Beispiel #1
0
 void Stretch::Save(Isis::Pvl &pvl, QString &grpName) {
   PvlGroup *grp = new PvlGroup(grpName);
   PvlKeyword inputs("Input");
   PvlKeyword outputs("Output");
   for(int i = 0; i < Pairs(); i++) {
     inputs.addValue(toString(Input(i)));
     outputs.addValue(toString(Output(i)));
   }
   grp->addKeyword(inputs);
   grp->addKeyword(outputs);
   pvl.addGroup(*grp);
 }
Beispiel #2
0
//  Updates existing BandBin keywords with additional values to ensure
//  label compilancy (which should support Camera models).  It checks for the
//  existance of the keyword and uses its (assumed) first value to set nvals
//  values to a constant.  If the keyword doesn't exist, it uses the default
//  value.
void UpdateBandKey(const QString &keyname, PvlGroup &bb, const int &nvals,
                   const QString &default_value) {

  QString defVal(default_value);
  if ( bb.hasKeyword(keyname) ) {
    defVal = bb[keyname][0];
  }

  bb.addKeyword(makeKey(keyname, nvals, defVal), PvlContainer::Replace);
  return;
}
Beispiel #3
0
void IsisMain() {

  // Create a process so we can output the noproj'd labels without overwriting
  Process p;

  // Open the user interface and get the input file and the ideal specs file
  UserInterface &ui = Application::GetUserInterface();
  Cube *mcube, *icube;

  // If a MATCH cube is entered, make sure to SetInputCube it first to get the SPICE blobs
  // from it propagated to the TO labels

  // Until polygon blobs are detached without "/" don't propagate them
  p.PropagatePolygons(false);

  if((ui.WasEntered("MATCH"))) {
    mcube = p.SetInputCube("MATCH");
    icube = p.SetInputCube("FROM");
  }
  else {
    mcube = icube = p.SetInputCube("FROM");
  }

  Camera *incam = mcube->camera();

  // Extract Instrument groups from input labels for the output match and noproj'd cubes
  PvlGroup inst = mcube->group("Instrument");
  PvlGroup fromInst = icube->group("Instrument");
  QString groupName = (QString) inst["SpacecraftName"] + "/";
  groupName += (QString) inst.findKeyword("InstrumentId");

  // Get Ideal camera specifications
  FileName specs;
  if((ui.WasEntered("SPECS"))) {
    specs = ui.GetFileName("SPECS");
  }
  else {
    specs = "$base/applications/noprojInstruments???.pvl";
    specs = specs.highestVersion();
  }
  Pvl idealSpecs(specs.expanded());
  PvlObject obSpecs = idealSpecs.findObject("IdealInstrumentsSpecifications");

  PvlGroup idealGp = obSpecs.findGroup(groupName);
  double transx, transy, transl, transs;
  transx = transy = transl = transs = 0.;
  if(idealGp.hasKeyword("TransX")) transx = idealGp["TransX"];
  if(idealGp.hasKeyword("TransY")) transy = idealGp["TransY"];
  if(idealGp.hasKeyword("ItransL")) transl = idealGp["ItransL"];
  if(idealGp.hasKeyword("ItransS")) transs = idealGp["ItransS"];
  int detectorSamples = mcube->sampleCount();
  if(idealGp.hasKeyword("DetectorSamples")) detectorSamples = idealGp["DetectorSamples"];
  int numberLines = mcube->lineCount();
  int numberBands = mcube->bandCount();

  if(idealGp.hasKeyword("DetectorLines")) numberLines = idealGp["DetectorLines"];

  int xDepend = incam->FocalPlaneMap()->FocalPlaneXDependency();

  // Get output summing mode
  if(ui.GetString("SOURCE") == "FROMMATCH") {
    LoadMatchSummingMode();
  }
  else if(ui.GetString("SOURCE") == "FROMINPUT") {
    LoadInputSummingMode();
  }

  double pixPitch = incam->PixelPitch() * ui.GetDouble("SUMMINGMODE");
  detectorSamples /= (int)(ui.GetDouble("SUMMINGMODE"));
  // Get the user options
  int sampleExpansion = int((ui.GetDouble("SAMPEXP") / 100.) * detectorSamples + .5);
  int lineExpansion = int((ui.GetDouble("LINEEXP") / 100.) * numberLines + .5);
  QString instType;

  // Adjust translations for summing mode
  transl /= ui.GetDouble("SUMMINGMODE");
  transs /= ui.GetDouble("SUMMINGMODE");

  detectorSamples += sampleExpansion;
  numberLines += lineExpansion;

  // Determine whether this ideal camera is a line scan or framing camera and
  // set the instrument id and exposure
  int detectorLines;
  int expandFlag;

  if(incam->DetectorMap()->LineRate() != 0.0) {
    instType = "LINESCAN";
    // Isis3 line rate is always in seconds so convert to milliseconds for the
    // Ideal instrument
    detectorLines = 1;
    expandFlag = 1;
  }
  else {
    instType = "FRAMING";
    detectorLines = numberLines;
    expandFlag = 0;
    // Framing cameras don't need exposure time
  }

  // Adjust focal plane translations with line expansion for scanners since
  // the CCD is only 1 line
  if(expandFlag) {
    transl += lineExpansion / 2;

    if(xDepend == CameraFocalPlaneMap::Line) {
      transx -= lineExpansion / 2.*pixPitch * expandFlag;
    }
    else {
      transy -= lineExpansion / 2.*pixPitch * expandFlag;
    }
  }

  // Get the start time for parent line 1
  AlphaCube alpha(*icube);
  double sample = alpha.BetaSample(.5);
  double line = alpha.BetaLine(.5);
  incam->SetImage(sample, line);
  double et = incam->time().Et();

  // Get the output file name and set its attributes
  CubeAttributeOutput cao;

  // Can we do a regular label? Didn't work on 12-15-2006
  cao.setLabelAttachment(Isis::DetachedLabel);

  // Determine the output image size from
  //   1) the idealInstrument pvl if there or
  //   2) the input size expanded by user specified percentage
  Cube *ocube = p.SetOutputCube("match.cub", cao, 1, 1, 1);

