Beispiel #1
0
static void
test_arrays (ROI roi)
{
    const float *a = (const float *)imgA.localpixels(); ASSERT(a);
    const float *b = (const float *)imgB.localpixels(); ASSERT(b);
    float *r = (float *)imgR.localpixels(); ASSERT(r);
    for (int x = 0; x < size; ++x)
        r[x] = a[x] * a[x] + b[x];
}
Beispiel #2
0
ImageBuf *
SMT::reconstructBig()
{
	if( verbose )cout << "INFO: Reconstructing Big\n";
	ImageBuf *tileBuf = NULL;

	//Load tilemap from SMF
	ImageBuf *tilemapBuf = NULL;
	if( is_smf( tilemapFile ) ) {
		SMF sourcesmf(tilemapFile);
		tilemapBuf = sourcesmf.getTilemap();
	}
	// Else load tilemap from image
	if( !tilemapBuf ) {
		tilemapBuf = new ImageBuf( tilemapFile );
		tilemapBuf->read(0,0,false,TypeDesc::UINT);
		if( !tilemapBuf->initialized() ) {
			delete tilemapBuf;
			if( !quiet )printf("ERROR: %s cannot be loaded.\n",
				tilemapFile.c_str());
			return NULL;
		}
	}
	//TODO Else load tilemap from csv

	unsigned int *tilemap = (unsigned int *)tilemapBuf->localpixels();
	int xtiles = tilemapBuf->spec().width;
	int ztiles = tilemapBuf->spec().height;

	// allocate enough data for our large image
	ImageSpec bigSpec( xtiles * tileRes, ztiles * tileRes, 4, TypeDesc::UINT8 );
	ImageBuf *bigBuf = new ImageBuf( "big", bigSpec );

	// Loop through tile index
	for( int z = 0; z < ztiles; ++z ) {
		for( int x = 0; x < xtiles; ++x ) {
			int tilenum = tilemap[z * xtiles + x];
			tileBuf = getTile(tilenum);

			int xbegin = tileRes * x;
			int ybegin = tileRes * z;
			ImageBufAlgo::paste(*bigBuf, xbegin, ybegin, 0, 0, *tileBuf);

			delete [] (unsigned char *)tileBuf->localpixels();
			delete tileBuf;
			if( verbose )printf("\033[0GINFO: Processing tile %i of %i.",
				z * xtiles + x, xtiles * ztiles );
		}
	}
	cout << endl;

	delete tilemapBuf;
	if( is_smf( tilemapFile ) ) delete [] tilemap;
	
