p_term, d_term, i_term;
  p_error_ = error; //this is pError = pState-pTarget

  if (dt == ros::Duration(0.0) || std::isnan(error) || std::isinf(error))
    return 0.0;

  // Calculate proportional contribution to command
  p_term = gains.p_gain_ * p_error_;

  // Calculate the integral of the position error
  i_error_ += dt.toSec() * p_error_;
  
  // Calculate integral contribution to command
  i_term = gains.i_gain_ * i_error_;

  // Limit i_term so that the limit is meaningful in the output
  i_term = std::max( gains.i_min_, std::min( i_term, gains.i_max_) );

  // Calculate the derivative error
  if (dt.toSec() > 0.0)
  {
    d_error_ = (p_error_ - p_error_last_) / dt.toSec();
    p_error_last_ = p_error_;
  }
  // Calculate derivative contribution to command
  d_term = gains.d_gain_ * d_error_;

  // Compute the command
  cmd_ = - p_term - i_term - d_term;

  return cmd_;
}
示例#4
0
	int executeCB(ros::Duration dt)
	{
		std::cout << "**Walk -%- Executing Main Task, elapsed_time: "
		          << dt.toSec() << std::endl;
		std::cout << "**Walk -%- execute_time: "
		          << execute_time_.toSec() << std::endl;
		execute_time_ += dt;

		if(!init_)
		{
			set_feedback(RUNNING);
			initialize();
		}

		double x = motion_proxy_ptr->getRobotPosition(true).at(0);
		double y = motion_proxy_ptr->getRobotPosition(true).at(1);
		double z = motion_proxy_ptr->getRobotPosition(true).at(2);

		// Walk forward
		double angular = 0.1*modulo2Pi(z_0-z);
		//ROS_INFO("theta = %f",angular);
		if(angular > 1) {angular = 1;}
		if(angular < -1) {angular = -1;}
		geometry_msgs::Twist cmd;
		cmd.linear.x = 0.3; //0.5
		cmd.angular.z = angular;
		cmd_pub.publish(cmd);

		if(sqrt((x-x_0)*(x-x_0) + (y-y_0)*(y-y_0)) > dist)
		{
			set_feedback(SUCCESS);
			finalize();
			return 1;
		}

		return 0;
	}
示例#5
0
string duration_string(const ros::Duration &d) {
  char buf[40];
  boost::posix_time::time_duration td = d.toBoost();

  if (td.hours() > 0) {
    snprintf(buf, sizeof(buf) / sizeof(buf[0]), "%dhr %d:%02ds (%ds)",
             td.hours(), td.minutes(), td.seconds(), td.total_seconds());
  } else if (td.minutes() > 0) {
    snprintf(buf, sizeof(buf) / sizeof(buf[0]), "%d:%02ds (%ds)",
             td.minutes(), td.seconds(), td.total_seconds());
  } else {
    snprintf(buf, sizeof(buf) / sizeof(buf[0]), "%.1fs", d.toSec());
  }
  return string(buf);
}
/**
 * @brief TimeManipulator::str
 * @param duration
 * @return
 */
std::string TimeManipulator::str(const ros::Duration& duration)
{
  double seconds = duration.toSec();
  int hours = floor(seconds / 3600);
  int minutes = floor(seconds / 60);
  seconds = (seconds / 60 - minutes) * 60;
  minutes -= hours * 60;
  std::stringstream ss;
  ss << hours << (minutes < 10 ? ":0" : ":") << minutes;
  if (seconds > 0)
  {
    ss << (seconds < 10 ? ":0" : ":") << seconds;
  }
  return ss.str();
}
// TEST CASES
TEST_F(FourWheelSteeringControllerTest, testForward)
{
  // wait for ROS
  waitForController();

  // zero everything before test
  geometry_msgs::Twist cmd_vel;
  cmd_vel.linear.x = 0.0;
  cmd_vel.angular.z = 0.0;
  publish(cmd_vel);
  ros::Duration(0.1).sleep();
  // get initial odom
  nav_msgs::Odometry old_odom = getLastOdom();
  // send a velocity command of 0.1 m/s
  cmd_vel.linear.x = 0.1;
  publish(cmd_vel);
  // wait for 10s
  ros::Duration(10.0).sleep();

  nav_msgs::Odometry new_odom = getLastOdom();

  const ros::Duration actual_elapsed_time = new_odom.header.stamp - old_odom.header.stamp;

  const double expected_distance = cmd_vel.linear.x * actual_elapsed_time.toSec();

  // check if the robot traveled 1 meter in XY plane, changes in z should be ~~0
  const double dx = new_odom.pose.pose.position.x - old_odom.pose.pose.position.x;
  const double dy = new_odom.pose.pose.position.y - old_odom.pose.pose.position.y;
  const double dz = new_odom.pose.pose.position.z - old_odom.pose.pose.position.z;
  EXPECT_NEAR(sqrt(dx*dx + dy*dy), expected_distance, POSITION_TOLERANCE);
  EXPECT_LT(fabs(dz), EPS);

  // convert to rpy and test that way
  double roll_old, pitch_old, yaw_old;
  double roll_new, pitch_new, yaw_new;
  tf::Matrix3x3(tfQuatFromGeomQuat(old_odom.pose.pose.orientation)).getRPY(roll_old, pitch_old, yaw_old);
  tf::Matrix3x3(tfQuatFromGeomQuat(new_odom.pose.pose.orientation)).getRPY(roll_new, pitch_new, yaw_new);
  EXPECT_LT(fabs(roll_new - roll_old), EPS);
  EXPECT_LT(fabs(pitch_new - pitch_old), EPS);
  EXPECT_LT(fabs(yaw_new - yaw_old), EPS);
  EXPECT_NEAR(fabs(new_odom.twist.twist.linear.x), cmd_vel.linear.x, EPS);
  EXPECT_LT(fabs(new_odom.twist.twist.linear.y), EPS);
  EXPECT_LT(fabs(new_odom.twist.twist.linear.z), EPS);

  EXPECT_LT(fabs(new_odom.twist.twist.angular.x), EPS);
  EXPECT_LT(fabs(new_odom.twist.twist.angular.y), EPS);
  EXPECT_LT(fabs(new_odom.twist.twist.angular.z), EPS);
}
示例#8
0
int main( int argc, char** argv )
{
    const int startup_delay = 5;
    ros::init(argc, argv, "rx60_hardware");
    ros::NodeHandle nh_("robot_rx60b");
    RX60Robot robot;
    RX60_wrapper wrapper;
    controller_manager::ControllerManager cm(&robot, nh_);
    ros::Publisher state_publisher = nh_.advertise<sensor_msgs::JointState>("/robot_rx60b/controller_joint_states", 10);

    ros::AsyncSpinner spinner(0);
    spinner.start();
    //ros::MultiThreadedSpinner spinner(4);
    //spinner.spin();

    ros::Time last = ros::Time::now();
    ros::Rate r(10);
    int alive_count = 0;

    ros::Time startup_time = ros::Time::now();

    while (ros::ok())
    {
        ros::Duration period = ros::Time::now() - last;

        const sensor_msgs::JointState::Ptr robotState = wrapper.getJointState();
        robot.read(robotState);

        // Wait for valid jointstates
        const ros::Duration time_since_start = ros::Time::now() - startup_time;
        if (time_since_start.toSec() > startup_delay)
        {
            cm.update(ros::Time::now(), period);
            const sensor_msgs::JointState::Ptr robotCmd = robot.write();
            wrapper.setJointState(robotCmd);
        }
        else
            ROS_INFO("Waiting %i seconds before controlling the robot (%f elapsed)", startup_delay, time_since_start.toSec());
        last = ros::Time::now();

        state_publisher.publish(robotState);

        ros::spinOnce();
        r.sleep();
    }
}
 void jointStateCallback(const sensor_msgs::JointStateConstPtr& joint_state) {
   if((ros::Time::now()-last_update_time_).toSec() < (MARKER_DUR.toSec()/2.0)) {
     return;
   }
   last_update_time_ = ros::Time::now();
   if(!send_markers_) return;
   collision_models_->bodiesLock();
   if(group_name_1_.empty() && group_name_2_.empty()) {
     sendMarkersForGroup("");
   } 
   if(!group_name_1_.empty()) {
     sendMarkersForGroup(group_name_1_);
   } 
   if(!group_name_2_.empty()) {
     sendMarkersForGroup(group_name_2_);
   }
   collision_models_->bodiesUnlock();
 }
示例#10
0
double PID::update(double error, double dx, const ros::Duration& dt)
{
    if (!parameters_.enabled) return 0.0;
    if (std::isnan(error)) return 0.0;
    double dt_sec = dt.toSec();

    // integral error
    state_.i += error * dt_sec;
    if (parameters_.limit_i > 0.0)
    {
        if (state_.i >  parameters_.limit_i) state_.i =  parameters_.limit_i;
        if (state_.i < -parameters_.limit_i) state_.i = -parameters_.limit_i;
    }

    // differential error
    if (dt_sec > 0.0 && !std::isnan(state_.p) && !std::isnan(state_.dx)) {
        state_.d = (error - state_.p) / dt_sec + state_.dx - dx;
    } else {
        state_.d = -dx;
    }
    state_.dx = dx;

    // proportional error
    state_.p = error;

    // calculate output...
    double output = parameters_.k_p * state_.p + parameters_.k_i * state_.i + parameters_.k_d * state_.d;
    int antiwindup = 0;
    if (parameters_.limit_output > 0.0)
    {
        if (output >  parameters_.limit_output) {
            output =  parameters_.limit_output;
            antiwindup =  1;
        }
        if (output < -parameters_.limit_output) {
            output = -parameters_.limit_output;
            antiwindup = -1;
        }
    }
    if (antiwindup && (error * dt_sec * antiwindup > 0.0)) state_.i -= error * dt_sec;

    checknan(output);
    return output;
}
void JointVelocityController::update(const ros::Time& time, const ros::Duration& period)
{
    double error = command_ - joint_.getVelocity();

    double current_effort = joint_.getEffort();

    double commanded_effort;
    if(current_effort>effort_threshold)
    {
        commanded_effort=0.0;
    }
    else
    {
        // Set the PID error and compute the PID command with nonuniform time
        // step size. The derivative error is computed from the change in the error
        // and the timestep dt.
        commanded_effort = pid_controller_.computeCommand(error, period);
    }

    joint_.setCommand(commanded_effort);

    if(loop_count_ % 10 == 0)
    {
        if(controller_state_publisher_ && controller_state_publisher_->trylock())
        {
            controller_state_publisher_->msg_.header.stamp = time;
            controller_state_publisher_->msg_.set_point = command_;
            controller_state_publisher_->msg_.process_value = joint_.getVelocity();
            controller_state_publisher_->msg_.error = error;
            controller_state_publisher_->msg_.time_step = period.toSec();
            controller_state_publisher_->msg_.command = commanded_effort;

            double dummy;
            getGains(controller_state_publisher_->msg_.p,
                     controller_state_publisher_->msg_.i,
                     controller_state_publisher_->msg_.d,
                     controller_state_publisher_->msg_.i_clamp,
                     dummy);
            controller_state_publisher_->unlockAndPublish();
        }
    }
    loop_count_++;
}
示例#12
0
void NodeClass::sendEmergencyStopStates()
{
	requestBoardStatus();

	if(!relayboard_available) return;
	
	
	bool EM_signal;
	ros::Duration duration_since_EM_confirmed;
	cob_relayboard::EmergencyStopState EM_msg;

	// assign input (laser, button) specific EM state
	EM_msg.emergency_button_stop = m_SerRelayBoard->isEMStop();
	EM_msg.scanner_stop = m_SerRelayBoard->isScannerStop();

	// determine current EMStopState
	EM_signal = (EM_msg.emergency_button_stop || EM_msg.scanner_stop);

	switch (EM_stop_status_)
	{
		case ST_EM_FREE:
		{
			if (EM_signal == true)
			{
				ROS_INFO("Emergency stop was issued");
				EM_stop_status_ = EM_msg.EMSTOP;
			}
			break;
		}
		case ST_EM_ACTIVE:
		{
			if (EM_signal == false)
			{
				ROS_INFO("Emergency stop was confirmed");
				EM_stop_status_ = EM_msg.EMCONFIRMED;
				time_of_EM_confirmed_ = ros::Time::now();
			}
			break;
		}
		case ST_EM_CONFIRMED:
		{
			if (EM_signal == true)
			{
				ROS_INFO("Emergency stop was issued");
				EM_stop_status_ = EM_msg.EMSTOP;
			}
			else
			{
				duration_since_EM_confirmed = ros::Time::now() - time_of_EM_confirmed_;
				if( duration_since_EM_confirmed.toSec() > duration_for_EM_free_.toSec() )
				{
					ROS_INFO("Emergency stop released");
					EM_stop_status_ = EM_msg.EMFREE;
				}
			}
			break;
		}
	};

