// Computes specificity of the model by comparing random samples of the model with the test mashes. float specificity(Logger& logger, StatisticalModelType::Pointer model, const MeshDataList& testMeshes, unsigned numberOfSamples) { // draw a number of samples and compute its distance to the closest training dataset double accumulatedDistToClosestTrainingShape = 0; for (unsigned i = 0; i < numberOfSamples; i++) { MeshType::Pointer sample = model->DrawSample(); double minDist = std::numeric_limits<double>::max(); for (MeshDataList::const_iterator it = testMeshes.begin(); it != testMeshes.end(); ++it) { MeshType::Pointer testMesh = it->first; // before we compute the distances between the meshes, we normalize the scale by scaling them // to optimally match the mean. This makes sure that models that include scale and those that have them normalized // ar etreated the same. MeshType::Pointer sampledScaledToMean = normalizeScale(sample, model->DrawMean()); MeshType::Pointer testScaledToMean = normalizeScale(testMesh, model->DrawMean()); double dist = computeAverageDistance(testScaledToMean, sampledScaledToMean, ConfigParameters::numSamplingPointsSpecificity); logger.Get(logINFO) << "distance " << dist << std::endl; if (dist < minDist) { minDist = dist; } } logger.Get(logINFO) << "closest distance for sample " << i << ": " << minDist << std::endl; accumulatedDistToClosestTrainingShape += minDist; } double avgDist = accumulatedDistToClosestTrainingShape / numberOfSamples; logger.Get(logINFO) << "average distance " << avgDist << std::endl; return avgDist; }
void buildImageIntensityModelOnROI(const char* referenceFilename, const char* maskFilename, const char* dir, const char* outputImageFilename) { typedef itk::PCAModelBuilder<RepresenterType> ModelBuilderType; typedef itk::StatisticalModel<RepresenterType> StatisticalModelType; typedef std::vector<std::string> StringVectorType; typedef itk::DataManager<RepresenterType> DataManagerType; RepresenterType::Pointer representer = RepresenterType::New(); typedef itk::ImageFileReader< ImageType > MaskReaderType; MaskReaderType::Pointer maskReader = MaskReaderType::New(); maskReader->SetFileName( maskFilename ); maskReader->Update(); representer->SetReference( ReadImageFromFile(referenceFilename), maskReader->GetOutput() ); StringVectorType filenames; getdir(dir, filenames, ".vtk"); DataManagerType::Pointer dataManager = DataManagerType::New(); dataManager->SetRepresenter(representer); for (StringVectorType::const_iterator it = filenames.begin(); it != filenames.end(); it++) { std::string fullpath = (std::string(dir) + "/") + *it; dataManager->AddDataset( ReadImageFromFile(fullpath), fullpath.c_str()); } ModelBuilderType::Pointer pcaModelBuilder = ModelBuilderType::New(); StatisticalModelType::Pointer model = pcaModelBuilder->BuildNewModel(dataManager->GetSampleDataStructure(), 0); std::cout<<"dimensionality of the data: "<<model->GetDomain().GetNumberOfPoints()<<", dimension of the images: "<<(*dataManager->GetSampleDataStructure().begin())->GetSample()->GetLargestPossibleRegion().GetNumberOfPixels()<<std::endl; std::cout<<"writing the mean sample to a png file..."<<std::endl; typedef itk::ImageFileWriter< ImageType > ImageWriterType; ImageWriterType::Pointer writer = ImageWriterType::New(); writer->SetFileName( outputImageFilename ); writer->SetInput(model->DrawSample()); writer->Update(); }
int main(int argc, char* argv[]) { //const char* SSMFile = argv[1]; const char* SSMFile = "D:\\Workspace\\ASM\\projects\\LiverSegbyASM\\experiments\\buidModel\\shape\\output_20140815\\StatisticalShapeModel_20140815.h5"; const char* targetMeshFile = "D:\\Workspace\\ASM\\projects\\LiverSegbyASM\\experiments\\training\\shape\\output_20140815\\liverMesh.46.vtk"; const char* configFile = "D:\\Workspace\\LiverSegByASM\\liversegbyasm-v2\\Data\\config.txt"; KM_DEBUG_INFO("Load config file..."); km::Config::loadConfig(configFile); const int Dimension = 3; typedef double MeshPixelType; typedef itk::SimplexMeshRepresenter<MeshPixelType, Dimension> RepresenterType; typedef itk::StatisticalModel<RepresenterType> StatisticalModelType; typedef RepresenterType::MeshType MeshType; StatisticalModelType::Pointer model = StatisticalModelType::New(); model->Load( SSMFile ); MeshType::Pointer meanShape = model->DrawMean(); MeshType::PointType centroid = km::getMeshCentroid<MeshType>(meanShape); typedef itk::AffineTransform<double, Dimension> RigidTransformType; typedef itk::StatisticalShapeModelTransform<RepresenterType, double, Dimension> ShapeTransformType; ShapeTransformType::Pointer shapeTransform = ShapeTransformType::New(); shapeTransform->SetStatisticalModel(model); shapeTransform->SetIdentity(); RigidTransformType::Pointer rigidTransform = RigidTransformType::New(); rigidTransform->SetCenter(centroid); rigidTransform->SetIdentity(); typedef km::SSMUtils<MeshType, StatisticalModelType, RigidTransformType, ShapeTransformType> SSMUtilsType; SSMUtilsType ssmUtils; ssmUtils.SetSSM(model); ssmUtils.SetRigidTransform(rigidTransform); ssmUtils.SetShapeTransform(shapeTransform); ssmUtils.SetNumberOfClusters(km::g_number_clusters); ssmUtils.Initialize(); MeshType::Pointer targetMesh = km::readMesh<MeshType>(targetMeshFile); MeshType::Pointer outputMesh = km::cloneMesh<MeshType, MeshType>(meanShape); km::writeMesh<MeshType>("targetMesh.vtk", targetMesh); km::writeMesh<MeshType>("unfittedMesh.vtk", meanShape); for (int i=0;i<1;i++) { std::cout<<"****************iter: "<<i<<"**************"<<std::endl; ssmUtils.Update(targetMesh, outputMesh); char filename[1024]; sprintf(filename, "fittedMesh-%d.vtk", i); km::writeMesh<MeshType>(filename, outputMesh); ssmUtils.PrintTransform(); } //km::assigneMesh<MeshType>(meanShape, 0); //ssmUtils.cluster(1); //for (int i=0;i<meanShape->GetNumberOfPoints();i++) //{ // meanShape->SetPointData(i, ssmUtils.getShapeCluster(i)->clusterId); //} //km::writeMesh<MeshType>("clusteredMesh.vtk", meanShape); system("pause"); return 0; }
float compactness(Logger& logger, StatisticalModelType::Pointer model) { return model->GetNumberOfPrincipalComponents(); }