	return bigBuf;	
}
Beispiel #3
0
static void
test_arrays_like_image_multithread (ROI roi)
{
    const float *a = (const float *)imgA.localpixels(); ASSERT(a);
    const float *b = (const float *)imgB.localpixels(); ASSERT(b);
    float *r = (float *)imgR.localpixels(); ASSERT(r);
    int nchannels = imgA.nchannels();
    for (int y = roi.ybegin; y < roi.yend; ++y) {
        for (int x = roi.xbegin; x < roi.xend; ++x) {
            int i = (y*xres + x) * nchannels;
            for (int c = 0; c < nchannels; ++c)
                r[i+c] = a[i+c] * a[i+c] + b[i+c];
        }
    }
}
Beispiel #4
0
static void
test_arrays_like_image (ROI roi)
{
    const float *a = (const float *)imgA.localpixels(); ASSERT(a);
    const float *b = (const float *)imgB.localpixels(); ASSERT(b);
    float *r = (float *)imgR.localpixels(); ASSERT(r);
    int nchannels = imgA.nchannels();
    for (int y = 0; y < yres; ++y) {
        for (int x = 0; x < xres; ++x) {
            int i = (y*xres + x) * nchannels;
            for (int c = 0; c < nchannels; ++c)
                r[i+c] = a[i+c] * a[i+c] + b[i+c];
        }
    }
}
Beispiel #5
0
static void
test_arrays_simd4 (ROI roi)
{
    const float *a = (const float *)imgA.localpixels(); ASSERT(a);
    const float *b = (const float *)imgB.localpixels(); ASSERT(b);
    float *r = (float *)imgR.localpixels(); ASSERT(r);
    int x, end4 = size - (size&3);
    for (x = 0; x < end4; x += 4, a += 4, b += 4, r += 4) {
        simd::vfloat4 a_simd(a), b_simd(b);
        *(simd::vfloat4 *)r = a_simd * a_simd + b_simd;
    }
    for ( ; x < size; ++x, ++a, ++b, ++r) {
        *r = a[0]*a[0] + b[0];
    }
}
Beispiel #6
0
ImageBuf::ImageBuf (const ImageBuf &src)
    : m_name(src.m_name), m_fileformat(src.m_fileformat),
      m_nsubimages(src.m_nsubimages),
      m_current_subimage(src.m_current_subimage),
      m_current_miplevel(src.m_current_miplevel),
      m_nmiplevels(src.m_nmiplevels),
      m_spec(src.m_spec), m_nativespec(src.m_nativespec),
      m_pixels(src.m_pixels),
      m_localpixels(src.m_localpixels),
      m_clientpixels(src.m_clientpixels),
      m_spec_valid(src.m_spec_valid), m_pixels_valid(src.m_pixels_valid),
      m_badfile(src.m_badfile),
      m_orientation(src.m_orientation),
      m_pixelaspect(src.m_pixelaspect),
      m_imagecache(src.m_imagecache),
      m_cachedpixeltype(src.m_cachedpixeltype),
      m_deepdata(src.m_deepdata)
{
    if (src.localpixels()) {
        // Source had the image fully in memory (no cache)
        if (src.m_clientpixels) {
            // Source just wrapped the client app's pixels
            ASSERT (0 && "ImageBuf wrapping client buffer not yet supported");
        } else {
            // We own our pixels
            // Make sure our localpixels points to our own owned memory.
            m_localpixels = &m_pixels[0];
        }
    } else {
        // Source was cache-based or deep
        // nothing else to do
    }
}
Beispiel #7
0
static void
test_arrays_like_image_simd_multithread (ROI roi)
{
    const float *a = (const float *)imgA.localpixels(); ASSERT(a);
    const float *b = (const float *)imgB.localpixels(); ASSERT(b);
    float *r = (float *)imgR.localpixels(); ASSERT(r);
    int nchannels = imgA.nchannels();
    for (int y = roi.ybegin; y < roi.yend; ++y) {
        for (int x = roi.xbegin; x < roi.xend; ++x) {
            int i = (y*xres + x) * nchannels;
            simd::vfloat4 a_simd, b_simd, r_simd;
            a_simd.load (a+i, 3);
            b_simd.load (b+i, 3);
            r_simd = a_simd * a_simd + b_simd;
            r_simd.store (r+i, 3);
        }
    }
}
Beispiel #8
0
ImageBuf *
SMT::collateBig()
{
	if( verbose )cout << "INFO: Collating Big\n";
	if( !loadFile.compare("") ) {
		if( !quiet )cout << "ERROR: No SMT Loaded." << endl;
		return NULL;
	}
	// OpenImageIO
	ImageBuf *tileBuf = NULL;

	// Allocate Image size large enough to accomodate the tiles,
	int collateStride = ceil(sqrt(header.nTiles));
	int bigRes = collateStride * header.tileRes;
	ImageSpec bigSpec(bigRes, bigRes, 4, TypeDesc::UINT8 );
	ImageBuf *bigBuf = new ImageBuf( "big", bigSpec);


	// Loop through tiles copying the data to our image buffer
	for(int i = 0; i < header.nTiles; ++i ) {
		// Pull data
		tileBuf = getTile(i);

		int dx = header.tileRes * (i % collateStride);
		int dy = header.tileRes * (i / collateStride);

		ImageBufAlgo::paste(*bigBuf, dx, dy, 0, 0, *tileBuf);

		delete [] (unsigned char *)tileBuf->localpixels();
		delete tileBuf;
		if( verbose )printf("\033[0GINFO: Processing tile %i of %i.",
			i, header.nTiles );
	}
	if( verbose ) cout << endl;

	return bigBuf;
}
Beispiel #9
0
bool
SMT::save()
{
	// Make sure we have some source images before continuing
	if( sourceFiles.size() == 0) {
		if( !quiet )cout << "ERROR: No source images to convert" << endl;
		return true;
	}

	// Build SMT Header //
	//////////////////////
	char filename[256];
	sprintf(filename, "%s.smt", outPrefix.c_str());

	if( verbose ) printf("\nINFO: Creating %s\n", filename );
	fstream smt( filename, ios::binary | ios::out );
	if( !smt.good() ) {
		cout << "ERROR: fstream error." << endl;
		return true;
	}