	
	EM_msg.emergency_state = EM_stop_status_;

	//publish EM-Stop-Active-messages, when connection to relayboard got cut
	if(relayboard_online == false) {
		EM_msg.emergency_state = EM_msg.EMSTOP;
	}
	topicPub_isEmergencyStop.publish(EM_msg);
}
void NodeClass::sendEmergencyStopStates()
{
	requestBoardStatus();

	if(!relayboard_available) return;

	sendBatteryVoltage();

	
	bool EM_signal;
	ros::Duration duration_since_EM_confirmed;
	cob_relayboard::EmergencyStopState EM_msg;
	pr2_msgs::PowerBoardState pbs;
	pbs.header.stamp = ros::Time::now();

	// assign input (laser, button) specific EM state TODO: Laser and Scanner stop can't be read independently (e.g. if button is stop --> no informtion about scanner, if scanner ist stop --> no informtion about button stop)
	EM_msg.emergency_button_stop = m_SerRelayBoard->isEMStop();
	EM_msg.scanner_stop = m_SerRelayBoard->isScannerStop();

	// determine current EMStopState
	EM_signal = (EM_msg.emergency_button_stop || EM_msg.scanner_stop);

	switch (EM_stop_status_)
	{
		case ST_EM_FREE:
		{
			if (EM_signal == true)
			{
				ROS_INFO("Emergency stop was issued");
				EM_stop_status_ = EM_msg.EMSTOP;
			}
			break;
		}
		case ST_EM_ACTIVE:
		{
			if (EM_signal == false)
			{
				ROS_INFO("Emergency stop was confirmed");
				EM_stop_status_ = EM_msg.EMCONFIRMED;
				time_of_EM_confirmed_ = ros::Time::now();
			}
			break;
		}
		case ST_EM_CONFIRMED:
		{
			if (EM_signal == true)
			{
				ROS_INFO("Emergency stop was issued");
				EM_stop_status_ = EM_msg.EMSTOP;
			}
			else
			{
				duration_since_EM_confirmed = ros::Time::now() - time_of_EM_confirmed_;
				if( duration_since_EM_confirmed.toSec() > duration_for_EM_free_.toSec() )
				{
					ROS_INFO("Emergency stop released");
					EM_stop_status_ = EM_msg.EMFREE;
				}
			}
			break;
		}
	};

	
	EM_msg.emergency_state = EM_stop_status_;
	
	// pr2 power_board_state
	if(EM_msg.emergency_button_stop)
	  pbs.run_stop = false;
	else
	  pbs.run_stop = true;
	
	//for cob the wireless stop field is misused as laser stop field
	if(EM_msg.scanner_stop)
	  pbs.wireless_stop = false; 
	else
	  pbs.wireless_stop = true;
  

	//publish EM-Stop-Active-messages, when connection to relayboard got cut
	if(relayboard_online == false) {
		EM_msg.emergency_state = EM_msg.EMSTOP;
	}
	topicPub_isEmergencyStop.publish(EM_msg);
	topicPub_PowerBoardState.publish(pbs);
}
void targetsCallback(const mtt::TargetList& list)
{
  //will print information that should be stored in a file
  //file format: id, good/bad tag, time, pos x, pos y, vel, theta
  //             position_diff, heading_diff, angle_to_robot, velocity_diff
  static ros::Time start_time = ros::Time::now();
  time_elapsed = ros::Time::now() - start_time;
  
  /// /// ROBOT PART //////
  //use transformations to extract robot features
  try{
    p_listener->lookupTransform("/map", "/base_link", ros::Time(0), transform);
    p_listener->lookupTwist("/map", "/base_link", ros::Time(0), ros::Duration(0.5), twist);
  }
  catch (tf::TransformException ex){
    ROS_ERROR("%s",ex.what());
  }

  robot_x = transform.getOrigin().x();
  
  robot_posex_buffer.push_back(robot_x);
  
  robot_y = transform.getOrigin().y();
  robot_theta = tf::getYaw(transform.getRotation());
  robot_vel = sqrt(pow(twist.linear.x, 2) + pow(twist.linear.y, 2));
   
  //robot output line 
  /// uncomment the following for training!
  printf("%d,%d,%.10f,%.10f,%.10f,%.10f,%.10f,0,0,0,0\n",
         -1, leader_tag, time_elapsed.toSec(),
         robot_x, robot_y, robot_vel, robot_theta); 

  
  //testing new features extraction
//   accumulator_set<double, stats<tag::variance> > acc;
//   for_each(robot_posex_buffer.begin(), robot_posex_buffer.end(), boost::bind<void>(boost::ref(acc), _1));
//   printf("%f,%f,%f\n", robot_x, mean(acc), sqrt(variance(acc))); 
  
  /// /// TARGETS PART //////
  //sweeps target list and extract features
  for(uint i = 0; i < list.Targets.size(); i++){
    target_id = list.Targets[i].id;
    target_x = list.Targets[i].pose.position.x;
    target_y = list.Targets[i].pose.position.y;
    target_theta = tf::getYaw(list.Targets[i].pose.orientation);
    target_vel = sqrt(pow(list.Targets[i].velocity.linear.x,2)+
                      pow(list.Targets[i].velocity.linear.y,2));
    position_diff = sqrt(pow(robot_x - target_x,2)+
                        pow(robot_y - target_y,2));
    heading_diff = robot_theta - target_theta;
    angle_to_robot = -robot_theta + atan2(target_y - robot_y, 
                                        target_x - robot_x );
    velocity_diff = robot_vel - target_vel;
          
    //target output (to be used in adaboost training)
    
    // % output file format: 
    // % 1: id
    // % 2: good/bad tag
    // % 3: time
    // % 4: pos x
    // % 5: pos y
    // % 6: vel
    // % 7: theta
    // % 8: pos diff
    // % 9: head diff
    // %10: angle 2 robot 
    // %11: velocity diff 
    
    /// uncomment the following to generate training file!
    printf("%d,%d,%.10f,%.10f,%.10f,%.10f,%.10f,%.10f,%.10f,%.10f,%.10f\n",
      target_id, leader_tag, time_elapsed.toSec(),
      target_x, target_y, target_vel, target_theta,
      position_diff, heading_diff, angle_to_robot, velocity_diff);
    
//     if(position_diff < 6.0 && target_vel > 0.5){
//       //if inside boundaries (in meters)
//       //store features in a covariance struct to send to matlab
//       nfeatures.pose.position.x = target_x;
//       nfeatures.pose.position.y = target_y;
//       nfeatures.pose.position.z = target_id;
// 
//       nfeatures.covariance[0] = target_vel;
//       nfeatures.covariance[1] = velocity_diff;
//       nfeatures.covariance[2] = heading_diff;
//       nfeatures.covariance[3] = angle_to_robot;
//       nfeatures.covariance[4] = position_diff;
//       
//       matlab_list.push_back(nfeatures);
// //       counter++;
//     }
  }
//   printf("targets within range: %d\n",counter);
//   counter = 0;
  
  //check if enough time has passed 
  //and send batch of msgs to matlab
//   duration_btw_msg = ros::Time::now() - time_last_msg;
//   
//   if(duration_btw_msg.toSec() > 0.01){
//     while(!matlab_list.empty()){
//       nfeatures_pub.publish(matlab_list.front());
//       matlab_list.pop_front();
//       usleep(0.01e6); //has to sleep, otherwise matlab do not get the msg
//     }      
//     time_last_msg = ros::Time::now();
//   }
}
示例#15
0
	int executeCB(ros::Duration dt)
		{
			std::cout << "**GoToWaypoint -%- Executing Main Task, elapsed_time: "
			          << dt.toSec() << std::endl;
			std::cout << "**GoToWaypoint -%- execute_time: "
			          << execute_time_.toSec() << std::endl;
			execute_time_ += dt;

			std::cout << "**Counter value:" << counter << std::endl;
			if (counter > 1)
				std::cout << "********************************************************************************" << std::endl;


			if (!init_)
			{
				initialize();
				init_ = true;
			}
			if ( (ros::Time::now() - time_at_pos_).toSec() < 0.2 )
			{
				if( message_.type == "goto")
				{
						// Goal position of ball relative to ROBOT_FRAME
						float goal_x = 0.00;
						float goal_y = 0.00;
						float error_x = message_.x - goal_x;
						float error_y = message_.y - goal_y;
						if (fabs(error_x) < 0.12 && fabs(error_y) < 0.12)
						{
							std::cout << "Closeness count " << closeness_count << std::endl;
							closeness_count++;
							//If the NAO has been close for enough iterations, we consider to goal reached
							if (closeness_count > 0)
							{
								motion_proxy_ptr->stopMove();
								set_feedback(SUCCESS);
								// std::cout << "sleeeping for 2 second before destroying thread" << std::endl;
								// sleep(2.0);
								finalize();
								return 1;
							}
						}
						else
						{
							closeness_count = 0;
						}
						//Limit the "error" in order to limit the walk speed
						error_x = error_x >  0.6 ?  0.6 : error_x;
						error_x = error_x < -0.6 ? -0.6 : error_x;
						error_y = error_y >  0.6 ?  0.6 : error_y;
						error_y = error_y < -0.6 ? -0.6 : error_y;
						// float speed_x = error_x * 1.0/(2+5*closeness_count);
						// float speed_y = error_y * 1.0/(2+5*closeness_count);
						// float frequency = 0.1/(5*closeness_count+(1.0/(fabs(error_x)+fabs(error_y)))); //Frequency of foot steps
						// motion_proxy_ptr->setWalkTargetVelocity(speed_x, speed_y, 0.0, frequency);
						// ALMotionProxy::setWalkTargetVelocity(const float& x, const float& y, const float& theta, const float& frequency)
						AL::ALValue walk_config;
						//walk_config.arrayPush(AL::ALValue::array("MaxStepFrequency", frequency));
						//Lower value of step height gives smoother walking
						// std::cout << "y " << message_.y << std::endl;
						if (fabs(message_.y) < 0.10)
						{
							// walk_config.arrayPush(AL::ALValue::array("StepHeight", 0.01));
							// motion_proxy_ptr->post.moveTo(message_.x, 0.0, 0.0, walk_config);
							motion_proxy_ptr->post.moveTo(message_.x, 0.0, 0.0);
							sleep(2.0);
							//motion_proxy_ptr->post.stopMove();
						}
						else
						{
							// walk_config.arrayPush(AL::ALValue::array("StepHeight", 0.005));
							// motion_proxy_ptr->post.moveTo(0.0, 0.0, message_.y/fabs(message_.y)*0.1, walk_config);
							motion_proxy_ptr->post.moveTo(0.0, 0.0, message_.y/fabs(message_.y)*0.1);
							//sleep(3.0);
							//motion_proxy_ptr->post.stopMove();
						}
				}

			}
			set_feedback(RUNNING);
			return 0;
		}
  void DiffDriveController::update(const ros::Time& time, const ros::Duration& period)
  {
    // COMPUTE AND PUBLISH ODOMETRY
    if (open_loop_)
    {
      odometry_.updateOpenLoop(last0_cmd_.lin, last0_cmd_.ang, time);
    }
    else
    {
      double left_pos  = 0.0;
      double right_pos = 0.0;
      for (size_t i = 0; i < wheel_joints_size_; ++i)
      {
        const double lp = left_wheel_joints_[i].getPosition();
        const double rp = right_wheel_joints_[i].getPosition();
        if (std::isnan(lp) || std::isnan(rp))
          return;

        left_pos  += lp;
        right_pos += rp;
      }
      left_pos  /= wheel_joints_size_;
      right_pos /= wheel_joints_size_;

      // Estimate linear and angular velocity using joint information
      odometry_.update(left_pos, right_pos, time);
    }

