Beispiel #1
0
/** Sets error of workspace to specified value
  *
  * Since an estimation of the error is calculated from background counts, this
  *value is assigned to the workspace via this method.
  *
  * @param correlationWorkspace :: Workspace containing the correlation spectrum
  *on which the peak search was performed.
  * @param error :: Error that is set on the workspace.
  */
void
PoldiPeakSearch::setErrorsOnWorkspace(Workspace2D_sptr correlationWorkspace,
                                      double error) const {
  MantidVec &errors = correlationWorkspace->dataE(0);

  std::fill(errors.begin(), errors.end(), error);
}
void MDHistoToWorkspace2D::recurseData(IMDHistoWorkspace_sptr inWS,
                                       Workspace2D_sptr outWS,
                                       size_t currentDim, coord_t *pos) {
  boost::shared_ptr<const IMDDimension> dim = inWS->getDimension(currentDim);
  if (currentDim == rank - 1) {
    MantidVec &Y = outWS->dataY(currentSpectra);
    for (unsigned int j = 0; j < dim->getNBins(); j++) {
      pos[currentDim] = dim->getX(j);
      Y[j] = inWS->getSignalAtCoord(
          pos, static_cast<Mantid::API::MDNormalization>(0));
    }
    MantidVec &E = outWS->dataE(currentSpectra);
    // MSVC compiler can't figure out the correct overload with out the function
    // cast on sqrt
    std::transform(Y.begin(), Y.end(), E.begin(),
                   (double (*)(double))std::sqrt);
    std::vector<double> xData;
    for (unsigned int i = 0; i < dim->getNBins(); i++) {
      xData.push_back(dim->getX(i));
    }
    outWS->setX(currentSpectra, xData);
    outWS->getSpectrum(currentSpectra)
        ->setSpectrumNo(static_cast<specid_t>(currentSpectra));
    currentSpectra++;
  } else {
    // recurse deeper
    for (int i = 0; i < static_cast<int>(dim->getNBins()); i++) {
      pos[currentDim] = dim->getX(i);
      recurseData(inWS, outWS, currentDim + 1, pos);
    }
  }
}
Beispiel #3
0
/** Remove peaks from a input workspace
  */
Workspace2D_sptr
RemovePeaks::removePeaks(API::MatrixWorkspace_const_sptr dataws, int wsindex,
                         double numfwhm) {
  // Check
  if (m_vecPeakCentre.empty())
    throw runtime_error("RemovePeaks has not been setup yet. ");

  // Initialize vectors
  const MantidVec &vecX = dataws->readX(wsindex);
  const MantidVec &vecY = dataws->readY(wsindex);
  const MantidVec &vecE = dataws->readE(wsindex);

  size_t sizex = vecX.size();
  vector<bool> vec_useX(sizex, true);

  // Exclude regions
  size_t numbkgdpoints =
      excludePeaks(vecX, vec_useX, m_vecPeakCentre, m_vecPeakFWHM, numfwhm);
  size_t numbkgdpointsy = numbkgdpoints;
  size_t sizey = vecY.size();
  if (sizex > sizey)
    --numbkgdpointsy;

  // Construct output workspace
  Workspace2D_sptr outws = boost::dynamic_pointer_cast<Workspace2D>(
      WorkspaceFactory::Instance().create("Workspace2D", 1, numbkgdpoints,
                                          numbkgdpointsy));
  outws->getAxis(0)->setUnit(dataws->getAxis(0)->unit()->unitID());
  MantidVec &outX = outws->dataX(0);
  MantidVec &outY = outws->dataY(0);
  MantidVec &outE = outws->dataE(0);
  size_t index = 0;
  for (size_t i = 0; i < sizex; ++i) {
    if (vec_useX[i]) {
      if (index >= numbkgdpoints)
        throw runtime_error("Programming logic error (1)");
      outX[index] = vecX[i];
      ++index;
    }
  }
  index = 0;
  for (size_t i = 0; i < sizey; ++i) {
    if (vec_useX[i]) {
      if (index >= numbkgdpointsy)
        throw runtime_error("Programming logic error (2)");
      outY[index] = vecY[i];
      outE[index] = vecE[i];
      ++index;
    }
  }