	SMTHeader header;
	header.tileRes = tileRes;
	header.tileType = tileType;
	if( verbose ) {
		cout << "    Version: " << header.version << endl;
		cout << "    nTiles: n/a\n";
		printf( "    tileRes: (%i,%i)%i.\n", tileRes, tileRes, 4);
		cout << "    tileType: ";
		if( tileType == DXT1 ) cout << "DXT1" << endl;
		cout << "    tileSize: " << tileSize << " bytes" << endl;
	}

	smt.write( (char *)&header, sizeof(SMTHeader) );
	smt.close();

	// setup size for index dimensions
	int tcx = width * 16; // tile count x
	int tcz = length * 16; // tile count z
	unsigned int *indexPixels = new unsigned int[tcx * tcz];

	// Load source image
	if( verbose )cout << "INFO: Loading Source Image(s)\n";
	ImageBuf *bigBuf = buildBig();
	ImageSpec bigSpec = bigBuf->spec();

	// Process decals
	if( !decalFile.empty() ) {
		if( verbose )cout << "INFO: Processing decals\n";
		pasteDecals( bigBuf );
	}

	// Swizzle channels
	if( verbose )cout << "INFO: Swizzling channels\n";
	ImageBuf fixBuf;
	int map[] = { 2, 1, 0, 3 };
	ImageBufAlgo::channels( fixBuf, *bigBuf, 4, map );
	bigBuf->copy( fixBuf );
	fixBuf.clear();

	// Process Tiles
	if( verbose )cout << "INFO: Processing tiles\n";

	// Time reporting vars
	timeval t1, t2;
    double elapsedTime;
	deque<double> readings;
	double averageTime = 0;
	double intervalTime = 0;

	// Loop vars
	int totalTiles = tcx * tcz;
	int currentTile;

	// Tile Vars
	ROI roi;
	ImageSpec tileSpec(tileRes, tileRes, 4, TypeDesc::UINT8 );

	// Comparison vars
	bool match;
	bool yee = false;
	unsigned int i;
	string hash;
	vector<string> hashTable;
	TileBufListEntry *listEntry;
	deque<TileBufListEntry *> tileList;

	// Open smt file for writing tiles
	smt.open(filename, ios::binary | ios::out | ios::app );

	// loop through tile columns
	for ( int z = 0; z < tcz; z++) {
		// loop through tile rows
		for ( int x = 0; x < tcx; x++) {
			currentTile = z * tcx + x + 1;
    		gettimeofday(&t1, NULL);

			// pull a region of the big image to use as a tile.
			roi.xbegin = x * tileRes;
			roi.xend = x * tileRes + tileRes;
			roi.ybegin = z * tileRes;
			roi.yend = z * tileRes + tileRes;
			roi.zbegin = 0;
			roi.zend = 1;
			roi.chbegin = 0;
			roi.chend = 4;

			ImageBuf tempBuf;
			ImageBufAlgo::crop( tempBuf, *bigBuf, roi );
			ImageBuf *tileBuf = new ImageBuf( filename, tileSpec, tempBuf.localpixels() );

			// reset match variables
			match = false;
			i = nTiles;

			if( cnum < 0)  {
				// no attempt at reducing tile sizes
				i = nTiles;
			} else if( cnum == 0) {
				// only exact matches will be referenced.
				hash = ImageBufAlgo::computePixelHashSHA1( *tileBuf );
				for( i = 0; i < hashTable.size(); ++i ) {
					if( !hashTable[i].compare( hash ) ) {
						match = true;
						break;
					} 
				}
				if( !match ) hashTable.push_back( hash );

			} else if( !yee ) {
				//Comparison based on numerical differences of pixels
				listEntry = new TileBufListEntry;
				listEntry->image.copy(*tileBuf);
				listEntry->tileNum = nTiles;

				ImageBufAlgo::CompareResults result;
				deque< TileBufListEntry * >::iterator it;

				for(it = tileList.begin(); it != tileList.end(); it++ ) {
					TileBufListEntry *listEntry2 = *it;
					ImageBufAlgo::compare( *tileBuf, listEntry2->image,
							cpet, 1.0f, result);
					//TODO give control on tweaking matching
					if((int)result.nfail < cnet) {
						match = true;
						i = listEntry2->tileNum;
						delete listEntry;
						break;
					}
				}
				if( !match ) {
					tileList.push_back(listEntry);
					if((int)tileList.size() > cnum) {
						delete tileList[0];
						tileList.pop_front();
					}
				}
			} else {
			//FIXME uncomment when OpenImageIO gets upgraded to v3
/*				listEntry = new TileBufListEntry;
				listEntry->image.copy(*tileBuf);
				listEntry->tileNum = nTiles;