    // Publish odometry message
    if (last_state_publish_time_ + publish_period_ < time)
    {
      last_state_publish_time_ += publish_period_;
      // Compute and store orientation info
      const geometry_msgs::Quaternion orientation(
            tf::createQuaternionMsgFromYaw(odometry_.getHeading()));

      // Populate odom message and publish
      if (odom_pub_->trylock())
      {
        odom_pub_->msg_.header.stamp = time;
        odom_pub_->msg_.pose.pose.position.x = odometry_.getX();
        odom_pub_->msg_.pose.pose.position.y = odometry_.getY();
        odom_pub_->msg_.pose.pose.orientation = orientation;
        odom_pub_->msg_.twist.twist.linear.x  = odometry_.getLinear();
        odom_pub_->msg_.twist.twist.angular.z = odometry_.getAngular();
        odom_pub_->unlockAndPublish();
      }

      // Publish tf /odom frame
      if (enable_odom_tf_ && tf_odom_pub_->trylock())
      {
        geometry_msgs::TransformStamped& odom_frame = tf_odom_pub_->msg_.transforms[0];
        odom_frame.header.stamp = time;
        odom_frame.transform.translation.x = odometry_.getX();
        odom_frame.transform.translation.y = odometry_.getY();
        odom_frame.transform.rotation = orientation;
        tf_odom_pub_->unlockAndPublish();
      }
    }

    // MOVE ROBOT
    // Retreive current velocity command and time step:
    Commands curr_cmd = *(command_.readFromRT());
    const double dt = (time - curr_cmd.stamp).toSec();

    // Brake if cmd_vel has timeout:
    if (dt > cmd_vel_timeout_)
    {
      curr_cmd.lin = 0.0;
      curr_cmd.ang = 0.0;
    }

    // Limit velocities and accelerations:
    const double cmd_dt(period.toSec());

    limiter_lin_.limit(curr_cmd.lin, last0_cmd_.lin, last1_cmd_.lin, cmd_dt);
    limiter_ang_.limit(curr_cmd.ang, last0_cmd_.ang, last1_cmd_.ang, cmd_dt);

    last1_cmd_ = last0_cmd_;
    last0_cmd_ = curr_cmd;

    // Apply multipliers:
    const double ws = wheel_separation_multiplier_ * wheel_separation_;
    const double wr = wheel_radius_multiplier_     * wheel_radius_;

    // Compute wheels velocities:
    const double vel_left  = (curr_cmd.lin - curr_cmd.ang * ws / 2.0)/wr;
    const double vel_right = (curr_cmd.lin + curr_cmd.ang * ws / 2.0)/wr;

    // Set wheels velocities:
    for (size_t i = 0; i < wheel_joints_size_; ++i)
    {
      left_wheel_joints_[i].setCommand(vel_left);
      right_wheel_joints_[i].setCommand(vel_right);
    }
  }
示例#17
0
 void read(ros::Time time, ros::Duration period)
 {
   for(int j=0; j < n_joints_; ++j)
   {
     joint_position_prev_[j] = joint_position_[j];
     joint_position_[j] += angles::shortest_angular_distance(joint_position_[j],
                             sim_joints_[j]->GetAngle(0).Radian());
     joint_position_kdl_(j) = joint_position_[j];
     // derivate velocity as in the real hardware instead of reading it from simulation
     joint_velocity_[j] = filters::exponentialSmoothing((joint_position_[j] - joint_position_prev_[j])/period.toSec(), joint_velocity_[j], 0.2);
     joint_effort_[j] = sim_joints_[j]->GetForce((int)(0));
     joint_stiffness_[j] = joint_stiffness_command_[j];
   }
 }
	void DynamicSlidingModeControllerTaskSpace::update(const ros::Time& time, const ros::Duration& period)
	{
		// get joint positions
  		for(int i=0; i < joint_handles_.size(); i++) 
  		{
    		joint_msr_states_.q(i) = joint_handles_[i].getPosition();
    		joint_msr_states_.qdot(i) = joint_handles_[i].getVelocity();
    	} 

    	if (cmd_flag_) 
    	{
	    	// computing forward kinematics
		    fk_pos_solver_->JntToCart(joint_msr_states_.q,x_);

		    // computing Jacobian J(q)
		    jnt_to_jac_solver_->JntToJac(joint_msr_states_.q,J_);

		    // computing Jacobian pseudo-inversion
		    pseudo_inverse(J_.data,J_pinv_);

		    // computing end-effector position/orientation error w.r.t. desired frame
		    x_err_ = diff(x_,x_des_);
		    
		    /* Trying quaternions, it seems to work better 

		    // end-effector position/orientation error
	    	x_err_.vel = (x_des_.p - x_.p);

	    	// getting quaternion from rotation matrix
	    	x_.M.GetQuaternion(quat_curr_.v(0),quat_curr_.v(1),quat_curr_.v(2),quat_curr_.a);
	    	x_des_.M.GetQuaternion(quat_des_.v(0),quat_des_.v(1),quat_des_.v(2),quat_des_.a);

	    	skew_symmetric(quat_des_.v,skew_);

	    	for (int i = 0; i < skew_.rows(); i++)
	    	{
	    		v_temp_(i) = 0.0;
	    		for (int k = 0; k < skew_.cols(); k++)
	    			v_temp_(i) += skew_(i,k)*(quat_curr_.v(k));
	    	}

	    	x_err_.rot = (quat_curr_.a*quat_des_.v - quat_des_.a*quat_curr_.v) - v_temp_; 
			*/
	    	// clearing error msg before publishing
    		msg_err_.data.clear();

		    for(int i = 0; i < e_ref_.size(); i++)
			{
				e_ref_(i) = x_err_(i);
		    	msg_err_.data.push_back(e_ref_(i));
			}

			joint_des_states_.qdot.data = J_pinv_*e_ref_;

			joint_des_states_.q.data = joint_msr_states_.q.data + period.toSec()*joint_des_states_.qdot.data;

	    	// computing S
	    	S_.data = (joint_msr_states_.qdot.data - joint_des_states_.qdot.data) + alpha_.data.cwiseProduct(joint_msr_states_.q.data - joint_des_states_.q.data);

			//for (int i = 0; i < joint_handles_.size(); i++)
				//S_(i) = (joint_msr_states_.qdot(i) - joint_des_states_.qdot(i)) + alpha_(i)*tanh(lambda_(i)*(joint_msr_states_.q(i) - joint_des_states_.q(i)));
	    	
	    	// saving S0 on the first step
	    	if (step_ == 0)
	    		S0_ = S_;

	    	// computing Sd
	    	for (int i = 0; i < joint_handles_.size(); i++)
	    		Sd_(i) = S0_(i)*exp(-k_(i)*(step_*period.toSec()));

	    	Sq_.data = S_.data + Sd_.data;//- Sd_.data;

	    	// computing sigma_dot as sgn(Sq)
	    	for (int i = 0; i < joint_handles_.size(); i++)
	    		sigma_dot_(i) = -(Sq_(i) < 0) + (Sq_(i) > 0); 

	    	// integrating sigma_dot
	    	sigma_.data += period.toSec()*sigma_dot_.data;

	    	//for (int i = 0; i < joint_handles_.size(); i++)
	    		//sigma_(i) += period.toSec()*pow(Sq_(i),0.5);

	    	// computing Sr
	    	Sr_.data = Sq_.data + gamma_.data.cwiseProduct(sigma_.data);

	    	// computing tau
	    	tau_.data = -Kd_.data.cwiseProduct(Sr_.data);

	    	step_++;

	    	if (Equal(x_,x_des_,0.05))
	    	{
	    		
	    		ROS_INFO("On target");
	    		cmd_flag_ = 0;
	    		return;
	    	}
	    } 

    	// set controls for joints
    	for (int i = 0; i < joint_handles_.size(); i++)
    	{	
    		if (!cmd_flag_)
    			tau_(i) = PIDs_[i].computeCommand(joint_des_states_.q(i) - joint_msr_states_.q(i),period);//Kd_(i)*(alpha_(i)*(joint_des_states_.q(i) - joint_msr_states_.q(i)) + (joint_des_states_.qdot(i) - joint_msr_states_.qdot(i))) ;

	    	joint_handles_[i].setCommand(tau_(i));
    	}

    	// publishing markers for visualization in rviz
    	pub_marker_.publish(msg_marker_);
    	msg_id_++;

	    // publishing error for all tasks as an array of ntasks*6
	    pub_error_.publish(msg_err_);
	    // publishing actual and desired trajectory for each task (links) as an array of ntasks*3
	    pub_pose_.publish(msg_pose_);
	    pub_traj_.publish(msg_traj_);
	    ros::spinOnce();

	}
	void TaskInverseKinematics::update(const ros::Time& time, const ros::Duration& period)
	{

        // get joint positions
  		for(int i=0; i < joint_handles_.size(); i++) 
  		{
    		joint_msr_states_.q(i) = joint_handles_[i].getPosition();
    		joint_msr_states_.qdot(i) = joint_handles_[i].getVelocity();
    	}

    	if (cmd_flag_)
    	{
	    	// computing Jacobian
	    	jnt_to_jac_solver_->JntToJac(joint_msr_states_.q,J_);

	    	// computing J_pinv_
	    	pseudo_inverse(J_.data,J_pinv_);

	    	// computing forward kinematics
	    	fk_pos_solver_->JntToCart(joint_msr_states_.q,x_);

	    	// end-effector position/orientation error
	    	x_err_.vel = x_des_.p - x_.p;

	    	// getting quaternion from rotation matrix
	    	x_.M.GetQuaternion(quat_curr_.v(0),quat_curr_.v(1),quat_curr_.v(2),quat_curr_.a);
	    	x_des_.M.GetQuaternion(quat_des_.v(0),quat_des_.v(1),quat_des_.v(2),quat_des_.a);

	    	skew_symmetric(quat_des_.v,skew_);

	    	for (int i = 0; i < skew_.rows(); i++)
	    	{
	    		v_temp_(i) = 0.0;
	    		for (int k = 0; k < skew_.cols(); k++)
	    			v_temp_(i) += skew_(i,k)*(quat_curr_.v(k));
	    	}

	    	x_err_.rot = quat_curr_.a*quat_des_.v - quat_des_.a*quat_curr_.v - v_temp_; 

	    	// computing q_dot
	    	for (int i = 0; i < J_pinv_.rows(); i++)
	    	{
	    		joint_des_states_.qdot(i) = 0.0;
	    		for (int k = 0; k < J_pinv_.cols(); k++)
	    			joint_des_states_.qdot(i) += J_pinv_(i,k)*x_err_(k); //removed scaling factor of .7
          
	    	}

	    	// integrating q_dot -> getting q (Euler method)
	    	for (int i = 0; i < joint_handles_.size(); i++)
	    		joint_des_states_.q(i) += period.toSec()*joint_des_states_.qdot(i);
			
			// joint limits saturation
	        for (int i =0;  i < joint_handles_.size(); i++)
	        {
	        	if (joint_des_states_.q(i) < joint_limits_.min(i))
	            	joint_des_states_.q(i) = joint_limits_.min(i);
	          	if (joint_des_states_.q(i) > joint_limits_.max(i))
	            	joint_des_states_.q(i) = joint_limits_.max(i);
	        }

	    	if (Equal(x_,x_des_,0.005))
	    	{
	    		ROS_INFO("On target");
	    		cmd_flag_ = 0;
	    	}
	    }
	    
    	// set controls for joints
    	for (int i = 0; i < joint_handles_.size(); i++)
    	{
    		tau_cmd_(i) = PIDs_[i].computeCommand(joint_des_states_.q(i) - joint_msr_states_.q(i),period);
		   	joint_handles_[i].setCommand(tau_cmd_(i));
        }
	}
void JointPositionController::update(const ros::Time& time, const ros::Duration& period)
{
  command_struct_ = *(command_.readFromRT());
  double command_position = command_struct_.position_;
  double command_velocity = command_struct_.velocity_;
  bool has_velocity_ =  command_struct_.has_velocity_;

  double error, vel_error;
  double commanded_effort;

  double current_position = joint_.getPosition();

  // Make sure joint is within limits if applicable
  enforceJointLimits(command_position);