  // Extract the times and the target from the instrument group
  QString startTime = inst["StartTime"];
  QString stopTime;
  if(inst.hasKeyword("StopTime")) stopTime = (QString) inst["StopTime"];

  QString target = inst["TargetName"];

  // rename the instrument groups
  inst.setName("OriginalInstrument");
  fromInst.setName("OriginalInstrument");

  // add it back to the IsisCube object under a new group name
  ocube->putGroup(inst);

  // and remove the version from the IsisCube Object
  ocube->deleteGroup("Instrument");

  // Now rename the group back to the Instrument group and clear out old keywords
  inst.setName("Instrument");
  inst.clear();

  // Add keywords for the "Ideal" instrument
  Isis::PvlKeyword key("SpacecraftName", "IdealSpacecraft");
  inst.addKeyword(key);

  key.setName("InstrumentId");
  key.setValue("IdealCamera");
  inst.addKeyword(key);

  key.setName("TargetName");
  key.setValue(target);
  inst.addKeyword(key);

  key.setName("SampleDetectors");
  key.setValue(Isis::toString(detectorSamples));
  inst.addKeyword(key);

  key.setName("LineDetectors");
  key.setValue(Isis::toString(detectorLines));
  inst.addKeyword(key);

  key.setName("InstrumentType");
  key.setValue(instType);
  inst.addKeyword(key);

  Pvl &ocubeLabel = *ocube->label();
  PvlObject *naifKeywordsObject = NULL;

  if (ocubeLabel.hasObject("NaifKeywords")) {
    naifKeywordsObject = &ocubeLabel.findObject("NaifKeywords");

    // Clean up the naif keywords object... delete everything that isn't a radii
    for (int keyIndex = naifKeywordsObject->keywords() - 1; keyIndex >= 0; keyIndex--) {
      QString keyName = (*naifKeywordsObject)[keyIndex].name();
      
      if (!keyName.contains("RADII")) {
        naifKeywordsObject->deleteKeyword(keyIndex);
      }
    }

    // Clean up the kernels group... delete everything that isn't internalized or the orig frame
    //   code
    PvlGroup &kernelsGroup = ocube->group("Kernels");
    for (int keyIndex = kernelsGroup.keywords() - 1; keyIndex >= 0; keyIndex--) {
      PvlKeyword &kernelsKeyword = kernelsGroup[keyIndex];

      bool isTable = false;
      bool isFrameCode = kernelsKeyword.isNamed("NaifFrameCode") ||
                         kernelsKeyword.isNamed("NaifIkCode");
      bool isShapeModel = kernelsKeyword.isNamed("ShapeModel");

      for (int keyValueIndex = 0; keyValueIndex < kernelsKeyword.size(); keyValueIndex++) {
        if (kernelsKeyword[keyValueIndex] == "Table") {
          isTable = true;
        }
      }

      if (!isTable && !isFrameCode && !isShapeModel) {
        kernelsGroup.deleteKeyword(keyIndex);
      }
    }
  }

  if (naifKeywordsObject) {
    naifKeywordsObject->addKeyword(PvlKeyword("IDEAL_FOCAL_LENGTH", toString(incam->FocalLength())),
                                   Pvl::Replace);
  }
  else {
    inst.addKeyword(PvlKeyword("FocalLength", toString(incam->FocalLength()), "millimeters"));
  }

  double newPixelPitch = incam->PixelPitch() * ui.GetDouble("SUMMINGMODE");
  if (naifKeywordsObject) {
    naifKeywordsObject->addKeyword(PvlKeyword("IDEAL_PIXEL_PITCH", toString(newPixelPitch)),
                                   Pvl::Replace);
  }
  else {
    inst.addKeyword(PvlKeyword("PixelPitch", toString(newPixelPitch), "millimeters"));
  }

  key.setName("EphemerisTime");
  key.setValue(Isis::toString(et), "seconds");
  inst.addKeyword(key);

  key.setName("StartTime");
  key.setValue(startTime);
  inst.addKeyword(key);

  if(stopTime != "") {
    key.setName("StopTime");
    key.setValue(stopTime);
    inst.addKeyword(key);
  }

  key.setName("FocalPlaneXDependency");
  key.setValue(toString((int)incam->FocalPlaneMap()->FocalPlaneXDependency()));
  inst.addKeyword(key);

  int xDependency = incam->FocalPlaneMap()->FocalPlaneXDependency();

  double newInstrumentTransX = incam->FocalPlaneMap()->SignMostSigX();
  inst.addKeyword(PvlKeyword("TransX", toString(newInstrumentTransX)));

  double newInstrumentTransY = incam->FocalPlaneMap()->SignMostSigY();
  inst.addKeyword(PvlKeyword("TransY", toString(newInstrumentTransY)));

  storeSpice(&inst, naifKeywordsObject, "TransX0", "IDEAL_TRANSX", transx,
             newPixelPitch * newInstrumentTransX, (xDependency == CameraFocalPlaneMap::Sample));

  storeSpice(&inst, naifKeywordsObject, "TransY0", "IDEAL_TRANSY", transy,
             newPixelPitch * newInstrumentTransY, (xDependency == CameraFocalPlaneMap::Line));

  double transSXCoefficient = 1.0 / newPixelPitch * newInstrumentTransX;
  double transLXCoefficient = 1.0 / newPixelPitch * newInstrumentTransY;

  if (xDependency == CameraFocalPlaneMap::Line) {
    swap(transSXCoefficient, transLXCoefficient);
  }

  storeSpice(&inst, naifKeywordsObject, "TransS0", "IDEAL_TRANSS",
             transs, transSXCoefficient, (xDependency == CameraFocalPlaneMap::Sample));
  storeSpice(&inst, naifKeywordsObject, "TransL0", "IDEAL_TRANSL",
             transl, transLXCoefficient, (xDependency == CameraFocalPlaneMap::Line));

  if(instType == "LINESCAN") {
    key.setName("ExposureDuration");
    key.setValue(Isis::toString(incam->DetectorMap()->LineRate() * 1000.), "milliseconds");
    inst.addKeyword(key);
  }

  key.setName("MatchedCube");
  key.setValue(mcube->fileName());
  inst.addKeyword(key);

  ocube->putGroup(inst);

  p.EndProcess();