				ImageBufAlgo::CompareResults result;
				deque< TileBufListEntry * >::iterator it;

				for(it = tileList.begin(); it != tileList.end(); it++ ) {
					TileBufListEntry *listEntry2 = *it;
					ImageBufAlgo::compare_yee( *tileBuf, listEntry2->image,
							result, 1.0f, 1.0f );
					if(result.nfail == 0) {
						match = true;
						i = listEntry2->tileNum;
						break;
					}
				}
				if( !match ) {
					tileList.push_back(listEntry);
					if((int)tileList.size() > 32) tileList.pop_front();
				}*/
			}

			// write tile to file.
			if( !match ) {
				unsigned char *std = (unsigned char *)tileBuf->localpixels();
				// process into dds
				NVTTOutputHandler *nvttHandler = new NVTTOutputHandler(tileSize);

				nvtt::InputOptions inputOptions;
				inputOptions.setTextureLayout( nvtt::TextureType_2D, tileRes, tileRes );
				inputOptions.setMipmapData( std, tileRes, tileRes );

				nvtt::CompressionOptions compressionOptions;
				compressionOptions.setFormat(nvtt::Format_DXT1a);

				nvtt::OutputOptions outputOptions;
				outputOptions.setOutputHeader(false);
				outputOptions.setOutputHandler( nvttHandler );

				nvtt::Compressor compressor;
				if( slow_dxt1 ) compressionOptions.setQuality(nvtt::Quality_Normal); 
				else           compressionOptions.setQuality(nvtt::Quality_Fastest); 
				compressor.process(inputOptions, compressionOptions, outputOptions);

				smt.write( nvttHandler->buffer, tileSize );
				delete nvttHandler;
				nTiles +=1;
			}
			delete tileBuf;
			// Write index to tilemap
			indexPixels[currentTile-1] = i;

    		gettimeofday(&t2, NULL);
			// compute and print the elapsed time in millisec
	    	elapsedTime = (t2.tv_sec - t1.tv_sec) * 1000.0;      // sec to ms
	    	elapsedTime += (t2.tv_usec - t1.tv_usec) / 1000.0;   // us to ms
			readings.push_back(elapsedTime);
			if(readings.size() > 1000)readings.pop_front();
			intervalTime += elapsedTime;
			if( verbose && intervalTime > 1 ) {
				for(unsigned int i = 0; i < readings.size(); ++i)
					averageTime+= readings[i];
				averageTime /= readings.size();
				intervalTime = 0;
			   	printf("\033[0G    %i of %i %%%0.1f complete | %%%0.1f savings | %0.1fs remaining.",
				currentTile, totalTiles,
				(float)currentTile / totalTiles * 100,
				(float)(1 - (float)nTiles / (float)currentTile) * 100,
			    averageTime * (totalTiles - currentTile) / 1000);
			}
		}
	}
	hashTable.clear();
	if( verbose ) cout << endl;
	smt.close();

	// retroactively fix up the tile count.
	smt.open(filename, ios::binary | ios::in | ios::out );
	smt.seekp( 20);
	smt.write( (char *)&nTiles, 4);
	smt.close();

	// Save tileindex
	ImageOutput *imageOutput;
	sprintf( filename, "%s_tilemap.exr", outPrefix.c_str() );
	
	imageOutput = ImageOutput::create(filename);
	if( !imageOutput ) {
		delete [] indexPixels;
		return true;
	}

	ImageSpec tilemapSpec( tcx, tcz, 1, TypeDesc::UINT);
	imageOutput->open( filename, tilemapSpec );
	imageOutput->write_image( TypeDesc::UINT, indexPixels );
	imageOutput->close();

	delete imageOutput;
	delete [] indexPixels;

	return false;

}
Beispiel #10
0
IplImage *
ImageBufAlgo::to_IplImage (const ImageBuf &src)
{
#ifdef USE_OPENCV
    ImageBuf tmp = src;
    ImageSpec spec = tmp.spec();