  // Compute position error
  if (joint_urdf_->type == urdf::Joint::REVOLUTE)
  {
   angles::shortest_angular_distance_with_limits(
      current_position,
      command_position,
      joint_urdf_->limits->lower,
      joint_urdf_->limits->upper,
      error);
  }
  else if (joint_urdf_->type == urdf::Joint::CONTINUOUS)
  {
    error = angles::shortest_angular_distance(current_position, command_position);
  }
  else //prismatic
  {
    error = command_position - current_position;
  }

  // Decide which of the two PID computeCommand() methods to call
  if (has_velocity_)
  {
    // Compute velocity error if a non-zero velocity command was given
    vel_error = command_velocity - joint_.getVelocity();

    // Set the PID error and compute the PID command with nonuniform
    // time step size. This also allows the user to pass in a precomputed derivative error.
    commanded_effort = pid_controller_.computeCommand(error, vel_error, period);
  }
  else
  {
    // Set the PID error and compute the PID command with nonuniform
    // time step size.
    commanded_effort = pid_controller_.computeCommand(error, period);
  }

  joint_.setCommand(commanded_effort);

  // publish state
  if (loop_count_ % 10 == 0)
  {
    if(controller_state_publisher_ && controller_state_publisher_->trylock())
    {
      controller_state_publisher_->msg_.header.stamp = time;
      controller_state_publisher_->msg_.set_point = command_position;
      controller_state_publisher_->msg_.process_value = current_position;
      controller_state_publisher_->msg_.process_value_dot = joint_.getVelocity();
      controller_state_publisher_->msg_.error = error;
      controller_state_publisher_->msg_.time_step = period.toSec();
      controller_state_publisher_->msg_.command = commanded_effort;

      double dummy;
      bool antiwindup;
      getGains(controller_state_publisher_->msg_.p,
        controller_state_publisher_->msg_.i,
        controller_state_publisher_->msg_.d,
        controller_state_publisher_->msg_.i_clamp,
        dummy,
        antiwindup);
      controller_state_publisher_->msg_.antiwindup = static_cast<char>(antiwindup);
      controller_state_publisher_->unlockAndPublish();
    }
  }
  loop_count_++;
}
示例#21
0
void
AmclNode::laserReceived(const sensor_msgs::LaserScanConstPtr& laser_scan)
{
    last_laser_received_ts_ = ros::Time::now();
    if( map_ == NULL ) {
        return;
    }
    boost::recursive_mutex::scoped_lock lr(configuration_mutex_);
    int laser_index = -1;

    // Do we have the base->base_laser Tx yet?
    if(frame_to_laser_.find(laser_scan->header.frame_id) == frame_to_laser_.end())
    {
        ROS_DEBUG("Setting up laser %d (frame_id=%s)\n", (int)frame_to_laser_.size(), laser_scan->header.frame_id.c_str());
        lasers_.push_back(new AMCLLaser(*laser_));
        lasers_update_.push_back(true);
        laser_index = frame_to_laser_.size();

        tf::Stamped<tf::Pose> ident (tf::Transform(tf::createIdentityQuaternion(),
                                     tf::Vector3(0,0,0)),
                                     ros::Time(), laser_scan->header.frame_id);
        tf::Stamped<tf::Pose> laser_pose;
        try
        {
            this->tf_->transformPose(base_frame_id_, ident, laser_pose);
        }
        catch(tf::TransformException& e)
        {
            ROS_ERROR("Couldn't transform from %s to %s, "
                      "even though the message notifier is in use",
                      laser_scan->header.frame_id.c_str(),
                      base_frame_id_.c_str());
            return;
        }

        pf_vector_t laser_pose_v;
        laser_pose_v.v[0] = laser_pose.getOrigin().x();
        laser_pose_v.v[1] = laser_pose.getOrigin().y();
        // laser mounting angle gets computed later -> set to 0 here!
        laser_pose_v.v[2] = 0;
        lasers_[laser_index]->SetLaserPose(laser_pose_v);
        ROS_DEBUG("Received laser's pose wrt robot: %.3f %.3f %.3f",
                  laser_pose_v.v[0],
                  laser_pose_v.v[1],
                  laser_pose_v.v[2]);

        frame_to_laser_[laser_scan->header.frame_id] = laser_index;
    } else {
        // we have the laser pose, retrieve laser index
        laser_index = frame_to_laser_[laser_scan->header.frame_id];
    }

    // Where was the robot when this scan was taken?
    tf::Stamped<tf::Pose> odom_pose;
    pf_vector_t pose;
    if(!getOdomPose(odom_pose, pose.v[0], pose.v[1], pose.v[2],
                    laser_scan->header.stamp, base_frame_id_))
    {
        ROS_ERROR("Couldn't determine robot's pose associated with laser scan");
        return;
    }


    pf_vector_t delta = pf_vector_zero();

    if(pf_init_)
    {
        // Compute change in pose
        //delta = pf_vector_coord_sub(pose, pf_odom_pose_);
        delta.v[0] = pose.v[0] - pf_odom_pose_.v[0];
        delta.v[1] = pose.v[1] - pf_odom_pose_.v[1];
        delta.v[2] = angle_diff(pose.v[2], pf_odom_pose_.v[2]);

        // See if we should update the filter
        bool update = fabs(delta.v[0]) > d_thresh_ ||
                      fabs(delta.v[1]) > d_thresh_ ||
                      fabs(delta.v[2]) > a_thresh_;
        update = update || m_force_update;
        m_force_update=false;

        // Set the laser update flags
        if(update)
            for(unsigned int i=0; i < lasers_update_.size(); i++)
                lasers_update_[i] = true;
    }

    bool force_publication = false;
    if(!pf_init_)
    {
        // Pose at last filter update
        pf_odom_pose_ = pose;

        // Filter is now initialized
        pf_init_ = true;

        // Should update sensor data
        for(unsigned int i=0; i < lasers_update_.size(); i++)
            lasers_update_[i] = true;

        force_publication = true;

        resample_count_ = 0;
    }
    // If the robot has moved, update the filter
    else if(pf_init_ && lasers_update_[laser_index])
    {
        //printf("pose\n");
        //pf_vector_fprintf(pose, stdout, "%.3f");

        AMCLOdomData odata;
        odata.pose = pose;
        // HACK
        // Modify the delta in the action data so the filter gets
        // updated correctly
        odata.delta = delta;

        // Use the action data to update the filter
        odom_->UpdateAction(pf_, (AMCLSensorData*)&odata);

        // Pose at last filter update
        //this->pf_odom_pose = pose;
    }

    bool resampled = false;
    // If the robot has moved, update the filter
    if(lasers_update_[laser_index])
    {
        AMCLLaserData ldata;
        ldata.sensor = lasers_[laser_index];
        ldata.range_count = laser_scan->ranges.size();

        // To account for lasers that are mounted upside-down, we determine the
        // min, max, and increment angles of the laser in the base frame.
        //
        // Construct min and max angles of laser, in the base_link frame.
        tf::Quaternion q;
        q.setRPY(0.0, 0.0, laser_scan->angle_min);
        tf::Stamped<tf::Quaternion> min_q(q, laser_scan->header.stamp,
                                          laser_scan->header.frame_id);
        q.setRPY(0.0, 0.0, laser_scan->angle_min + laser_scan->angle_increment);
        tf::Stamped<tf::Quaternion> inc_q(q, laser_scan->header.stamp,
                                          laser_scan->header.frame_id);
        try
        {
            tf_->transformQuaternion(base_frame_id_, min_q, min_q);
            tf_->transformQuaternion(base_frame_id_, inc_q, inc_q);
        }
        catch(tf::TransformException& e)
        {
            ROS_WARN("Unable to transform min/max laser angles into base frame: %s",
                     e.what());
            return;
        }

        double angle_min = tf::getYaw(min_q);
        double angle_increment = tf::getYaw(inc_q) - angle_min;

        // wrapping angle to [-pi .. pi]
        angle_increment = fmod(angle_increment + 5*M_PI, 2*M_PI) - M_PI;

        ROS_DEBUG("Laser %d angles in base frame: min: %.3f inc: %.3f", laser_index, angle_min, angle_increment);

        // Apply range min/max thresholds, if the user supplied them
        if(laser_max_range_ > 0.0)
            ldata.range_max = std::min(laser_scan->range_max, (float)laser_max_range_);
        else
            ldata.range_max = laser_scan->range_max;
        double range_min;
        if(laser_min_range_ > 0.0)
            range_min = std::max(laser_scan->range_min, (float)laser_min_range_);
        else
            range_min = laser_scan->range_min;
        // The AMCLLaserData destructor will free this memory
        ldata.ranges = new double[ldata.range_count][2];
        ROS_ASSERT(ldata.ranges);
        for(int i=0; i<ldata.range_count; i++)
        {
            // amcl doesn't (yet) have a concept of min range.  So we'll map short
            // readings to max range.
            if(laser_scan->ranges[i] <= range_min)
                ldata.ranges[i][0] = ldata.range_max;
            else
                ldata.ranges[i][0] = laser_scan->ranges[i];
            // Compute bearing
            ldata.ranges[i][1] = angle_min +
                                 (i * angle_increment);
        }

        lasers_[laser_index]->UpdateSensor(pf_, (AMCLSensorData*)&ldata);

        lasers_update_[laser_index] = false;

        pf_odom_pose_ = pose;

        // Resample the particles
        if(!(++resample_count_ % resample_interval_))
        {
            pf_update_resample(pf_);
            resampled = true;
        }

        pf_sample_set_t* set = pf_->sets + pf_->current_set;
        ROS_DEBUG("Num samples: %d\n", set->sample_count);

        // Publish the resulting cloud
        // TODO: set maximum rate for publishing
        if (!m_force_update) {
            geometry_msgs::PoseArray cloud_msg;
            cloud_msg.header.stamp = ros::Time::now();
            cloud_msg.header.frame_id = global_frame_id_;
            cloud_msg.poses.resize(set->sample_count);
            for(int i=0; i<set->sample_count; i++)
            {
                tf::poseTFToMsg(tf::Pose(tf::createQuaternionFromYaw(set->samples[i].pose.v[2]),
                                         tf::Vector3(set->samples[i].pose.v[0],
                                                     set->samples[i].pose.v[1], 0)),
                                cloud_msg.poses[i]);
            }
            particlecloud_pub_.publish(cloud_msg);
        }
    }

    if(resampled || force_publication)
    {
        // Read out the current hypotheses
        double max_weight = 0.0;
        int max_weight_hyp = -1;
        std::vector<amcl_hyp_t> hyps;
        hyps.resize(pf_->sets[pf_->current_set].cluster_count);
        for(int hyp_count = 0;
                hyp_count < pf_->sets[pf_->current_set].cluster_count; hyp_count++)
        {
            double weight;
            pf_vector_t pose_mean;
            pf_matrix_t pose_cov;
            if (!pf_get_cluster_stats(pf_, hyp_count, &weight, &pose_mean, &pose_cov))
            {
                ROS_ERROR("Couldn't get stats on cluster %d", hyp_count);
                break;
            }

            hyps[hyp_count].weight = weight;
            hyps[hyp_count].pf_pose_mean = pose_mean;
            hyps[hyp_count].pf_pose_cov = pose_cov;

            if(hyps[hyp_count].weight > max_weight)
            {
                max_weight = hyps[hyp_count].weight;
                max_weight_hyp = hyp_count;
            }
        }

        if(max_weight > 0.0)
        {
            ROS_DEBUG("Max weight pose: %.3f %.3f %.3f",
                      hyps[max_weight_hyp].pf_pose_mean.v[0],
                      hyps[max_weight_hyp].pf_pose_mean.v[1],
                      hyps[max_weight_hyp].pf_pose_mean.v[2]);

            /*
               puts("");
               pf_matrix_fprintf(hyps[max_weight_hyp].pf_pose_cov, stdout, "%6.3f");
               puts("");
             */

            geometry_msgs::PoseWithCovarianceStamped p;
            // Fill in the header
            p.header.frame_id = global_frame_id_;
            p.header.stamp = laser_scan->header.stamp;
            // Copy in the pose
            p.pose.pose.position.x = hyps[max_weight_hyp].pf_pose_mean.v[0];
            p.pose.pose.position.y = hyps[max_weight_hyp].pf_pose_mean.v[1];
            tf::quaternionTFToMsg(tf::createQuaternionFromYaw(hyps[max_weight_hyp].pf_pose_mean.v[2]),
                                  p.pose.pose.orientation);
            // Copy in the covariance, converting from 3-D to 6-D
            pf_sample_set_t* set = pf_->sets + pf_->current_set;
            for(int i=0; i<2; i++)
            {
                for(int j=0; j<2; j++)
                {
                    // Report the overall filter covariance, rather than the
                    // covariance for the highest-weight cluster
                    //p.covariance[6*i+j] = hyps[max_weight_hyp].pf_pose_cov.m[i][j];
                    p.pose.covariance[6*i+j] = set->cov.m[i][j];
                }
            }
            // Report the overall filter covariance, rather than the
            // covariance for the highest-weight cluster
            //p.covariance[6*5+5] = hyps[max_weight_hyp].pf_pose_cov.m[2][2];
            p.pose.covariance[6*5+5] = set->cov.m[2][2];