// Now adjust the label to fake the true size of the image to match without
// taking all the space it would require for the image data
  Pvl label;
  label.read("match.lbl");
  PvlGroup &dims = label.findGroup("Dimensions", Pvl::Traverse);
  dims["Lines"] = toString(numberLines);
  dims["Samples"] = toString(detectorSamples);
  dims["Bands"] = toString(numberBands);
  label.write("match.lbl");

// And run cam2cam to apply the transformation
  QString parameters;
  parameters += " FROM= " + ui.GetFileName("FROM");
  parameters += " MATCH= " + QString("match.cub");
  parameters += " TO= " + ui.GetFileName("TO");
  parameters += " INTERP=" + ui.GetString("INTERP");
  ProgramLauncher::RunIsisProgram("cam2cam", parameters);

//  Cleanup by deleting the match files
  remove("match.History.IsisCube");
  remove("match.lbl");
  remove("match.cub");
  remove("match.OriginalLabel.IsisCube");
  remove("match.Table.BodyRotation");
  remove("match.Table.HiRISE Ancillary");
  remove("match.Table.HiRISE Calibration Ancillary");
  remove("match.Table.HiRISE Calibration Image");
  remove("match.Table.InstrumentPointing");
  remove("match.Table.InstrumentPosition");
  remove("match.Table.SunPosition");

// Finally finish by adding the OriginalInstrument group to the TO cube
  Cube toCube;
  toCube.open(ui.GetFileName("TO"), "rw");
// Extract label and create cube object
  Pvl *toLabel = toCube.label();
  PvlObject &o = toLabel->findObject("IsisCube");
  o.deleteGroup("OriginalInstrument");
  o.addGroup(fromInst);
  toCube.close();
}
Beispiel #4
0
void IsisMain() {
  // We will be warping a cube
  ProcessRubberSheet p;

  // Get the map projection file provided by the user
  UserInterface &ui = Application::GetUserInterface();
  Pvl userPvl(ui.GetFileName("MAP"));
  PvlGroup &userMappingGrp = userPvl.findGroup("Mapping", Pvl::Traverse);

  // Open the input cube and get the projection
  Cube *icube = p.SetInputCube("FROM");

  // Get the mapping group
  PvlGroup fromMappingGrp = icube->group("Mapping");
  TProjection *inproj = (TProjection *) icube->projection();
  PvlGroup outMappingGrp = fromMappingGrp;

  // If the default range is FROM, then wipe out any range data in user mapping file
  if(ui.GetString("DEFAULTRANGE").compare("FROM") == 0 && !ui.GetBoolean("MATCHMAP")) {
    if(userMappingGrp.hasKeyword("MinimumLatitude")) {
      userMappingGrp.deleteKeyword("MinimumLatitude");
    }

    if(userMappingGrp.hasKeyword("MaximumLatitude")) {
      userMappingGrp.deleteKeyword("MaximumLatitude");
    }

    if(userMappingGrp.hasKeyword("MinimumLongitude")) {
      userMappingGrp.deleteKeyword("MinimumLongitude");
    }

    if(userMappingGrp.hasKeyword("MaximumLongitude")) {
      userMappingGrp.deleteKeyword("MaximumLongitude");
    }
  }

  // Deal with user overrides entered in the GUI. Do this by changing the user's mapping group, which
  // will then overlay anything in the output mapping group.
  if(ui.WasEntered("MINLAT") && !ui.GetBoolean("MATCHMAP")) {
    userMappingGrp.addKeyword(PvlKeyword("MinimumLatitude", toString(ui.GetDouble("MINLAT"))), Pvl::Replace);
  }

  if(ui.WasEntered("MAXLAT") && !ui.GetBoolean("MATCHMAP")) {
    userMappingGrp.addKeyword(PvlKeyword("MaximumLatitude", toString(ui.GetDouble("MAXLAT"))), Pvl::Replace);
  }

  if(ui.WasEntered("MINLON") && !ui.GetBoolean("MATCHMAP")) {
    userMappingGrp.addKeyword(PvlKeyword("MinimumLongitude", toString(ui.GetDouble("MINLON"))), Pvl::Replace);
  }

  if(ui.WasEntered("MAXLON") && !ui.GetBoolean("MATCHMAP")) {
    userMappingGrp.addKeyword(PvlKeyword("MaximumLongitude", toString(ui.GetDouble("MAXLON"))), Pvl::Replace);
  }

  /**
   * If the user is changing from positive east to positive west, or vice-versa, the output minimum is really
   * the input maximum. However, the user mapping group must be left unaffected (an input minimum must be the
   * output minimum). To accomplish this, we swap the minimums/maximums in the output group ahead of time. This
   * causes the minimums and maximums to correlate to the output minimums and maximums. That way when we copy
   * the user mapping group into the output group a mimimum overrides a minimum and a maximum overrides a maximum.
   */
  bool sameDirection = true;
  if(userMappingGrp.hasKeyword("LongitudeDirection")) {
    if(((QString)userMappingGrp["LongitudeDirection"]).compare(fromMappingGrp["LongitudeDirection"]) != 0) {
      sameDirection = false;
    }
  }