  return outws;
}
Beispiel #4
0
/**
 * Reads the data (FITS matrix) from a single FITS file into a
 * workspace (directly into the spectra, using one spectrum per image
 * row).
 *
 * @param fileInfo information on the FITS file to load, including its path
 * @param cmpp centimeters per pixel, to scale/normalize values
 * @param ws workspace with the required dimensions
 * @param buffer pre-allocated buffer to read from file
 *
 * @throws std::runtime_error if there are file input issues
 */
void LoadFITS::readDataToWorkspace(const FITSInfo &fileInfo, double cmpp,
                                   Workspace2D_sptr ws,
                                   std::vector<char> &buffer) {
  const size_t bytespp = (fileInfo.bitsPerPixel / 8);
  const size_t len = m_pixelCount * bytespp;
  readInBuffer(fileInfo, buffer, len);

  const size_t nrows(fileInfo.axisPixelLengths[1]),
      ncols(fileInfo.axisPixelLengths[0]);
  // Treat buffer as a series of bytes
  uint8_t *buffer8 = reinterpret_cast<uint8_t *>(buffer.data());

  PARALLEL_FOR_NO_WSP_CHECK()
  for (int i = 0; i < static_cast<int>(nrows); ++i) {
    auto &dataX = ws->dataX(i);
    auto &dataY = ws->dataY(i);
    auto &dataE = ws->dataE(i);
    std::fill(dataX.begin(), dataX.end(), static_cast<double>(i) * cmpp);

    for (size_t j = 0; j < ncols; ++j) {
      // Map from 2D->1D index
      const size_t start = ((i * (bytespp)) * nrows) + (j * (bytespp));
      uint8_t const *const buffer8Start = buffer8 + start;
      // Reverse byte order of current value. Make sure we allocate enough
      // enough space to hold the size
      uint8_t byteValue[g_maxBytesPP];
      std::reverse_copy(buffer8Start, buffer8Start + bytespp, byteValue);

      double val = 0;
      if (fileInfo.bitsPerPixel == 8) {
        val = toDouble<uint8_t>(byteValue);
      } else if (fileInfo.bitsPerPixel == 16) {
        val = toDouble<uint16_t>(byteValue);
      } else if (fileInfo.bitsPerPixel == 32 && !fileInfo.isFloat) {
        val = toDouble<uint32_t>(byteValue);
      } else if (fileInfo.bitsPerPixel == 64 && !fileInfo.isFloat) {
        val = toDouble<uint32_t>(byteValue);
      } else if (fileInfo.bitsPerPixel == 32 && fileInfo.isFloat) {
        val = toDouble<float>(byteValue);
      } else if (fileInfo.bitsPerPixel == 64 && fileInfo.isFloat) {
        val = toDouble<double>(byteValue);
      }

      val = fileInfo.scale * val - fileInfo.offset;
      dataY[j] = val;
      dataE[j] = sqrt(val);
    }
  }
}
Beispiel #5
0
/** Filter non-background data points out and create a background workspace
  */
Workspace2D_sptr
ProcessBackground::filterForBackground(BackgroundFunction_sptr bkgdfunction) {
  double posnoisetolerance = getProperty("NoiseTolerance");
  double negnoisetolerance = getProperty("NegativeNoiseTolerance");
  if (isEmpty(negnoisetolerance))
    negnoisetolerance = posnoisetolerance;

  // Calcualte theoretical values
  const std::vector<double> x = m_dataWS->readX(m_wsIndex);
  API::FunctionDomain1DVector domain(x);
  API::FunctionValues values(domain);
  bkgdfunction->function(domain, values);

  g_log.information() << "Function used to select background points : "
                      << bkgdfunction->asString() << "\n";