            /*
               printf("cov:\n");
               for(int i=0; i<6; i++)
               {
               for(int j=0; j<6; j++)
               printf("%6.3f ", p.covariance[6*i+j]);
               puts("");
               }
             */

            pose_pub_.publish(p);
            last_published_pose = p;

            ROS_DEBUG("New pose: %6.3f %6.3f %6.3f",
                      hyps[max_weight_hyp].pf_pose_mean.v[0],
                      hyps[max_weight_hyp].pf_pose_mean.v[1],
                      hyps[max_weight_hyp].pf_pose_mean.v[2]);

            // subtracting base to odom from map to base and send map to odom instead
            tf::Stamped<tf::Pose> odom_to_map;
            try
            {
                tf::Transform tmp_tf(tf::createQuaternionFromYaw(hyps[max_weight_hyp].pf_pose_mean.v[2]),
                                     tf::Vector3(hyps[max_weight_hyp].pf_pose_mean.v[0],
                                                 hyps[max_weight_hyp].pf_pose_mean.v[1],
                                                 0.0));
                tf::Stamped<tf::Pose> tmp_tf_stamped (tmp_tf.inverse(),
                                                      laser_scan->header.stamp,
                                                      base_frame_id_);
                this->tf_->transformPose(odom_frame_id_,
                                         tmp_tf_stamped,
                                         odom_to_map);
            }
            catch(tf::TransformException)
            {
                ROS_DEBUG("Failed to subtract base to odom transform");
                return;
            }

            latest_tf_ = tf::Transform(tf::Quaternion(odom_to_map.getRotation()),
                                       tf::Point(odom_to_map.getOrigin()));
            latest_tf_valid_ = true;

            if (tf_broadcast_ == true)
            {
                // We want to send a transform that is good up until a
                // tolerance time so that odom can be used
                ros::Time transform_expiration = (laser_scan->header.stamp +
                                                  transform_tolerance_);
                tf::StampedTransform tmp_tf_stamped(latest_tf_.inverse(),
                                                    transform_expiration,
                                                    global_frame_id_, odom_frame_id_);
                this->tfb_->sendTransform(tmp_tf_stamped);
                sent_first_transform_ = true;
            }
        }
        else
        {
            ROS_ERROR("No pose!");
        }
    }
    else if(latest_tf_valid_)
    {
        if (tf_broadcast_ == true)
        {
            // Nothing changed, so we'll just republish the last transform, to keep
            // everybody happy.
            ros::Time transform_expiration = (laser_scan->header.stamp +
                                              transform_tolerance_);
            tf::StampedTransform tmp_tf_stamped(latest_tf_.inverse(),
                                                transform_expiration,
                                                global_frame_id_, odom_frame_id_);
            this->tfb_->sendTransform(tmp_tf_stamped);
        }

        // Is it time to save our last pose to the param server
        ros::Time now = ros::Time::now();
        if((save_pose_period.toSec() > 0.0) &&
                (now - save_pose_last_time) >= save_pose_period)
        {
            // We need to apply the last transform to the latest odom pose to get
            // the latest map pose to store.  We'll take the covariance from
            // last_published_pose.
            tf::Pose map_pose = latest_tf_.inverse() * odom_pose;
            double yaw,pitch,roll;
            map_pose.getBasis().getEulerYPR(yaw, pitch, roll);

            private_nh_.setParam("initial_pose_x", map_pose.getOrigin().x());
            private_nh_.setParam("initial_pose_y", map_pose.getOrigin().y());
            private_nh_.setParam("initial_pose_a", yaw);
            private_nh_.setParam("initial_cov_xx",
                                 last_published_pose.pose.covariance[6*0+0]);
            private_nh_.setParam("initial_cov_yy",
                                 last_published_pose.pose.covariance[6*1+1]);
            private_nh_.setParam("initial_cov_aa",
                                 last_published_pose.pose.covariance[6*5+5]);
            save_pose_last_time = now;
        }
    }

}
示例#22
0
bool IIWA_HW::read(ros::Duration period)
{
    ros::Duration delta = ros::Time::now() - timer_;
    
    static bool was_connected = false;
    
    if (iiwa_ros_conn_.getRobotIsConnected()) {
        
        iiwa_ros_conn_.getJointPosition(joint_position_);
        iiwa_ros_conn_.getJointTorque(joint_torque_);
        
        device_->joint_position_prev = device_->joint_position;
        iiwaMsgsJointToVector(joint_position_.position, device_->joint_position);
        iiwaMsgsJointToVector(joint_torque_.torque, device_->joint_effort);
        
        // if there is no controller active the robot goes to zero position 
        if (!was_connected) {
            for (int j = 0; j < IIWA_JOINTS; j++)
                device_->joint_position_command[j] = device_->joint_position[j];
            
            was_connected = true;
        }
        
        for (int j = 0; j < IIWA_JOINTS; j++)
            device_->joint_velocity[j] = filters::exponentialSmoothing((device_->joint_position[j]-device_->joint_position_prev[j])/period.toSec(), 
                                                                       device_->joint_velocity[j], 0.2);  
        
        return 1;
    } else if (delta.toSec() >= 10) {
        ROS_INFO("No LBR IIWA is connected. Waiting for the robot to connect before reading ...");
        timer_ = ros::Time::now();
    }
    return 0;
}
示例#23
0
	// read 'measurement' joint values
	void PanTiltHW::read(ros::Time time, ros::Duration period)
	{
		client_->Receive();
		
		for(int i=0; i<n_joints_;i++)
		{
			joint_position_[i] = client_->drives[i].state.position;
			joint_position_prev_[i] = joint_position_[i];
		    joint_velocity_[i] = filters::exponentialSmoothing((joint_position_[i] - joint_position_prev_[i])/period.toSec(), joint_velocity_[i], 0.2);
		}
	}
示例#24
0
  void timer_callback(const ros::TimerEvent &)
  {
    mil_msgs::MoveToResult actionresult;

    // Handle disabled, killed, or no odom before attempting to produce trajectory
    std::string err = "";
    if (disabled)
      err = "c3 disabled";
    else if (kill_listener.isRaised())
      err = "killed";
    else if (!c3trajectory)
      err = "no odom";

    if (!err.empty())
    {
      if (c3trajectory)
        c3trajectory.reset();  // On revive/enable, wait for odom before station keeping

      // Cancel all goals while killed/disabled/no odom
      if (actionserver.isNewGoalAvailable())
        actionserver.acceptNewGoal();
      if (actionserver.isActive())
      {
        actionresult.error = err;
        actionresult.success = false;
        actionserver.setAborted(actionresult);
      }
      return;
    }

    ros::Time now = ros::Time::now();

    auto old_waypoint = current_waypoint;

    if (actionserver.isNewGoalAvailable())
    {
      boost::shared_ptr<const mil_msgs::MoveToGoal> goal = actionserver.acceptNewGoal();
      current_waypoint =
          subjugator::C3Trajectory::Waypoint(Point_from_PoseTwist(goal->posetwist.pose, goal->posetwist.twist),
                                             goal->speed, !goal->uncoordinated, !goal->blind);
      current_waypoint_t = now;
      this->linear_tolerance = goal->linear_tolerance;
      this->angular_tolerance = goal->angular_tolerance;

      waypoint_validity_.pub_size_ogrid(Pose_from_Waypoint(current_waypoint), (int)OGRID_COLOR::GREEN);

      // Check if waypoint is valid
      std::pair<bool, WAYPOINT_ERROR_TYPE> checkWPResult = waypoint_validity_.is_waypoint_valid(
          Pose_from_Waypoint(current_waypoint), current_waypoint.do_waypoint_validation);
      actionresult.error = WAYPOINT_ERROR_TO_STRING.at(checkWPResult.second);
      actionresult.success = checkWPResult.first;
      if (checkWPResult.first == false && waypoint_check_)  // got a point that we should not move to
      {
        waypoint_validity_.pub_size_ogrid(Pose_from_Waypoint(current_waypoint), (int)OGRID_COLOR::RED);
        if (checkWPResult.second ==
            WAYPOINT_ERROR_TYPE::UNKNOWN)  // if unknown, check if there's a huge displacement with the new waypoint
        {
          auto a_point = Pose_from_Waypoint(current_waypoint);
          auto b_point = Pose_from_Waypoint(old_waypoint);
          // If moved more than .5m, then don't allow
          if (abs(a_point.position.x - b_point.position.x) > .5 || abs(a_point.position.y - b_point.position.y) > .5)
          {
            ROS_ERROR("can't move there! - need to rotate");
            current_waypoint = old_waypoint;
          }
        }
        // if point is occupied, reject move
        if (checkWPResult.second == WAYPOINT_ERROR_TYPE::OCCUPIED)
        {
          ROS_ERROR("can't move there! - waypoint is occupied");
          current_waypoint = old_waypoint;
        }
        // if point is above water, reject move
        if (checkWPResult.second == WAYPOINT_ERROR_TYPE::ABOVE_WATER)
        {
          ROS_ERROR("can't move there! - waypoint is above water");
          current_waypoint = old_waypoint;
        }
        if (checkWPResult.second == WAYPOINT_ERROR_TYPE::NO_OGRID)
        {
          ROS_ERROR("WaypointValidity - Did not recieve any ogrid");
        }
      }
    }
    if (actionserver.isPreemptRequested())
    {
      current_waypoint = c3trajectory->getCurrentPoint();
      current_waypoint.do_waypoint_validation = false;
      current_waypoint.r.qdot = subjugator::Vector6d::Zero();  // zero velocities
      current_waypoint_t = now;

      // don't try to make output c3 continuous when cancelled - instead stop as quickly as possible
      c3trajectory.reset(new subjugator::C3Trajectory(current_waypoint.r, limits));
      c3trajectory_t = now;
    }

    // Remember the previous trajectory
    auto old_trajectory = c3trajectory->getCurrentPoint();

    while (c3trajectory_t + traj_dt < now)
    {
      c3trajectory->update(traj_dt.toSec(), current_waypoint, (c3trajectory_t - current_waypoint_t).toSec());
      c3trajectory_t += traj_dt;
    }

    // Check if we will hit something while in trajectory the new trajectory
    geometry_msgs::Pose traj_point;  // Convert messages to correct type
    auto p = c3trajectory->getCurrentPoint();
    traj_point.position = vec2xyz<Point>(p.q.head(3));
    quaternionTFToMsg(tf::createQuaternionFromRPY(p.q[3], p.q[4], p.q[5]), traj_point.orientation);

    std::pair<bool, WAYPOINT_ERROR_TYPE> checkWPResult =
        waypoint_validity_.is_waypoint_valid(Pose_from_Waypoint(p), c3trajectory->do_waypoint_validation);

    if (checkWPResult.first == false && checkWPResult.second == WAYPOINT_ERROR_TYPE::OCCUPIED && waypoint_check_)
    {  // New trajectory will hit an occupied goal, so reject
      ROS_ERROR("can't move there! - bad trajectory");
      current_waypoint = old_trajectory;
      current_waypoint.do_waypoint_validation = false;
      current_waypoint.r.qdot = subjugator::Vector6d::Zero();  // zero velocities
      current_waypoint_t = now;

      c3trajectory.reset(new subjugator::C3Trajectory(current_waypoint.r, limits));
      c3trajectory_t = now;
      actionresult.success = false;
      actionresult.error = WAYPOINT_ERROR_TO_STRING.at(WAYPOINT_ERROR_TYPE::OCCUPIED_TRAJECTORY);
    }