  // Since the out mapping group came from the from mapping group, which came from a valid cube,
  // we can assume both min/max lon exists if min longitude exists.
  if(!sameDirection && outMappingGrp.hasKeyword("MinimumLongitude")) {
    double minLon = outMappingGrp["MinimumLongitude"];
    double maxLon = outMappingGrp["MaximumLongitude"];

    outMappingGrp["MaximumLongitude"] = toString(minLon);
    outMappingGrp["MinimumLongitude"] = toString(maxLon);
  }

  if(ui.GetString("PIXRES").compare("FROM") == 0 && !ui.GetBoolean("MATCHMAP")) {
    // Resolution will be in fromMappingGrp and outMappingGrp at this time
    //   delete from user mapping grp
    if(userMappingGrp.hasKeyword("Scale")) {
      userMappingGrp.deleteKeyword("Scale");
    }

    if(userMappingGrp.hasKeyword("PixelResolution")) {
      userMappingGrp.deleteKeyword("PixelResolution");
    }
  }
  else if(ui.GetString("PIXRES").compare("MAP") == 0 || ui.GetBoolean("MATCHMAP")) {
    // Resolution will be in userMappingGrp - delete all others
    if(outMappingGrp.hasKeyword("Scale")) {
      outMappingGrp.deleteKeyword("Scale");
    }

    if(outMappingGrp.hasKeyword("PixelResolution")) {
      outMappingGrp.deleteKeyword("PixelResolution");
    }

    if(fromMappingGrp.hasKeyword("Scale"));
    {
      fromMappingGrp.deleteKeyword("Scale");
    }

    if(fromMappingGrp.hasKeyword("PixelResolution")) {
      fromMappingGrp.deleteKeyword("PixelResolution");
    }
  }
  else if(ui.GetString("PIXRES").compare("MPP") == 0) {
    // Resolution specified - delete all and add to outMappingGrp
    if(outMappingGrp.hasKeyword("Scale")) {
      outMappingGrp.deleteKeyword("Scale");
    }

    if(outMappingGrp.hasKeyword("PixelResolution")) {
      outMappingGrp.deleteKeyword("PixelResolution");
    }

    if(fromMappingGrp.hasKeyword("Scale")) {
      fromMappingGrp.deleteKeyword("Scale");
    }

    if(fromMappingGrp.hasKeyword("PixelResolution")) {
      fromMappingGrp.deleteKeyword("PixelResolution");
    }

    if(userMappingGrp.hasKeyword("Scale")) {
      userMappingGrp.deleteKeyword("Scale");
    }

    if(userMappingGrp.hasKeyword("PixelResolution")) {
      userMappingGrp.deleteKeyword("PixelResolution");
    }

    outMappingGrp.addKeyword(PvlKeyword("PixelResolution", toString(ui.GetDouble("RESOLUTION")), "meters/pixel"), Pvl::Replace);
  }
  else if(ui.GetString("PIXRES").compare("PPD") == 0) {
    // Resolution specified - delete all and add to outMappingGrp
    if(outMappingGrp.hasKeyword("Scale")) {
      outMappingGrp.deleteKeyword("Scale");
    }

    if(outMappingGrp.hasKeyword("PixelResolution")) {
      outMappingGrp.deleteKeyword("PixelResolution");
    }

    if(fromMappingGrp.hasKeyword("Scale")) {
      fromMappingGrp.deleteKeyword("Scale");
    }

    if(fromMappingGrp.hasKeyword("PixelResolution")) {
      fromMappingGrp.deleteKeyword("PixelResolution");
    }

    if(userMappingGrp.hasKeyword("Scale")) {
      userMappingGrp.deleteKeyword("Scale");
    }

    if(userMappingGrp.hasKeyword("PixelResolution")) {
      userMappingGrp.deleteKeyword("PixelResolution");
    }

    outMappingGrp.addKeyword(PvlKeyword("Scale", toString(ui.GetDouble("RESOLUTION")), "pixels/degree"), Pvl::Replace);
  }

  // Rotation will NOT Propagate
  if(outMappingGrp.hasKeyword("Rotation")) {
    outMappingGrp.deleteKeyword("Rotation");
  }


  /**
   * The user specified map template file overrides what ever is in the
   * cube's mapping group.
   */
  for(int keyword = 0; keyword < userMappingGrp.keywords(); keyword ++) {
    outMappingGrp.addKeyword(userMappingGrp[keyword], Pvl::Replace);
  }

  /**
   * Now, we have to deal with unit conversions. We convert only if the following are true:
   *   1) We used values from the input cube
   *   2) The values are longitudes or latitudes
   *   3) The map file or user-specified information uses a different measurement system than
   *        the input cube for said values.
   *
   * The data is corrected for:
   *   1) Positive east/positive west
   *   2) Longitude domain
   *   3) planetographic/planetocentric.
   */

  // First, the longitude direction
  if(!sameDirection) {
    PvlGroup longitudes = inproj->MappingLongitudes();

    for(int index = 0; index < longitudes.keywords(); index ++) {
      if(!userMappingGrp.hasKeyword(longitudes[index].name())) {
        // use the from domain because that's where our values are coming from
        if(((QString)userMappingGrp["LongitudeDirection"]).compare("PositiveEast") == 0) {
          outMappingGrp[longitudes[index].name()] = toString(
            TProjection::ToPositiveEast(outMappingGrp[longitudes[index].name()],
                                        outMappingGrp["LongitudeDomain"]));
        }
        else {
          outMappingGrp[longitudes[index].name()] = toString(
              TProjection::ToPositiveWest(outMappingGrp[longitudes[index].name()],
                                          outMappingGrp["LongitudeDomain"]));
        }
      }
    }
  }

  // Second, longitude domain
  if(userMappingGrp.hasKeyword("LongitudeDomain")) { // user set a new domain?
    if((int)userMappingGrp["LongitudeDomain"] != (int)fromMappingGrp["LongitudeDomain"]) { // new domain different?
      PvlGroup longitudes = inproj->MappingLongitudes();

      for(int index = 0; index < longitudes.keywords(); index ++) {
        if(!userMappingGrp.hasKeyword(longitudes[index].name())) {
          if((int)userMappingGrp["LongitudeDomain"] == 180) {
            outMappingGrp[longitudes[index].name()] = toString(
                TProjection::To180Domain(outMappingGrp[longitudes[index].name()]));
          }
          else {
            outMappingGrp[longitudes[index].name()] = toString(
                TProjection::To360Domain(outMappingGrp[longitudes[index].name()]));
          }
        }
      }

    }
  }

  // Third, planetographic/planetocentric
  if(userMappingGrp.hasKeyword("LatitudeType")) { // user set a new domain?
    if(((QString)userMappingGrp["LatitudeType"]).compare(fromMappingGrp["LatitudeType"]) != 0) { // new lat type different?