    // Make sure the image buffer is initialized.
    if (!tmp.initialized() && !tmp.read(tmp.subimage(), tmp.miplevel(), true)) {
        DASSERT (0 && "Could not initialize ImageBuf.");
        return NULL;
    }

    int dstFormat;
    TypeDesc dstSpecFormat;
    if (spec.format == TypeDesc(TypeDesc::UINT8)) {
        dstFormat = IPL_DEPTH_8U;
        dstSpecFormat = spec.format;
    } else if (spec.format == TypeDesc(TypeDesc::INT8)) {
        dstFormat = IPL_DEPTH_8S;
        dstSpecFormat = spec.format;
    } else if (spec.format == TypeDesc(TypeDesc::UINT16)) {
        dstFormat = IPL_DEPTH_16U;
        dstSpecFormat = spec.format;
    } else if (spec.format == TypeDesc(TypeDesc::INT16)) {
        dstFormat = IPL_DEPTH_16S;
        dstSpecFormat = spec.format;
    } else if (spec.format == TypeDesc(TypeDesc::HALF)) {
        dstFormat = IPL_DEPTH_32F;
        // OpenCV does not support half types. Switch to float instead.
        dstSpecFormat = TypeDesc(TypeDesc::FLOAT);
    } else if (spec.format == TypeDesc(TypeDesc::FLOAT)) {
        dstFormat = IPL_DEPTH_32F;
        dstSpecFormat = spec.format;
    } else if (spec.format == TypeDesc(TypeDesc::DOUBLE)) {
        dstFormat = IPL_DEPTH_64F;
        dstSpecFormat = spec.format;
    } else {
        DASSERT (0 && "Unknown data format in ImageBuf.");
        return NULL;
    }
    IplImage *ipl = cvCreateImage(cvSize(spec.width, spec.height), dstFormat, spec.nchannels);
    if (!ipl) {
        DASSERT (0 && "Unable to create IplImage.");
        return NULL;
    }

    size_t pixelsize = dstSpecFormat.size() * spec.nchannels;
    // Account for the origin in the line step size, to end up with the
    // standard OIIO origin-at-upper-left:
    size_t linestep = ipl->origin ? -ipl->widthStep : ipl->widthStep;

    bool converted = convert_image(spec.nchannels, spec.width, spec.height, 1,
                                   tmp.localpixels(), spec.format,
                                   spec.pixel_bytes(), spec.scanline_bytes(), 0,
                                   ipl->imageData, dstSpecFormat,
                                   pixelsize, linestep, 0);

    if (!converted) {
        DASSERT (0 && "convert_image failed.");
        cvReleaseImage(&ipl);
        return NULL;
    }

    // OpenCV uses BGR ordering
    if (spec.nchannels == 3) {
        cvCvtColor(ipl, ipl, CV_RGB2BGR);
    } else if (spec.nchannels == 4) {
        cvCvtColor(ipl, ipl, CV_RGBA2BGRA);
    }

    return ipl;
#else
    return NULL;
#endif
}
Beispiel #11
0
bool
SMF::saveGrass()
{
	if( verbose )cout << "INFO: saveGrass\n";

	SMFEHGrass *grassHeader = NULL;
	for( unsigned int i = 0; i < extraHeaders.size(); ++i ) {
		if( extraHeaders[ i ]->type == 1 )
			grassHeader = reinterpret_cast<SMFEHGrass *>( extraHeaders[ i ] );
	}
	if( !grassHeader )return true;

	ImageBuf *imageBuf = NULL;
	ROI roi(	0, width * 16,
				0, length * 16,
				0, 1,
				0, 1);
	ImageSpec imageSpec(roi.xend, roi.yend, roi.chend, TypeDesc::UINT8 );

	if( is_smf(grassFile) ) {
		// Load from SMF
		SMF sourcesmf(grassFile);
		imageBuf = sourcesmf.getGrass();
	}
	if( !imageBuf ) {
		// Load image file
		imageBuf = new ImageBuf( grassFile );
		imageBuf->read( 0, 0, false, TypeDesc::UINT8 );
		if( imageBuf->initialized() ) {
			delete imageBuf;
			imageBuf = NULL;
		}
	}
	if( !imageBuf ) {
		// Generate blank
		imageBuf = new ImageBuf( "grass", imageSpec );
	}

	imageSpec = imageBuf->specmod();
	ImageBuf fixBuf;