    PoseTwistStamped msg;
    msg.header.stamp = c3trajectory_t;
    msg.header.frame_id = fixed_frame;
    msg.posetwist = PoseTwist_from_PointWithAcceleration(c3trajectory->getCurrentPoint());
    trajectory_pub.publish(msg);

    waypoint_validity_.pub_size_ogrid(Pose_from_Waypoint(c3trajectory->getCurrentPoint()), 200);

    PoseStamped msgVis;
    msgVis.header = msg.header;
    msgVis.pose = msg.posetwist.pose;
    trajectory_vis_pub.publish(msgVis);

    PoseStamped posemsg;
    posemsg.header.stamp = c3trajectory_t;
    posemsg.header.frame_id = fixed_frame;
    posemsg.pose = Pose_from_Waypoint(current_waypoint);
    waypoint_pose_pub.publish(posemsg);

    if (actionserver.isActive() &&
        c3trajectory->getCurrentPoint().is_approximately(current_waypoint.r, max(1e-3, linear_tolerance),
                                                         max(1e-3, angular_tolerance)) &&
        current_waypoint.r.qdot == subjugator::Vector6d::Zero())
    {
      actionresult.error = "";
      actionresult.success = true;
      actionserver.setSucceeded(actionresult);
    }
  }
int main(int argc, char **argv)
{
    const double radius = 0.5; // 0.5
    const double pitch_step = 0.2;
    const int circle_points = 6; // 6
    const int circle_rings = 3; // 3
    const double plan_time = 5;
    const int plan_retry = 1;
    //const int pose_id_max = circle_points * 3;
    const ros::Duration wait_settle(1.0);
    const ros::Duration wait_camera(0.5);
    const ros::Duration wait_notreached(3.0);
    const ros::Duration wait_reset(30.0);

    const std::string planning_group = "bumblebee"; //robot, bumblebee
    const std::string end_effector = "tool_flange"; // bumblebee_cam1, tool_flange

    const std::string plannerId = "PRMkConfigDefault";
    const std::string frame_id = "base_link";

    ros::init (argc, argv, "simple_pose_mission");
    ros::AsyncSpinner spinner(1);
    spinner.start();
    ros::NodeHandle node_handle;
    ros::Publisher cameratate_pub = node_handle.advertise<group4_msgs::PointCloudPose>("/robot_rx60b/camerapose", 5);
    ros::Publisher markerPublisher = node_handle.advertise<visualization_msgs::MarkerArray>("/simple_pose_mission/poses", 10);

    tf::TransformListener listener;

    // Marker
    MarkerPose marker("object_center");
    addObjectCenterMarker(marker);

    // Robot and scene
    moveit::planning_interface::MoveGroup group(planning_group);
    group.setPlannerId(plannerId);
    group.setPoseReferenceFrame(frame_id);
    //group.setWorkspace(-1.5,-1.5,1.5,1.5,0,1);
    group.setGoalTolerance(0.01f);
    group.setPlanningTime(plan_time);

    group4_msgs::PointCloudPose msg;
    msg.header.frame_id = frame_id;

    tf::Pose object_center = marker.getPose("object_center");
    NumberedPoses poses = generatePoses(object_center, circle_points, circle_rings, pitch_step, radius);
    NumberedPoses::iterator poses_itt;
    bool poses_updated = true;


    while (ros::ok())
    {
        bool success;

        if (poses_updated || poses_itt == poses.end())
        {
            poses_itt = poses.begin();
            poses_updated = false;
        }

        NumberedPose numbered_pose = *poses_itt;

        visualizePoses(poses, frame_id,markerPublisher, numbered_pose.pose_id);


        ROS_INFO("Moving to pose %i of %i", numbered_pose.pose_id, numbered_pose.pose_id_max);



        tf::StampedTransform transform;
        try{
          listener.lookupTransform("/bumblebee_cam1", "/tool_flange",
                                   ros::Time(0), transform);
        }
        catch (tf::TransformException ex){
          ROS_ERROR("%s",ex.what());
        }

        tf::Pose p = numbered_pose.pose_tf * transform;
        geometry_msgs::Pose desired_pose = tfPoseToGeometryPose(p);
        group.setPoseTarget(desired_pose, end_effector);

        success = false;
        for (int itry = 0; itry < plan_retry; itry++)
        {

            group.setStartStateToCurrentState();
            wait_notreached.sleep();
            success = group.move();
            if (success)
                break;
            else
                ROS_INFO("Plan unsuccessfull.. Retrying! (%i)", itry);
        }

        if (true)
        {

            wait_settle.sleep();

            geometry_msgs::PoseStamped carmine_pose = group.getCurrentPose("camera_link");
            geometry_msgs::PoseStamped bumblebee_pose_left = group.getCurrentPose("bumblebee_cam1");
            geometry_msgs::PoseStamped bumblebee_pose_right = group.getCurrentPose("bumblebee_cam2");

            msg.header.stamp = ros::Time::now();
            msg.pose_id.data = numbered_pose.pose_id;
            msg.pose_id_max.data = numbered_pose.pose_id_max;
            msg.spin_center_pose = tfPoseToGeometryPose(object_center);
            msg.carmine_pose = carmine_pose.pose;
            msg.bumblebee_pose_left = bumblebee_pose_left.pose;
            msg.bumblebee_pose_right = bumblebee_pose_right.pose;

            cameratate_pub.publish(msg);

            ROS_INFO("Waiting %f seconds for camera.", wait_camera.toSec());
            wait_camera.sleep();
        }

        if (poses_itt == poses.end())
        {
            ROS_INFO("Last pose reached. Waiting %f seconds before resetting", wait_reset.toSec());
            poses_itt = poses.begin();
            wait_reset.sleep();
        }
        else
            poses_itt++;

    }
    group.stop();
    return 0;
}
示例#26
0
/**
*  \brief Publishes the joint angles for the visualization
*
*  \param device0 the robot and its state
*
*  \ingroup ROS
*
*/
void publish_joints(struct robot_device* device0){

    static int count=0;
    static ros::Time t1;
    static ros::Time t2;
    static ros::Duration d;

    if (count == 0){
        t1 = t1.now();
    }
    count ++;
    t2 = t2.now();
    d = t2-t1;

    if (d.toSec()<0.030)
        return;
    t1=t2;

    publish_marker(device0);

    sensor_msgs::JointState joint_state;
    //update joint_state
    joint_state.header.stamp = ros::Time::now();
    joint_state.name.resize(28);
    joint_state.position.resize(28);
//    joint_state.name.resize(14);
//    joint_state.position.resize(14);
    int left, right;
    if (device0->mech[0].type == GOLD_ARM)
    {
        left = 0;
        right = 1;
    }
    else
    {
        left = 1;
        right = 0;
    }
    //======================LEFT ARM===========================
    joint_state.name[0] ="shoulder_L";
    joint_state.position[0] = device0->mech[left].joint[0].jpos + offsets_l.shoulder_off;
    joint_state.name[1] ="elbow_L";
    joint_state.position[1] = device0->mech[left].joint[1].jpos + offsets_l.elbow_off;
    joint_state.name[2] ="insertion_L";
    joint_state.position[2] = device0->mech[left].joint[2].jpos + d4 + offsets_l.insertion_off;
    joint_state.name[3] ="tool_roll_L";
    joint_state.position[3] = device0->mech[left].joint[4].jpos - 45 * d2r + offsets_l.roll_off;
    joint_state.name[4] ="wrist_joint_L";
    joint_state.position[4] = device0->mech[left].joint[5].jpos + offsets_l.wrist_off;
    joint_state.name[5] ="grasper_joint_1_L";
    joint_state.position[5] = device0->mech[left].joint[6].jpos + offsets_l.grasp1_off;
    joint_state.name[6] ="grasper_joint_2_L";
    joint_state.position[6] = device0->mech[left].joint[7].jpos * -1 + offsets_l.grasp2_off;

    //======================RIGHT ARM===========================
    joint_state.name[7] ="shoulder_R";
    joint_state.position[7] = device0->mech[right].joint[0].jpos + offsets_r.shoulder_off;
    joint_state.name[8] ="elbow_R";
    joint_state.position[8] = device0->mech[right].joint[1].jpos + offsets_r.elbow_off;
    joint_state.name[9] ="insertion_R";
    joint_state.position[9] = device0->mech[right].joint[2].jpos + d4 + offsets_r.insertion_off;
    joint_state.name[10] ="tool_roll_R";
    joint_state.position[10] = device0->mech[right].joint[4].jpos + 45 * d2r + offsets_r.roll_off;
    joint_state.name[11] ="wrist_joint_R";
    joint_state.position[11] = device0->mech[right].joint[5].jpos * -1 + offsets_r.wrist_off;
    joint_state.name[12] ="grasper_joint_1_R";
    joint_state.position[12] = device0->mech[right].joint[6].jpos + offsets_r.grasp1_off;
    joint_state.name[13] ="grasper_joint_2_R";
    joint_state.position[13] = device0->mech[right].joint[7].jpos * -1 + offsets_r.grasp2_off;

    //======================LEFT ARM===========================

    joint_state.name[14] ="shoulder_L2";
    joint_state.position[14] = device0->mech[left].joint[0].jpos_d + offsets_l.shoulder_off;
    joint_state.name[15] ="elbow_L2";
    joint_state.position[15] = device0->mech[left].joint[1].jpos_d + offsets_l.elbow_off;
    joint_state.name[16] ="insertion_L2";
    joint_state.position[16] = device0->mech[left].joint[2].jpos_d + d4 + offsets_l.insertion_off;
    joint_state.name[17] ="tool_roll_L2";
    joint_state.position[17] = device0->mech[left].joint[4].jpos_d - 45 * d2r + offsets_l.roll_off;
    joint_state.name[18] ="wrist_joint_L2";
    joint_state.position[18] = device0->mech[left].joint[5].jpos_d + offsets_l.wrist_off;
    joint_state.name[19] ="grasper_joint_1_L2";
    joint_state.position[19] = device0->mech[left].joint[6].jpos_d + offsets_l.grasp1_off;
    joint_state.name[20] ="grasper_joint_2_L2";
    joint_state.position[20] = device0->mech[left].joint[7].jpos_d * -1 + offsets_l.grasp2_off;

    //======================RIGHT ARM===========================
    joint_state.name[21] ="shoulder_R2";
    joint_state.position[21] = device0->mech[right].joint[0].jpos_d + offsets_r.shoulder_off;
    joint_state.name[22] ="elbow_R2";
    joint_state.position[22] = device0->mech[right].joint[1].jpos_d + offsets_r.elbow_off;
    joint_state.name[23] ="insertion_R2";
    joint_state.position[23] = device0->mech[right].joint[2].jpos_d + d4 + offsets_r.insertion_off;
    joint_state.name[24] ="tool_roll_R2";
    joint_state.position[24] = device0->mech[right].joint[4].jpos_d + 45 * d2r + offsets_r.roll_off;
    joint_state.name[25] ="wrist_joint_R2";
    joint_state.position[25] = device0->mech[right].joint[5].jpos_d * -1 + offsets_r.wrist_off;
    joint_state.name[26] ="grasper_joint_1_R2";
    joint_state.position[26] = device0->mech[right].joint[6].jpos_d + offsets_r.grasp1_off;
    joint_state.name[27] ="grasper_joint_2_R2";
    joint_state.position[27] = device0->mech[right].joint[7].jpos_d * -1 + offsets_r.grasp2_off;

    //Publish the joint states
    joint_publisher.publish(joint_state);

}
示例#27
0
bool LWRHWreal::read(ros::Time time, ros::Duration period)
{
  // update the robot positions
  for (int j = 0; j < LBR_MNJ; j++)
  {
  	joint_position_prev_[j] = joint_position_[j];
    joint_position_[j] = device_->getMsrMsrJntPosition()[j];
    joint_effort_[j] = device_->getMsrJntTrq()[j];
    joint_velocity_[j] = filters::exponentialSmoothing((joint_position_[j]-joint_position_prev_[j])/period.toSec(), joint_velocity_[j], 0.2);
    joint_stiffness_[j] = joint_stiffness_command_[j];
  }
  
  //this->device_->interface->doDataExchange();

  return true;
}
示例#28
0
//static void velodyne_callback(const pcl::PointCloud<velodyne_pointcloud::PointXYZIR>::ConstPtr& input)
static void map_callback(const sensor_msgs::PointCloud2::ConstPtr& input)
{

  if (map_loaded == 0) {
    std::cout << "Loading map data... ";
    map.header.frame_id = "/pointcloud_map_frame";
    