      PvlGroup latitudes = inproj->MappingLatitudes();

      for(int index = 0; index < latitudes.keywords(); index ++) {
        if(!userMappingGrp.hasKeyword(latitudes[index].name())) {
          if(((QString)userMappingGrp["LatitudeType"]).compare("Planetographic") == 0) {
            outMappingGrp[latitudes[index].name()] = toString(TProjection::ToPlanetographic(
                  (double)fromMappingGrp[latitudes[index].name()],
                  (double)fromMappingGrp["EquatorialRadius"],
                  (double)fromMappingGrp["PolarRadius"]));
          }
          else {
            outMappingGrp[latitudes[index].name()] = toString(TProjection::ToPlanetocentric(
                  (double)fromMappingGrp[latitudes[index].name()],
                  (double)fromMappingGrp["EquatorialRadius"],
                  (double)fromMappingGrp["PolarRadius"]));
          }
        }
      }

    }
  }

  // Try a couple equivalent longitudes to fix the ordering of min,max for border cases
  if ((double)outMappingGrp["MinimumLongitude"] >=
      (double)outMappingGrp["MaximumLongitude"]) {

    if ((QString)outMappingGrp["MinimumLongitude"] == "180.0" &&
        (int)userMappingGrp["LongitudeDomain"] == 180)
      outMappingGrp["MinimumLongitude"] = "-180";

    if ((QString)outMappingGrp["MaximumLongitude"] == "-180.0" &&
        (int)userMappingGrp["LongitudeDomain"] == 180)
      outMappingGrp["MaximumLongitude"] = "180";

    if ((QString)outMappingGrp["MinimumLongitude"] == "360.0" &&
        (int)userMappingGrp["LongitudeDomain"] == 360)
      outMappingGrp["MinimumLongitude"] = "0";

    if ((QString)outMappingGrp["MaximumLongitude"] == "0.0" &&
        (int)userMappingGrp["LongitudeDomain"] == 360)
      outMappingGrp["MaximumLongitude"] = "360";
  }

  // If MinLon/MaxLon out of order, we weren't able to calculate the correct values
  if((double)outMappingGrp["MinimumLongitude"] >= (double)outMappingGrp["MaximumLongitude"]) {
    if(!ui.WasEntered("MINLON") || !ui.WasEntered("MAXLON")) {
      QString msg = "Unable to determine the correct [MinimumLongitude,MaximumLongitude].";
      msg += " Please specify these values in the [MINLON,MAXLON] parameters";
      throw IException(IException::Unknown, msg, _FILEINFO_);
    }
  }

  int samples, lines;
  Pvl mapData;
  // Copy to preserve cube labels so we can match cube size
  if(userPvl.hasObject("IsisCube")) {
    mapData = userPvl;
    mapData.findObject("IsisCube").deleteGroup("Mapping");
    mapData.findObject("IsisCube").addGroup(outMappingGrp);
  }
  else {
    mapData.addGroup(outMappingGrp);
  }

  // *NOTE: The UpperLeftX,UpperLeftY keywords will not be used in the CreateForCube
  //   method, and they will instead be recalculated. This is correct.
  TProjection *outproj = (TProjection *) ProjectionFactory::CreateForCube(mapData, samples, lines,
                        ui.GetBoolean("MATCHMAP"));

  // Set up the transform object which will simply map
  // output line/samps -> output lat/lons -> input line/samps
  Transform *transform = new map2map(icube->sampleCount(),
                                     icube->lineCount(),
                                     (TProjection *) icube->projection(),
                                     samples,
                                     lines,
                                     outproj,
                                     ui.GetBoolean("TRIM"));

  // Allocate the output cube and add the mapping labels
  Cube *ocube = p.SetOutputCube("TO", transform->OutputSamples(),
                                transform->OutputLines(),
                                icube->bandCount());

  PvlGroup cleanOutGrp = outproj->Mapping();

  // ProjectionFactory::CreateForCube updated mapData to have the correct
  //   upperleftcornerx, upperleftcornery, scale and resolution. Use these
  //   updated numbers.
  cleanOutGrp.addKeyword(mapData.findGroup("Mapping", Pvl::Traverse)["UpperLeftCornerX"], Pvl::Replace);
  cleanOutGrp.addKeyword(mapData.findGroup("Mapping", Pvl::Traverse)["UpperLeftCornerY"], Pvl::Replace);
  cleanOutGrp.addKeyword(mapData.findGroup("Mapping", Pvl::Traverse)["Scale"], Pvl::Replace);
  cleanOutGrp.addKeyword(mapData.findGroup("Mapping", Pvl::Traverse)["PixelResolution"], Pvl::Replace);

  ocube->putGroup(cleanOutGrp);

  // Set up the interpolator
  Interpolator *interp;
  if(ui.GetString("INTERP") == "NEARESTNEIGHBOR") {
    interp = new Interpolator(Interpolator::NearestNeighborType);
  }
  else if(ui.GetString("INTERP") == "BILINEAR") {
    interp = new Interpolator(Interpolator::BiLinearType);
  }
  else if(ui.GetString("INTERP") == "CUBICCONVOLUTION") {
    interp = new Interpolator(Interpolator::CubicConvolutionType);
  }
  else {
    QString msg = "Unknow value for INTERP [" + ui.GetString("INTERP") + "]";
    throw IException(IException::Programmer, msg, _FILEINFO_);
  }

  // Warp the cube
  p.StartProcess(*transform, *interp);
  p.EndProcess();

  Application::Log(cleanOutGrp);