	// Fix the number of channels
	if( imageSpec.nchannels != roi.chend ) {
		int map[] = {0};
		ImageBufAlgo::channels(fixBuf, *imageBuf, roi.chend, map );
		imageBuf->copy( fixBuf );
		fixBuf.clear();
	}

	// Fix the Dimensions
	if ( imageSpec.width != roi.xend || imageSpec.height != roi.yend ) {
		if( verbose )
			printf( "\tWARNING: %s is (%i,%i), wanted (%i, %i) Resampling.\n",
			typeFile.c_str(), imageSpec.width, imageSpec.height, roi.xend, roi.yend);
		ImageBufAlgo::resample(fixBuf, *imageBuf, false, roi);
		imageBuf->copy( fixBuf );
		fixBuf.clear();		
	}

	unsigned char *pixels = (unsigned char *)imageBuf->localpixels();

	char filename[256];
	sprintf( filename, "%s.smf", outPrefix.c_str() );

	if( verbose )printf( "    Source: %s.\n", grassFile.c_str() );

	fstream smf(filename, ios::binary | ios::in | ios::out);
	smf.seekp(grassHeader->grassPtr);

	smf.write( (char *)pixels, imageBuf->spec().image_bytes() );
	smf.close();
	
	delete imageBuf;
	if( is_smf( grassFile ) ) delete [] pixels;

	return false;
}
Beispiel #12
0
bool
SMF::saveTilemap()
{
	if( verbose )cout << "INFO: saveTilemap\n";

	char filename[256];
	sprintf( filename, "%s.smf", outPrefix.c_str() );

	fstream smf(filename, ios::binary | ios::in | ios::out);
	smf.seekp(tilesPtr);

	// Tiles Header
	int nTileFiles = smtList.size();
	smf.write( (char *)&nTileFiles, 4);
	smf.write( (char *)&nTiles, 4);
	if(verbose)printf( "    %i tiles referenced in %i files\n", nTiles, nTileFiles );

	// SMT Names
	for(unsigned int i = 0; i < smtList.size(); ++i) {
		if( verbose )printf( "\t%i %s\n", smtTiles[i], smtList[i].c_str() );
		smf.write( (char *)&smtTiles[i], 4);
		smf.write( smtList[i].c_str(), smtList[i].size() +1 );
	}

	// Dimensions of displacement map.
	ImageBuf *imageBuf = NULL;
	ROI roi(	0, width * 16,  // xbegin, xend
				0, length * 16, // ybegin, yend
				0, 1,               // zbegin, zend
				0, 1);              // chbegin, chend
	ImageSpec imageSpec( roi.xend, roi.yend, roi.chend, TypeDesc::UINT );

	if( is_smf(tilemapFile) ) {
		// Load from SMF
		SMF sourcesmf(tilemapFile);
		imageBuf = sourcesmf.getTilemap();
	}
   	if( !imageBuf ) {
		// load image file
		imageBuf = new ImageBuf( tilemapFile );
		imageBuf->read( 0, 0, false, TypeDesc::UINT );
		if( !imageBuf->initialized() ) {
			delete imageBuf;
			imageBuf = NULL;
		}
	}
	if( !imageBuf ) {
		// Generate blank
		imageBuf = new ImageBuf( "tilemap", imageSpec );
		for ( unsigned int i = 0; i < imageSpec.image_pixels(); ++i )
			((unsigned int *)imageBuf->localpixels())[ i ] = i;
	}

	imageSpec = imageBuf->specmod();
	ImageBuf fixBuf;
	// Fix the number of channels
	if( imageSpec.nchannels != roi.chend ) {
		int map[] = {0};
		ImageBufAlgo::channels(fixBuf, *imageBuf, roi.chend, map);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	// Fix the size
	// FIXME image should never be resized, instead tiling either from an edge or centred.
	if ( imageSpec.width != roi.xend || imageSpec.height != roi.yend ) {
		if( verbose )
			printf( "\tWARNING: %s is (%i,%i), wanted (%i, %i), Resampling.\n",
			tilemapFile.c_str(), imageSpec.width, imageSpec.height, roi.xend, roi.yend );
		ImageBufAlgo::resample(fixBuf, *imageBuf, false, roi);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	unsigned int *pixels = (unsigned int *)imageBuf->localpixels();

	// write the data to the smf
	smf.write( (char *)pixels, imageBuf->spec().image_bytes() );
	smf.close();

	delete imageBuf;
	if( is_smf( tilemapFile ) ) delete [] pixels;

	return false;
}
Beispiel #13
0
bool
SMF::saveMetal()
{
	if( verbose )cout << "INFO: saveMetal\n";