    // Convert the data type(from sensor_msgs to pcl).
    pcl::fromROSMsg(*input, map);
    
    pcl::PointCloud<pcl::PointXYZI>::Ptr map_ptr(new pcl::PointCloud<pcl::PointXYZI>(map));
    // Setting point cloud to be aligned to.
    ndt.setInputTarget(map_ptr);
	
    // Setting NDT parameters to default values
    ndt.setMaximumIterations(iter);
    ndt.setResolution(ndt_res);
    ndt.setStepSize(step_size);
    ndt.setTransformationEpsilon(trans_eps);
    
    map_loaded = 1;
    std::cout << "Map Loaded." << std::endl;
  }



    if (map_loaded == 1 && init_pos_set == 1) {
        callback_start = ros::Time::now();

        static tf::TransformBroadcaster br;
        tf::Transform transform;
        tf::Quaternion q;

        tf::Quaternion q_control;

        // 1 scan
	/*
        pcl::PointCloud<pcl::PointXYZI> scan;
        pcl::PointXYZI p;
        scan.header = input->header;
        scan.header.frame_id = "velodyne_scan_frame";
	*/

        ros::Time scan_time;
        scan_time.sec = additional_map.header.stamp / 1000000.0;
        scan_time.nsec = (additional_map.header.stamp - scan_time.sec * 1000000.0) * 1000.0;

        /*
         std::cout << "scan.header.stamp: " << scan.header.stamp << std::endl;
         std::cout << "scan_time: " << scan_time << std::endl;
         std::cout << "scan_time.sec: " << scan_time.sec << std::endl;
         std::cout << "scan_time.nsec: " << scan_time.nsec << std::endl;
         */

        t1_start = ros::Time::now();
	/*
        for (pcl::PointCloud<velodyne_pointcloud::PointXYZIR>::const_iterator item = input->begin(); item != input->end(); item++) {
            p.x = (double) item->x;
            p.y = (double) item->y;
            p.z = (double) item->z;

            scan.points.push_back(p);
        }
	*/
	//	pcl::fromROSMsg(*input, scan);
        t1_end = ros::Time::now();
        d1 = t1_end - t1_start;

        Eigen::Matrix4f t(Eigen::Matrix4f::Identity());

	//        pcl::PointCloud<pcl::PointXYZI>::Ptr scan_ptr(new pcl::PointCloud<pcl::PointXYZI>(scan));
        pcl::PointCloud<pcl::PointXYZI>::Ptr filtered_additional_map_ptr(new pcl::PointCloud<pcl::PointXYZI>);

        // Downsampling the velodyne scan using VoxelGrid filter
        t2_start = ros::Time::now();
        pcl::VoxelGrid<pcl::PointXYZI> voxel_grid_filter;
        voxel_grid_filter.setLeafSize(voxel_leaf_size, voxel_leaf_size, voxel_leaf_size);
        voxel_grid_filter.setInputCloud(additional_map_ptr);
        voxel_grid_filter.filter(*filtered_additional_map_ptr);
        t2_end = ros::Time::now();
        d2 = t2_end - t2_start;

        // Setting point cloud to be aligned.
        ndt.setInputSource(filtered_additional_map_ptr);

        // Guess the initial gross estimation of the transformation
        t3_start = ros::Time::now();
        tf::Matrix3x3 init_rotation;

        guess_pos.x = previous_pos.x + offset_x;
        guess_pos.y = previous_pos.y + offset_y;
        guess_pos.z = previous_pos.z + offset_z;
        guess_pos.roll = previous_pos.roll;
        guess_pos.pitch = previous_pos.pitch;
        guess_pos.yaw = previous_pos.yaw + offset_yaw;

        Eigen::AngleAxisf init_rotation_x(guess_pos.roll, Eigen::Vector3f::UnitX());
        Eigen::AngleAxisf init_rotation_y(guess_pos.pitch, Eigen::Vector3f::UnitY());
        Eigen::AngleAxisf init_rotation_z(guess_pos.yaw, Eigen::Vector3f::UnitZ());

        Eigen::Translation3f init_translation(guess_pos.x, guess_pos.y, guess_pos.z);

        Eigen::Matrix4f init_guess = (init_translation * init_rotation_z * init_rotation_y * init_rotation_x).matrix();

        t3_end = ros::Time::now();
        d3 = t3_end - t3_start;

        t4_start = ros::Time::now();
        pcl::PointCloud<pcl::PointXYZI>::Ptr output_cloud(new pcl::PointCloud<pcl::PointXYZI>);
        ndt.align(*output_cloud, init_guess);

        t = ndt.getFinalTransformation();
	pcl::PointCloud<pcl::PointXYZI>::Ptr transformed_additional_map_ptr (new pcl::PointCloud<pcl::PointXYZI>());
	transformed_additional_map_ptr->header.frame_id = "/map";
	pcl::transformPointCloud(*additional_map_ptr, *transformed_additional_map_ptr, t);
	sensor_msgs::PointCloud2::Ptr msg_ptr(new sensor_msgs::PointCloud2);

	pcl::toROSMsg(*transformed_additional_map_ptr, *msg_ptr);
	msg_ptr->header.frame_id = "/map";
	ndt_map_pub.publish(*msg_ptr);

	// Writing Point Cloud data to PCD file
	pcl::io::savePCDFileASCII("global_map.pcd", *transformed_additional_map_ptr);
	std::cout << "Saved " << transformed_additional_map_ptr->points.size() << " data points to global_map.pcd." << std::endl;

	pcl::PointCloud<pcl::PointXYZRGB> output;
	output.width = transformed_additional_map_ptr->width;
	output.height = transformed_additional_map_ptr->height;
	output.points.resize(output.width * output.height);

	for(size_t i = 0; i < output.points.size(); i++){
	  output.points[i].x = transformed_additional_map_ptr->points[i].x;
	  output.points[i].y = transformed_additional_map_ptr->points[i].y;
	  output.points[i].z = transformed_additional_map_ptr->points[i].z;
	  output.points[i].rgb = 255 << 8;
	}

	pcl::io::savePCDFileASCII("global_map_rgb.pcd", output);
	std::cout << "Saved " << output.points.size() << " data points to global_map_rgb.pcd." << std::endl;

        t4_end = ros::Time::now();
        d4 = t4_end - t4_start;

        t5_start = ros::Time::now();
        /*
         tf::Vector3 origin;
         origin.setValue(static_cast<double>(t(0,3)), static_cast<double>(t(1,3)), static_cast<double>(t(2,3)));
         */

        tf::Matrix3x3 tf3d;

        tf3d.setValue(static_cast<double>(t(0, 0)), static_cast<double>(t(0, 1)), static_cast<double>(t(0, 2)), static_cast<double>(t(1, 0)), static_cast<double>(t(1, 1)), static_cast<double>(t(1, 2)), static_cast<double>(t(2, 0)), static_cast<double>(t(2, 1)), static_cast<double>(t(2, 2)));

        // Update current_pos.
        current_pos.x = t(0, 3);
        current_pos.y = t(1, 3);
        current_pos.z = t(2, 3);
        tf3d.getRPY(current_pos.roll, current_pos.pitch, current_pos.yaw, 1);

	// control_pose
	current_pos_control.roll = current_pos.roll;
	current_pos_control.pitch = current_pos.pitch;
	current_pos_control.yaw = current_pos.yaw - angle / 180.0 * M_PI;
	double theta = current_pos_control.yaw;
	current_pos_control.x = cos(theta) * (-control_shift_x) + sin(theta) * (-control_shift_y) + current_pos.x;
	current_pos_control.y = -sin(theta) * (-control_shift_x) + cos(theta) * (-control_shift_y) + current_pos.y;
	current_pos_control.z = current_pos.z - control_shift_z;

        // transform "/velodyne" to "/map"
#if 0
        transform.setOrigin(tf::Vector3(current_pos.x, current_pos.y, current_pos.z));
        q.setRPY(current_pos.roll, current_pos.pitch, current_pos.yaw);
        transform.setRotation(q);
#else
	//
	// FIXME:
	// We corrected the angle of "/velodyne" so that pure_pursuit
	// can read this frame for the control.
	// However, this is not what we want because the scan of Velodyne
	// looks unmatched for the 3-D map on Rviz.
	// What we really want is to make another TF transforming "/velodyne"
	// to a new "/ndt_points" frame and modify pure_pursuit to
	// read this frame instead of "/velodyne".
	// Otherwise, can pure_pursuit just use "/ndt_frame"?
	//
        transform.setOrigin(tf::Vector3(current_pos_control.x, current_pos_control.y, current_pos_control.z));
        q.setRPY(current_pos_control.roll, current_pos_control.pitch, current_pos_control.yaw);
        transform.setRotation(q);
#endif

	q_control.setRPY(current_pos_control.roll, current_pos_control.pitch, current_pos_control.yaw);

        /*
         std::cout << "ros::Time::now(): " << ros::Time::now() << std::endl;
         std::cout << "ros::Time::now().sec: " << ros::Time::now().sec << std::endl;
         std::cout << "ros::Time::now().nsec: " << ros::Time::now().nsec << std::endl;
         */

	//        br.sendTransform(tf::StampedTransform(transform, scan_time, "map", "velodyne"));

        static tf::TransformBroadcaster pose_broadcaster;
        tf::Transform pose_transform;
        tf::Quaternion pose_q;

/*        pose_transform.setOrigin(tf::Vector3(0, 0, 0));
        pose_q.setRPY(0, 0, 0);
        pose_transform.setRotation(pose_q);
        pose_broadcaster.sendTransform(tf::StampedTransform(pose_transform, scan_time, "map", "ndt_frame"));
*/
        // publish the position
       // ndt_pose_msg.header.frame_id = "/ndt_frame";
        ndt_pose_msg.header.frame_id = "/map";
        ndt_pose_msg.header.stamp = scan_time;
        ndt_pose_msg.pose.position.x = current_pos.x;
        ndt_pose_msg.pose.position.y = current_pos.y;
        ndt_pose_msg.pose.position.z = current_pos.z;
        ndt_pose_msg.pose.orientation.x = q.x();
        ndt_pose_msg.pose.orientation.y = q.y();
        ndt_pose_msg.pose.orientation.z = q.z();
        ndt_pose_msg.pose.orientation.w = q.w();

        static tf::TransformBroadcaster pose_broadcaster_control;
        tf::Transform pose_transform_control;
        tf::Quaternion pose_q_control;

     /*   pose_transform_control.setOrigin(tf::Vector3(0, 0, 0));
        pose_q_control.setRPY(0, 0, 0);
        pose_transform_control.setRotation(pose_q_control);
        pose_broadcaster_control.sendTransform(tf::StampedTransform(pose_transform_control, scan_time, "map", "ndt_frame"));
*/
        // publish the position
     //   control_pose_msg.header.frame_id = "/ndt_frame";
        control_pose_msg.header.frame_id = "/map";
        control_pose_msg.header.stamp = scan_time;
        control_pose_msg.pose.position.x = current_pos_control.x;
        control_pose_msg.pose.position.y = current_pos_control.y;
        control_pose_msg.pose.position.z = current_pos_control.z;
        control_pose_msg.pose.orientation.x = q_control.x();
        control_pose_msg.pose.orientation.y = q_control.y();
        control_pose_msg.pose.orientation.z = q_control.z();
        control_pose_msg.pose.orientation.w = q_control.w();

        /*
         std::cout << "ros::Time::now(): " << ros::Time::now() << std::endl;
         std::cout << "ros::Time::now().sec: " << ros::Time::now().sec << std::endl;
         std::cout << "ros::Time::now().nsec: " << ros::Time::now().nsec << std::endl;
         */

        ndt_pose_pub.publish(ndt_pose_msg);
        control_pose_pub.publish(control_pose_msg);

        t5_end = ros::Time::now();
        d5 = t5_end - t5_start;

#ifdef OUTPUT
        // Writing position to position_log.txt
        std::ofstream ofs("position_log.txt", std::ios::app);
        if (ofs == NULL) {
            std::cerr << "Could not open 'position_log.txt'." << std::endl;
            exit(1);
        }
        ofs << current_pos.x << " " << current_pos.y << " " << current_pos.z << " " << current_pos.roll << " " << current_pos.pitch << " " << current_pos.yaw << std::endl;
#endif