  // Cleanup
  delete transform;
  delete interp;
}
Beispiel #5
0
  /**
   * Set the output cube to specified file name and specified input images
   * and output attributes and lat,lons
   */
  Isis::Cube *ProcessMapMosaic::SetOutputCube(FileList &propagationCubes,
      double slat, double elat, double slon, double elon,
      CubeAttributeOutput &oAtt, const QString &mosaicFile) {
    if (propagationCubes.size() < 1) {
      QString msg = "The list does not contain any data";
      throw IException(IException::Programmer, msg, _FILEINFO_);
    }

    int samples, lines, bands = 0;
    Pvl label;
    label.read(propagationCubes[0].toString());
    PvlGroup mGroup = label.findGroup("Mapping", Pvl::Traverse);
    mGroup.addKeyword(PvlKeyword("MinimumLatitude", toString(slat)), Pvl::Replace);
    mGroup.addKeyword(PvlKeyword("MaximumLatitude", toString(elat)), Pvl::Replace);
    mGroup.addKeyword(PvlKeyword("MinimumLongitude", toString(slon)), Pvl::Replace);
    mGroup.addKeyword(PvlKeyword("MaximumLongitude", toString(elon)), Pvl::Replace);

    if (mGroup.hasKeyword("UpperLeftCornerX"))
      mGroup.deleteKeyword("UpperLeftCornerX");

    if (mGroup.hasKeyword("UpperLeftCornerY"))
      mGroup.deleteKeyword("UpperLeftCornerY");

    Pvl mapPvl;
    mapPvl += mGroup;

    // Use CreateForCube because our range differs from any of the cubes (manually specified)
    Projection *proj = Isis::ProjectionFactory::CreateForCube(mapPvl, samples, lines, false);

    double xmin, xmax, ymin, ymax;
    proj->XYRange(xmin, xmax, ymin, ymax);

    // The xmin/ymax should be rounded for the labels
    xmin = mapPvl.findGroup("Mapping")["UpperLeftCornerX"];
    ymax = mapPvl.findGroup("Mapping")["UpperLeftCornerY"];

    for (int i = 0; i < propagationCubes.size(); i++) {
      Cube cube;
      cube.open(propagationCubes[i].toString());
      bands = max(cube.bandCount(), bands);

      // See if the cube has a projection and make sure it matches
      // previous input cubes
      Projection *projNew =
          Isis::ProjectionFactory::CreateFromCube(*(cube.label()));

      if (proj == NULL) {
      }
      else if (*proj != *projNew) {
        QString msg = "Mapping groups do not match between cube [" + propagationCubes[i].toString() +
                     "] and [" + propagationCubes[0].toString() + "]";
        throw IException(IException::User, msg, _FILEINFO_);
      }

      if (proj) delete proj;
      proj = projNew;
    }

    if (proj) delete proj;

    return SetOutputCube(propagationCubes[0].toString(), xmin, xmax, ymin, ymax,
                         slat, elat, slon, elon, bands, oAtt, mosaicFile);
  }
Beispiel #6
0
void IsisMain() {

  Preference::Preferences(true);

  cout << "Testing Isis::ProcessMapMosaic Class ... " << endl;

  // Create the temp parent cube
  FileList cubes;
  cubes.read("unitTest.lis");

  cout << "Testing Mosaic 1" << endl;
  ProcessMapMosaic m1;
  CubeAttributeOutput oAtt;
  ProcessMosaic::ImageOverlay priority = ProcessMapMosaic::PlaceImagesOnTop;
  m1.SetBandBinMatch(false);
  m1.SetOutputCube(cubes, oAtt, "./unitTest.cub");

  //set priority
  m1.SetImageOverlay(priority);

  for(int i = 0; i < cubes.size(); i++) {
    if(m1.StartProcess(cubes[i].toString())) {
      cout << cubes[i].toString() << " is inside the mosaic" << endl;
    }
    else {
      cout << cubes[i].toString() << " is outside the mosaic" << endl;
    }
  }

  m1.EndProcess();
  cout << "Mosaic label: " << endl;

  Pvl labels("./unitTest.cub");
  cout << labels << endl;

  remove("./unitTest.cub");

  cout << "Testing Mosaic 2" << endl;
  ProcessMapMosaic m2;
  m2.SetBandBinMatch(false);
  m2.SetOutputCube(cubes, -6, -4, 29, 31, oAtt, "./unitTest.cub");

  //set priority
  m2.SetImageOverlay(priority);

  for(int i = 0; i < cubes.size(); i++) {
    if(m2.StartProcess(cubes[i].toString())) {
      cout << cubes[i].toString() << " is inside the mosaic" << endl;
    }
    else {
      cout << cubes[i].toString() << " is outside the mosaic" << endl;
    }
  }

  m2.EndProcess();
  cout << "Mosaic label: " << endl;

  labels.clear();
  labels.read("./unitTest.cub");
  cout << labels << endl;

  Cube tmp;
  tmp.open("./unitTest.cub");
  LineManager lm(tmp);
  lm.SetLine(1, 1);

  while(!lm.end()) {
    tmp.read(lm);
    cout << "Mosaic Data: " << lm[lm.SampleDimension()/4] << '\t' <<
              lm[lm.SampleDimension()/2] << '\t' <<
              lm[(3*lm.SampleDimension())/4] << endl;
    lm++;
  }

  tmp.close();
  remove("./unitTest.cub");  // Create the temp parent cube

  cout << endl << "Testing Mosaic where the input (x, y) is negative,"
          " according to the output cube." << endl;
  QString inputFile = "./unitTest1.cub";
  Cube inCube;
  inCube.open(inputFile);
  PvlGroup mapGroup = inCube.label()->findGroup("Mapping", Pvl::Traverse);

  mapGroup.addKeyword(PvlKeyword("MinimumLatitude",  toString(-4.9)), Pvl::Replace);
  mapGroup.addKeyword(PvlKeyword("MaximumLatitude",  toString(-4.7)), Pvl::Replace);
  mapGroup.addKeyword(PvlKeyword("MinimumLongitude", toString(30.7)), Pvl::Replace);
  mapGroup.addKeyword(PvlKeyword("MaximumLongitude", toString(31)), Pvl::Replace);
  
  inCube.close();
  CubeAttributeOutput oAtt2( FileName("./unitTest3.cub") );
  ProcessMapMosaic m3;
  
  m3.SetBandBinMatch(false);
  m3.SetOutputCube(inputFile, mapGroup, oAtt2, "./unitTest3.cub");