	// Dimensions of displacement map.
	ImageBuf *imageBuf = NULL;
	ROI roi(	0, width * 32,  // xbegin, xend
				0, length * 32, // ybegin, yend
				0, 1,               // zbegin, zend
				0, 1);              // chbegin, chend
	ImageSpec imageSpec( roi.xend, roi.yend, roi.chend, TypeDesc::UINT8 );

	if( is_smf(metalFile) ) {
		// Load from smf
		SMF sourcesmf(metalFile);
		imageBuf = sourcesmf.getMetal();
	}
	if( !imageBuf ) {
		//load from image
		imageBuf = new ImageBuf(metalFile);
		imageBuf->read( 0, 0, false, TypeDesc::UINT8 );
		if( !imageBuf->initialized() ) {
			delete imageBuf;
			imageBuf = NULL;
		}
	}
	if( !imageBuf ) {
		// Generate blank
		imageBuf = new ImageBuf( "metal", imageSpec );
	}

	imageSpec = imageBuf->specmod();
	ImageBuf fixBuf;
	// Fix the number of channels
	if( imageSpec.nchannels != roi.chend ) {
		int map[] = {0};
		ImageBufAlgo::channels(fixBuf, *imageBuf, roi.chend, map);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	// Fix the size
	if ( imageSpec.width != roi.xend || imageSpec.height != roi.yend ) {
		if( verbose )
			printf( "\tWARNING: %s is (%i,%i), wanted (%i, %i), Resampling.\n",
			metalFile.c_str(), imageSpec.width, imageSpec.height, roi.xend, roi.yend );
		ImageBufAlgo::resample(fixBuf, *imageBuf, true, roi);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	unsigned char *pixels = (unsigned char *)imageBuf->localpixels();


	char filename[256];
	sprintf( filename, "%s.smf", outPrefix.c_str() );

	fstream smf(filename, ios::binary | ios::in | ios::out);
	smf.seekp(metalPtr);

	// write the data to the smf
	smf.write( (char *)pixels, imageBuf->spec().image_bytes() );
	smf.close();

	delete imageBuf;
	if( is_smf( metalFile ) ) delete [] pixels;

	return false;
}
Beispiel #14
0
bool
SMF::saveMinimap()
{
	if( verbose )cout << "INFO: saveMinimap\n";

	char filename[256];
	sprintf( filename, "%s.smf", outPrefix.c_str() );

	fstream smf(filename, ios::binary | ios::in | ios::out);
	smf.seekp(minimapPtr);

	unsigned char *pixels;
	if( is_smf(minimapFile) ) {
		// Copy from SMF
		pixels = new unsigned char[MINIMAP_SIZE];

		ifstream inFile(minimapFile.c_str(), ifstream::in);
		inFile.seekg(header.minimapPtr);
		inFile.read( (char *)pixels, MINIMAP_SIZE);
		inFile.close();

		smf.write( (char *)pixels, MINIMAP_SIZE);
		smf.close();
		delete [] pixels;
		return false;
	}

	//OpenImageIO
	ROI roi(	0, 1024,
				0, 1024,
				0, 1,
				0, 4);
	ImageSpec imageSpec( roi.xend, roi.yend, roi.chend, TypeDesc::UINT8 );
	

	// Load image file
	ImageBuf *imageBuf = new ImageBuf( minimapFile );
	imageBuf->read( 0, 0, false, TypeDesc::UINT8 );
//FIXME attempt to generate minimap from tile files.

	if( !imageBuf->initialized() ) {
		// Create from height
		imageBuf->reset( minimapFile );
		imageBuf->read( 0, 0, false, TypeDesc::UINT8 );
	}

	if( !imageBuf->initialized() ) {
		// Create blank
		imageBuf->reset( "minimap", imageSpec);
	}

	imageSpec = imageBuf->specmod();
	ImageBuf fixBuf;
	// Fix channels
	if( imageSpec.nchannels != roi.chend ) {
		int map[] = {2,1,0,3};
		float fill[] = {0,0,0,255};
		ImageBufAlgo::channels(fixBuf, *imageBuf, roi.chend, map, fill);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	// Fix dimensions
	if( imageSpec.width != roi.xend || imageSpec.height != roi.yend ) {
		printf( "\tWARNING: %s is (%i,%i), wanted (%i, %i), Resampling.\n",
			minimapFile.c_str(), imageSpec.width, imageSpec.height, roi.xend, roi.yend );
		ImageBufAlgo::resample(fixBuf, *imageBuf, true, roi);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	pixels = (unsigned char *)imageBuf->localpixels();

