// Computes specificity of the model by comparing random samples of the model with the test mashes. float specificity(Logger& logger, StatisticalModelType::Pointer model, const MeshDataList& testMeshes, unsigned numberOfSamples) { // draw a number of samples and compute its distance to the closest training dataset double accumulatedDistToClosestTrainingShape = 0; for (unsigned i = 0; i < numberOfSamples; i++) { MeshType::Pointer sample = model->DrawSample(); double minDist = std::numeric_limits<double>::max(); for (MeshDataList::const_iterator it = testMeshes.begin(); it != testMeshes.end(); ++it) { MeshType::Pointer testMesh = it->first; // before we compute the distances between the meshes, we normalize the scale by scaling them // to optimally match the mean. This makes sure that models that include scale and those that have them normalized // ar etreated the same. MeshType::Pointer sampledScaledToMean = normalizeScale(sample, model->DrawMean()); MeshType::Pointer testScaledToMean = normalizeScale(testMesh, model->DrawMean()); double dist = computeAverageDistance(testScaledToMean, sampledScaledToMean, ConfigParameters::numSamplingPointsSpecificity); logger.Get(logINFO) << "distance " << dist << std::endl; if (dist < minDist) { minDist = dist; } } logger.Get(logINFO) << "closest distance for sample " << i << ": " << minDist << std::endl; accumulatedDistToClosestTrainingShape += minDist; } double avgDist = accumulatedDistToClosestTrainingShape / numberOfSamples; logger.Get(logINFO) << "average distance " << avgDist << std::endl; return avgDist; }
void buildImageIntensityModelOnROI(const char* referenceFilename, const char* maskFilename, const char* dir, const char* outputImageFilename) { typedef itk::PCAModelBuilder<RepresenterType> ModelBuilderType; typedef itk::StatisticalModel<RepresenterType> StatisticalModelType; typedef std::vector<std::string> StringVectorType; typedef itk::DataManager<RepresenterType> DataManagerType; RepresenterType::Pointer representer = RepresenterType::New(); typedef itk::ImageFileReader< ImageType > MaskReaderType; MaskReaderType::Pointer maskReader = MaskReaderType::New(); maskReader->SetFileName( maskFilename ); maskReader->Update(); representer->SetReference( ReadImageFromFile(referenceFilename), maskReader->GetOutput() ); StringVectorType filenames; getdir(dir, filenames, ".vtk"); DataManagerType::Pointer dataManager = DataManagerType::New(); dataManager->SetRepresenter(representer); for (StringVectorType::const_iterator it = filenames.begin(); it != filenames.end(); it++) { std::string fullpath = (std::string(dir) + "/") + *it; dataManager->AddDataset( ReadImageFromFile(fullpath), fullpath.c_str()); } ModelBuilderType::Pointer pcaModelBuilder = ModelBuilderType::New(); StatisticalModelType::Pointer model = pcaModelBuilder->BuildNewModel(dataManager->GetSampleDataStructure(), 0); std::cout<<"dimensionality of the data: "<<model->GetDomain().GetNumberOfPoints()<<", dimension of the images: "<<(*dataManager->GetSampleDataStructure().begin())->GetSample()->GetLargestPossibleRegion().GetNumberOfPixels()<<std::endl; std::cout<<"writing the mean sample to a png file..."<<std::endl; typedef itk::ImageFileWriter< ImageType > ImageWriterType; ImageWriterType::Pointer writer = ImageWriterType::New(); writer->SetFileName( outputImageFilename ); writer->SetInput(model->DrawSample()); writer->Update(); }