  //set priority
  m3.SetImageOverlay(priority);
  m3.SetHighSaturationFlag(false);
  m3.SetLowSaturationFlag(false);
  m3.SetNullFlag(false);

  if(m3.StartProcess(inputFile)) {
    cout << "The mosaic was successfull." << endl;
  }
  else {
    cout << "The mosaic was not successfull." << endl;
  }

  m3.EndProcess();
  cout << "Mosaic label: " << endl;

  Pvl labels2("./unitTest3.cub");
  cout << labels2 << endl;

  remove("./unitTest3.cub");

}
Beispiel #7
0
  /**
   * GetPointInfo builds the PvlGroup containing all the important
   * information derived from the Camera.
   *
   * @return PvlGroup* Data taken directly from the Camera and
   *         drived from Camera information. Ownership passed.
   */
  PvlGroup *CameraPointInfo::GetPointInfo(bool passed, bool allowOutside, bool allowErrors) {
    PvlGroup *gp = new PvlGroup("GroundPoint");
    {
      gp->addKeyword(PvlKeyword("Filename"));
      gp->addKeyword(PvlKeyword("Sample"));
      gp->addKeyword(PvlKeyword("Line"));
      gp->addKeyword(PvlKeyword("PixelValue"));
      gp->addKeyword(PvlKeyword("RightAscension"));
      gp->addKeyword(PvlKeyword("Declination"));
      gp->addKeyword(PvlKeyword("PlanetocentricLatitude"));
      gp->addKeyword(PvlKeyword("PlanetographicLatitude"));
      gp->addKeyword(PvlKeyword("PositiveEast360Longitude"));
      gp->addKeyword(PvlKeyword("PositiveEast180Longitude"));
      gp->addKeyword(PvlKeyword("PositiveWest360Longitude"));
      gp->addKeyword(PvlKeyword("PositiveWest180Longitude"));
      gp->addKeyword(PvlKeyword("BodyFixedCoordinate"));
      gp->addKeyword(PvlKeyword("LocalRadius"));
      gp->addKeyword(PvlKeyword("SampleResolution"));
      gp->addKeyword(PvlKeyword("LineResolution"));
      gp->addKeyword(PvlKeyword("SpacecraftPosition"));
      gp->addKeyword(PvlKeyword("SpacecraftAzimuth"));
      gp->addKeyword(PvlKeyword("SlantDistance"));
      gp->addKeyword(PvlKeyword("TargetCenterDistance"));
      gp->addKeyword(PvlKeyword("SubSpacecraftLatitude"));
      gp->addKeyword(PvlKeyword("SubSpacecraftLongitude"));
      gp->addKeyword(PvlKeyword("SpacecraftAltitude"));
      gp->addKeyword(PvlKeyword("OffNadirAngle"));
      gp->addKeyword(PvlKeyword("SubSpacecraftGroundAzimuth"));
      gp->addKeyword(PvlKeyword("SunPosition"));
      gp->addKeyword(PvlKeyword("SubSolarAzimuth"));
      gp->addKeyword(PvlKeyword("SolarDistance"));
      gp->addKeyword(PvlKeyword("SubSolarLatitude"));
      gp->addKeyword(PvlKeyword("SubSolarLongitude"));
      gp->addKeyword(PvlKeyword("SubSolarGroundAzimuth"));
      gp->addKeyword(PvlKeyword("Phase"));
      gp->addKeyword(PvlKeyword("Incidence"));
      gp->addKeyword(PvlKeyword("Emission"));
      gp->addKeyword(PvlKeyword("NorthAzimuth"));
      gp->addKeyword(PvlKeyword("EphemerisTime"));
      gp->addKeyword(PvlKeyword("UTC"));
      gp->addKeyword(PvlKeyword("LocalSolarTime"));
      gp->addKeyword(PvlKeyword("SolarLongitude"));
      if (allowErrors) gp->addKeyword(PvlKeyword("Error"));
    }

    bool noErrors = passed;
    QString error = "";
    if (!m_camera->HasSurfaceIntersection()) {
      error = "Requested position does not project in camera model; no surface intersection";
      noErrors = false;
      if (!allowErrors) throw IException(IException::Unknown, error, _FILEINFO_);
    }
    if (!m_camera->InCube() && !allowOutside) {
      error = "Requested position does not project in camera model; not inside cube";
      noErrors = false;
      if (!allowErrors) throw IException(IException::Unknown, error, _FILEINFO_);
    }

    if (!noErrors) {
      for (int i = 0; i < gp->keywords(); i++) {
        QString name = (*gp)[i].name();
        // These three keywords have 3 values, so they must have 3 N/As
        if (name == "BodyFixedCoordinate" || name == "SpacecraftPosition" ||
            name == "SunPosition") {
          (*gp)[i].addValue("N/A");
          (*gp)[i].addValue("N/A");
          (*gp)[i].addValue("N/A");
        }
        else {
          (*gp)[i].setValue("N/A");
        }
      }
      // Set all keywords that still have valid information
      gp->findKeyword("Error").setValue(error);
      gp->findKeyword("FileName").setValue(m_currentCube->fileName());
      gp->findKeyword("Sample").setValue(toString(m_camera->Sample()));
      gp->findKeyword("Line").setValue(toString(m_camera->Line()));
      gp->findKeyword("EphemerisTime").setValue(
                      toString(m_camera->time().Et()), "seconds");
      gp->findKeyword("EphemerisTime").addComment("Time");
      QString utc = m_camera->time().UTC();
      gp->findKeyword("UTC").setValue(utc);
      gp->findKeyword("SpacecraftPosition").addComment("Spacecraft Information");
      gp->findKeyword("SunPosition").addComment("Sun Information");
      gp->findKeyword("Phase").addComment("Illumination and Other");
    }

    else {

      Brick b(3, 3, 1, m_currentCube->pixelType());

      int intSamp = (int)(m_camera->Sample() + 0.5);
      int intLine = (int)(m_camera->Line() + 0.5);
      b.SetBasePosition(intSamp, intLine, 1);
      m_currentCube->read(b);

      double pB[3], spB[3], sB[3];
      QString utc;
      double ssplat, ssplon, sslat, sslon, pwlon, oglat;