	// setup DXT1 Compression
	nvtt::InputOptions inputOptions;
	inputOptions.setTextureLayout( nvtt::TextureType_2D, 1024, 1024 );
	inputOptions.setMipmapData( pixels, 1024, 1024 );

	nvtt::CompressionOptions compressionOptions;
	compressionOptions.setFormat( nvtt::Format_DXT1 );
	if( slowcomp ) compressionOptions.setQuality( nvtt::Quality_Normal ); 
	else compressionOptions.setQuality( nvtt::Quality_Fastest ); 

	nvtt::OutputOptions outputOptions;
	outputOptions.setOutputHeader( false );

	NVTTOutputHandler *outputHandler = new NVTTOutputHandler(MINIMAP_SIZE + 1);
	outputOptions.setOutputHandler( outputHandler );

	nvtt::Compressor compressor;
	compressor.process( inputOptions, compressionOptions, outputOptions );

	// Write data to smf
	smf.write( outputHandler->buffer, MINIMAP_SIZE );
	delete outputHandler;

	smf.close();
	delete imageBuf;		
	return false;
}
Beispiel #15
0
bool
SMF::saveHeight()
{
	if( verbose )cout << "INFO: saveHeight\n";
	// Dimensions of displacement map.
	ImageBuf *imageBuf = NULL;
	ROI roi(	0, width * 64 + 1,  // xbegin, xend
				0, length * 64 + 1, // ybegin, yend
				0, 1,               // zbegin, zend
				0, 1);              // chbegin, chend
	ImageSpec imageSpec( roi.xend, roi.yend, roi.chend, TypeDesc::UINT16 );

	if( is_smf(heightFile) ) {
		// Load from SMF
		SMF sourcesmf(heightFile);
		imageBuf = sourcesmf.getHeight();
	}
   	if( !imageBuf ) {
		// load image file
		imageBuf = new ImageBuf( heightFile );
		imageBuf->read( 0, 0, false, TypeDesc::UINT16 );
		if( !imageBuf->initialized() ) {
			delete imageBuf;
			imageBuf = NULL;
		}
	}
	if( !imageBuf ) {
		// Generate blank
		imageBuf = new ImageBuf( "height", imageSpec );
	}

	imageSpec = imageBuf->specmod();
	ImageBuf fixBuf;
	// Fix the number of channels
	if( imageSpec.nchannels != roi.chend ) {
		int map[] = {0};
		ImageBufAlgo::channels(fixBuf, *imageBuf, roi.chend, map);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	// Fix the size
	if ( imageSpec.width != roi.xend || imageSpec.height != roi.yend ) {
		if( verbose )
			printf( "\tWARNING: %s is (%i,%i), wanted (%i, %i), Resampling.\n",
			heightFile.c_str(), imageSpec.width, imageSpec.height, roi.xend, roi.yend );
		ImageBufAlgo::resample(fixBuf, *imageBuf, true, roi);
		imageBuf->copy(fixBuf);
		fixBuf.clear();
	}

	// Invert height
	if ( invert ) {
		ImageSpec fixSpec(roi.xend, roi.yend, roi.chend, TypeDesc::UINT16);
		fixBuf.reset( "fixBuf",  fixSpec );
		const float fill[] = {65535};
		ImageBufAlgo::fill(fixBuf, fill);
		ImageBufAlgo::sub(*imageBuf, fixBuf, *imageBuf);
		fixBuf.clear();
	}

	// FIXME filter to remove stepping artifacts from 8bit images,
//	if ( lowpass ) {
//	}
	
	unsigned short *pixels = (unsigned short *)imageBuf->localpixels();

	// write height data to smf.
	char filename[256];
	sprintf( filename, "%s.smf", outPrefix.c_str() );

	fstream smf(filename, ios::binary | ios::in| ios::out);
	smf.seekp(heightPtr);

	smf.write( (char *)pixels, imageBuf->spec().image_bytes() );
	smf.close();
	delete imageBuf;
	if( is_smf( heightFile ) ) delete [] pixels;

	return false;
}