        // Calculate the offset (curren_pos - previous_pos)
        offset_x = current_pos.x - previous_pos.x;
        offset_y = current_pos.y - previous_pos.y;
        offset_z = current_pos.z - previous_pos.z;
        offset_yaw = current_pos.yaw - previous_pos.yaw;

        // Update position and posture. current_pos -> previous_pos
        previous_pos.x = current_pos.x;
        previous_pos.y = current_pos.y;
        previous_pos.z = current_pos.z;
        previous_pos.roll = current_pos.roll;
        previous_pos.pitch = current_pos.pitch;
        previous_pos.yaw = current_pos.yaw;

        callback_end = ros::Time::now();
        d_callback = callback_end - callback_start;

        std::cout << "-----------------------------------------------------------------" << std::endl;
        std::cout << "Sequence number: " << input->header.seq << std::endl;
        std::cout << "Number of scan points: " << additional_map_ptr->size() << " points." << std::endl;
        std::cout << "Number of filtered scan points: " << filtered_additional_map_ptr->size() << " points." << std::endl;
        std::cout << "NDT has converged: " << ndt.hasConverged() << std::endl;
        std::cout << "Fitness score: " << ndt.getFitnessScore() << std::endl;
        std::cout << "Number of iteration: " << ndt.getFinalNumIteration() << std::endl;
        std::cout << "(x,y,z,roll,pitch,yaw):" << std::endl;
        std::cout << "(" << current_pos.x << ", " << current_pos.y << ", " << current_pos.z << ", " << current_pos.roll << ", " << current_pos.pitch << ", " << current_pos.yaw << ")" << std::endl;
        std::cout << "Transformation Matrix:" << std::endl;
        std::cout << t << std::endl;
#ifdef VIEW_TIME
        std::cout << "Duration of velodyne_callback: " << d_callback.toSec() << " secs." << std::endl;
        std::cout << "Adding scan points: " << d1.toSec() << " secs." << std::endl;
        std::cout << "VoxelGrid Filter: " << d2.toSec() << " secs." << std::endl;
        std::cout << "Guessing the initial gross estimation: " << d3.toSec() << " secs." << std::endl;
        std::cout << "NDT: " << d4.toSec() << " secs." << std::endl;
        std::cout << "tf: " << d5.toSec() << " secs." << std::endl;
#endif
        std::cout << "-----------------------------------------------------------------" << std::endl;
    }
}
int main(int argc, char **argv) {
    // Node setup
    ros::init(argc, argv, "quad_node");
    ros::NodeHandle n;
    ros::NodeHandle priv("~");
    prev_time = ros::Time::now();

#ifdef ROVER_1
    ROS_ERROR("WHY DOES THIS ROBOT EXIST, AND WHY ARE YOU TESTING CODE ON IT?!");
#endif

    // Serial port parameter
    std::string port[2];
    priv.param("serial_port1", port[0], std::string("/dev/motor_controller1"));
    priv.param("serial_port2", port[1], std::string(""));

    //priv.param("config_only", configonly, false);

    //if no 2nd port is specified, assume it's intentional for testing
    if (port[1].size()==0)
      NUM_VALID_CONTROLLER_PORTS=1;

    // Wheel diameter parameter
    priv.param("wheel_diameter", wheel_diameter, 0.3048);

    wheel_circumference = wheel_diameter * M_PI;

    // Wheel base length
    priv.param("robot_width", robot_width, 0.9144);

    // Odom Frame id parameter
    priv.param("odom_frame_id", odom_frame_id, std::string("odom"));

    // Load up some covariances from parameters
    priv.param("rotation_covariance",rot_cov, 1.0);
    priv.param("position_covariance",pos_cov, 1.0);

    priv.param("spam",spam, true);

    // Odometry Publisher
  odom_pub = n.advertise<nav_msgs::Odometry>("odom", 5);

  // Encoder Publisher
  encoder_pub = n.advertise<StampedEncoders>("encoders", 5);

  // TF Broadcaster
  odom_broadcaster = new tf::TransformBroadcaster;

  estoppub = n.advertise<std_msgs::Bool>("estopState", 1, true);
  std_msgs::Bool b;
  b.data = true;
  estoppub.publish(b);
  voltpub = n.advertise<std_msgs::Float32>("Voltage", 1);

        telempub[0] = n.advertise<std_msgs::String>("mc1/telemetry", 1);
        telempub[1] = n.advertise<std_msgs::String>("mc2/telemetry", 1);

  // cmd_vel Subscriber
  ros::Subscriber sub = n.subscribe("cmd_vel", 1, cmd_velCallback);

  // raw motor sub for mc[0]
  ros::Subscriber rawsub1 = n.subscribe("mc1/raw", 1, raw_callback1);
  // raw motor sub for mc[1]
  ros::Subscriber rawsub2 = n.subscribe("mc2/raw", 1, raw_callback2);

  ros::ServiceServer estopper = n.advertiseService("estop", estop_callback);

  ros::ServiceServer sped = n.advertiseService("maxspeed", maxspeed_callback);

  ros::ServiceServer spedd = n.advertiseService("speedcoefficient", speedcoefficient);

  ros::Subscriber estopsub = n.subscribe("setEstop", 1, estopsub_callback);

  while(ros::ok()) {
    erroroccurred = false;
    for (int i=0;i<NUM_VALID_CONTROLLER_PORTS;i++){
      if (configonly && configured[i]) continue;
      ROS_INFO("MDC2250[%d] connecting to port %s", i, port[i].c_str());
      ROS_INFO("config_only = %s", configonly ? "true" : "false");
      try {
        mc[i] = new MDC2250();
        mc[i]->setExceptionHandler(i==0 ? errorMsgCallback1 : errorMsgCallback2);
        mc[i]->setInfoHandler(i==0 ? infoMsgCallback1 : infoMsgCallback2);
        //                      10000, true
        mc[i]->connect(port[i], 10000, true);
        if (configonly)
          for(int j=1;j<=2;j++)
          {
            mc[i]->setEncoderPulsesPerRotation(j, ENCODER_CPR*4);
            mc[i]->setEncoderUsage(j, mdc2250::constants::feedback, j==1, j==2);
            mc[i]->setMaxRPMValue(j, ENCODER_RPM_AT_1000_EFFORT);
            mc[i]->setOperatingMode(j, mdc2250::constants::closedloop_speed);
          }
        if (configonly && !erroroccurred)
        {
          mc[i]->commitConfig();
          configured[i] = true;
        }
        if (!configonly)
        {
          init(mc[i]);
        }
      } catch(ConnectionFailedException &e) {
        ROS_ERROR("Failed to connect to the MDC2250[%d]: %s", i, e.what());
        erroroccurred = true;
      } catch(std::exception &e) {
        ROS_ERROR("SOME exception occured while connecting to the MDC2250[%d]: %s", i, e.what());
        erroroccurred = true;
      }
    }
    if (!erroroccurred && isConnected())
    {
      bool estopped = false;
      for(int i=0;i<NUM_VALID_CONTROLLER_PORTS;i++)
        estopped |= mc[i]->isEstopped();
      std_msgs::Bool b;
      b.data = estopped;
      estoppub.publish(b);
      for(int i=0;i<NUM_VALID_CONTROLLER_PORTS;i++)
        lasttick[i]=ros::Time::now();
      erroroccurred = false;
    }
    bool conly = configonly;
    bool err = erroroccurred;
    bool conn = isConnected();
    bool ok = ros::ok();
    while(!conly && !err && conn && ok) {
      ros::spinOnce();
      ros::Duration(0.001).sleep();
      static ros::Time n = ros::Time::now();
      for(int i=0;i<NUM_VALID_CONTROLLER_PORTS;i++)
      {
        static ros::Duration d = n - lasttick[i];
        if (d.toSec() > 0.5)
        {
          ROS_WARN("TIMED OUT!");
          break;
        }
      }
      conly = configonly;
      err = erroroccurred;
      conn = isConnected();
      ok = ros::ok();
    }
    ROS_WARN("FAILURE REASON: configonly=%s errored=%s !connected=%s !ok=%s",configonly?"true":"false",erroroccurred?"true":"false",!conn?"true":"false",!ok?"true":"false");
    for(int i=0;i<NUM_VALID_CONTROLLER_PORTS;i++)
    {
      if (mc[i] != NULL && mc[i]->isConnected())
      {
        mc[i]->disconnect();
        mc[i] = NULL;
      }
    }
    if((configonly && !erroroccurred) || !ros::ok())
    {
      break;
    }
    ROS_INFO("Will try to reconnect to the MCD2250 in 5 seconds.");
    ros::Duration(5).sleep();
  }

  ROS_WARN("Broke out of infinite loop");

  return 0;
}
示例#30
0
void LWRHWreal::write(ros::Time time, ros::Duration period)
{
  static int warning = 0;

  for (int j = 0; j < LBR_MNJ; j++)
  {
    // fake velocity command computed as:
    // (desired position - current position) / period, to avoid speed limit error
    joint_velocity_command_[j] = (joint_position_command_[j]-joint_position_[j])/period.toSec();
  }

  // enforce limits
  ej_sat_interface_.enforceLimits(period);
  ej_limits_interface_.enforceLimits(period);
  vj_sat_interface_.enforceLimits(period);
  vj_limits_interface_.enforceLimits(period);
  pj_sat_interface_.enforceLimits(period);
  pj_limits_interface_.enforceLimits(period);

  // write to real robot
  float newJntPosition[LBR_MNJ];
  float newJntStiff[LBR_MNJ];
  float newJntDamp[LBR_MNJ];
  float newJntAddTorque[LBR_MNJ];

  if ( device_->isPowerOn() )
  { 
    // check control mode
    //if ( device_->getState() == FRI_STATE_CMD )
    //{
      // check control scheme
      if( device_->getCurrentControlScheme() == FRI_CTRL_JNT_IMP )
      {
        for (int i = 0; i < LBR_MNJ; i++)
        {
            newJntPosition[i] = joint_position_command_[i]; // zero for now
            newJntAddTorque[i] = joint_effort_command_[i]; // comes from the controllers
            newJntStiff[i] = joint_stiffness_command_[i]; // default values for now
            newJntDamp[i] = joint_damping_command_[i]; // default values for now
        }

        // only joint impedance control is performed, since it is the only one that provide access to the joint torque directly
        // note that stiffness and damping are 0, as well as the position, since only effort is allowed to be sent
        // the KRC adds the dynamic terms, such that if zero torque is sent, the robot apply torques necessary to mantain the robot in the current position
        // the only interface is effort, thus any other action you want to do, you have to compute the added torque and send it through a controller
        device_->doJntImpedanceControl(newJntPosition, newJntStiff, newJntDamp, newJntAddTorque, true);
      } 
      else if( device_->getCurrentControlScheme() == FRI_CTRL_POSITION )
      {
        for (int i = 0; i < LBR_MNJ; i++)
        {
            newJntPosition[i] = joint_position_command_[i]; 
        }

        // only joint impedance control is performed, since it is the only one that provide access to the joint torque directly
        // note that stiffness and damping are 0, as well as the position, since only effort is allowed to be sent
        // the KRC adds the dynamic terms, such that if zero torque is sent, the robot apply torques necessary to mantain the robot in the current position
        // the only interface is effort, thus any other action you want to do, you have to compute the added torque and send it through a controller
        device_->doPositionControl(newJntPosition, true);
      } 
      else if( this->device_->getCurrentControlScheme() == FRI_CTRL_OTHER ) // Gravity compensation: just read status, but we have to keep FRI alive
      {
        device_->doDataExchange();
      }
    //}
  }

  // Stop request is issued from the other side
  /*
  if ( this->device_->interface->getFrmKRLInt(0) == -1)
  {
      ROS_INFO(" Stop request issued from the other side");
      this->stop();
  }*/

  // Quality change leads to output of statistics
  // for informational reasons
  //
  /*if ( this->device_->interface->getQuality() != this->device_->lastQuality )
  {
      ROS_INFO_STREAM("Quality change detected "<< this->device_->interface->getQuality()<< " \n");
      ROS_INFO_STREAM("" << this->device_->interface->getMsrBuf().intf);
      this->device_->lastQuality = this->device_->interface->getQuality();
  }*/

  // this is already done in the doJntImpedance Control setting to true the last flag
  // this->device_->interface->doDataExchange();

  return;
}