      {
        gp->findKeyword("FileName").setValue(m_currentCube->fileName());
        gp->findKeyword("Sample").setValue(toString(m_camera->Sample()));
        gp->findKeyword("Line").setValue(toString(m_camera->Line()));
        gp->findKeyword("PixelValue").setValue(PixelToString(b[0]));
        gp->findKeyword("RightAscension").setValue(toString(
                        m_camera->RightAscension()));
        gp->findKeyword("Declination").setValue(toString(
                        m_camera->Declination()));
        gp->findKeyword("PlanetocentricLatitude").setValue(toString(
                        m_camera->UniversalLatitude()));

        // Convert lat to planetographic
        Distance radii[3];
        m_camera->radii(radii);
        oglat = TProjection::ToPlanetographic(m_camera->UniversalLatitude(),
                                                    radii[0].kilometers(), 
                                                    radii[2].kilometers());
        gp->findKeyword("PlanetographicLatitude").setValue(toString(oglat));

        gp->findKeyword("PositiveEast360Longitude").setValue(toString(
                        m_camera->UniversalLongitude()));

        //Convert lon to -180 - 180 range
        gp->findKeyword("PositiveEast180Longitude").setValue(toString(
                        TProjection::To180Domain(m_camera->UniversalLongitude())));

        //Convert lon to positive west
        pwlon = TProjection::ToPositiveWest(
                               m_camera->UniversalLongitude(), 360);
        gp->findKeyword("PositiveWest360Longitude").setValue(toString(pwlon));

        //Convert pwlon to -180 - 180 range
        gp->findKeyword("PositiveWest180Longitude").setValue(toString(
                        TProjection::To180Domain(pwlon)));

        m_camera->Coordinate(pB);
        gp->findKeyword("BodyFixedCoordinate").addValue(toString(pB[0]), "km");
        gp->findKeyword("BodyFixedCoordinate").addValue(toString(pB[1]), "km");
        gp->findKeyword("BodyFixedCoordinate").addValue(toString(pB[2]), "km");

        gp->findKeyword("LocalRadius").setValue(toString(
                        m_camera->LocalRadius().meters()), "meters");
        gp->findKeyword("SampleResolution").setValue(toString(
                        m_camera->SampleResolution()), "meters/pixel");
        gp->findKeyword("LineResolution").setValue(toString(
                        m_camera->LineResolution()), "meters/pixel");

        //body fixed
        m_camera->instrumentPosition(spB);
        gp->findKeyword("SpacecraftPosition").addValue(toString(spB[0]), "km");
        gp->findKeyword("SpacecraftPosition").addValue(toString(spB[1]), "km");
        gp->findKeyword("SpacecraftPosition").addValue(toString(spB[2]), "km");
        gp->findKeyword("SpacecraftPosition").addComment("Spacecraft Information");

        gp->findKeyword("SpacecraftAzimuth").setValue(toString(
                        m_camera->SpacecraftAzimuth()));
        gp->findKeyword("SlantDistance").setValue(toString(
                        m_camera->SlantDistance()), "km");
        gp->findKeyword("TargetCenterDistance").setValue(toString(
                        m_camera->targetCenterDistance()), "km");
        m_camera->subSpacecraftPoint(ssplat, ssplon);
        gp->findKeyword("SubSpacecraftLatitude").setValue(toString(ssplat));
        gp->findKeyword("SubSpacecraftLongitude").setValue(toString(ssplon));
        gp->findKeyword("SpacecraftAltitude").setValue(toString(
                        m_camera->SpacecraftAltitude()), "km");
        gp->findKeyword("OffNadirAngle").setValue(toString(
                        m_camera->OffNadirAngle()));
        double subspcgrdaz;
        subspcgrdaz = m_camera->GroundAzimuth(m_camera->UniversalLatitude(), 
                                              m_camera->UniversalLongitude(),
                                              ssplat, ssplon);
        gp->findKeyword("SubSpacecraftGroundAzimuth").setValue(toString(subspcgrdaz));

        m_camera->sunPosition(sB);
        gp->findKeyword("SunPosition").addValue(toString(sB[0]), "km");
        gp->findKeyword("SunPosition").addValue(toString(sB[1]), "km");
        gp->findKeyword("SunPosition").addValue(toString(sB[2]), "km");
        gp->findKeyword("SunPosition").addComment("Sun Information");

        gp->findKeyword("SubSolarAzimuth").setValue(toString(m_camera->SunAzimuth()));
        gp->findKeyword("SolarDistance").setValue(toString(
                        m_camera->SolarDistance()), "AU");
        m_camera->subSolarPoint(sslat, sslon);
        gp->findKeyword("SubSolarLatitude").setValue(toString(sslat));
        gp->findKeyword("SubSolarLongitude").setValue(toString(sslon));
        double subsolgrdaz;
        subsolgrdaz = m_camera->GroundAzimuth(m_camera->UniversalLatitude(), 
                                              m_camera->UniversalLongitude(),
                                              sslat, sslon);
        gp->findKeyword("SubSolarGroundAzimuth").setValue(toString(subsolgrdaz));

        gp->findKeyword("Phase").setValue(toString(m_camera->PhaseAngle()));
        gp->findKeyword("Phase").addComment("Illumination and Other");
        gp->findKeyword("Incidence").setValue(toString(
                        m_camera->IncidenceAngle()));
        gp->findKeyword("Emission").setValue(toString(
                        m_camera->EmissionAngle()));
        gp->findKeyword("NorthAzimuth").setValue(toString(
                        m_camera->NorthAzimuth()));

        gp->findKeyword("EphemerisTime").setValue(toString(
                        m_camera->time().Et()), "seconds");
        gp->findKeyword("EphemerisTime").addComment("Time");
        utc = m_camera->time().UTC();
        gp->findKeyword("UTC").setValue(utc);
        gp->findKeyword("LocalSolarTime").setValue(toString(
                        m_camera->LocalSolarTime()), "hour");
        gp->findKeyword("SolarLongitude").setValue(toString(
                        m_camera->solarLongitude().degrees()));
        if (allowErrors) gp->findKeyword("Error").setValue("N/A");
      }
    }
    return gp;
  }