  // Optional output
  string userbkgdwsname = getPropertyValue("UserBackgroundWorkspace");
  if (userbkgdwsname.size() == 0)
    throw runtime_error("In mode SelectBackgroundPoints, "
                        "UserBackgroundWorkspace must be given!");

  size_t sizex = domain.size();
  size_t sizey = values.size();
  MatrixWorkspace_sptr visualws = boost::dynamic_pointer_cast<MatrixWorkspace>(
      WorkspaceFactory::Instance().create("Workspace2D", 4, sizex, sizey));
  for (size_t i = 0; i < sizex; ++i) {
    for (size_t j = 0; j < 4; ++j) {
      visualws->dataX(j)[i] = domain[i];
    }
  }
  for (size_t i = 0; i < sizey; ++i) {
    visualws->dataY(0)[i] = values[i];
    visualws->dataY(1)[i] = m_dataWS->readY(m_wsIndex)[i] - values[i];
    visualws->dataY(2)[i] = posnoisetolerance;
    visualws->dataY(3)[i] = -negnoisetolerance;
  }
  setProperty("UserBackgroundWorkspace", visualws);

  // Filter for background
  std::vector<double> vecx, vecy, vece;
  for (size_t i = 0; i < domain.size(); ++i) {
    // double y = m_dataWS->readY(m_wsIndex)[i];
    // double theoryy = values[i]; y-theoryy
    double purey = visualws->readY(1)[i];
    if (purey < posnoisetolerance && purey > -negnoisetolerance) {
      // Selected
      double x = domain[i];
      double y = m_dataWS->readY(m_wsIndex)[i];
      double e = m_dataWS->readE(m_wsIndex)[i];
      vecx.push_back(x);
      vecy.push_back(y);
      vece.push_back(e);
    }
  }
  g_log.information() << "Found " << vecx.size() << " background points out of "
                      << m_dataWS->readX(m_wsIndex).size()
                      << " total data points. "
                      << "\n";

  // Build new workspace for OutputWorkspace
  size_t nspec = 3;
  Workspace2D_sptr outws =
      boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
          API::WorkspaceFactory::Instance().create("Workspace2D", nspec,
                                                   vecx.size(), vecy.size()));
  for (size_t i = 0; i < vecx.size(); ++i) {
    for (size_t j = 0; j < nspec; ++j)
      outws->dataX(j)[i] = vecx[i];
    outws->dataY(0)[i] = vecy[i];
    outws->dataE(0)[i] = vece[i];
  }

  return outws;
}
Beispiel #6
0
    /**
    * Executes the algorithm.
    * Saves the workspace specified by the user to the VTK XML format
    */
    void SaveVTK::exec()
    {
      std::string filename = getProperty("Filename");
      g_log.debug() << "Parameters: Filename='" << filename << "'" << std::endl;
      //add extension
      filename += ".vtu";

      MatrixWorkspace_sptr inputWorkspace = getProperty("InputWorkspace");
      if( !inputWorkspace )
      {
        g_log.error("Failed to retrieve inputWorkspace.");
        throw Exception::NullPointerException("SaveVTK::exec()", "inputWorkspace");
      }

      checkOptionalProperties();

      //Open file for writing
      std::ofstream outVTP(filename.c_str());
      if( !outVTP )
      {
        g_log.error("Failed to open file: " + filename);
        throw Exception::FileError("Failed to open file ", filename);
      }

      // First write document level XML header
      outVTP << "<?xml version=\"1.0\"?>\n"
        "<VTKFile type=\"UnstructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\">\n"
        "<UnstructuredGrid>\n";

      const std::string workspaceID = inputWorkspace->id();    
      if( workspaceID.find("Workspace2D") != std::string::npos )
      {
        const Workspace2D_sptr localWorkspace = 
          boost::dynamic_pointer_cast<Workspace2D>(inputWorkspace);
        //      const size_t numberOfHist = localWorkspace->getNumberHistograms();

        //Write out whole range
        bool xMin(m_Xmin > 0.0), xMax(m_Xmax > 0.0);
        Progress prog(this,0.0,1.0,97);
        if( !xMin && !xMax )
        {
          for( int hNum = 2; hNum < 100; ++hNum )
          {
            writeVTKPiece(outVTP, localWorkspace->dataX(hNum), localWorkspace->dataY(hNum), 
              localWorkspace->dataE(hNum), hNum);
            prog.report();
          }
        }
        else
        {
          for( int hNum = 2; hNum < 100; ++hNum )
          {
            std::vector<double> xValue, yValue, errors;
            std::vector<double>::size_type nVals(localWorkspace->dataY(hNum).size());
            for( int i = 0; i < (int)nVals; ++i )
            {
              if( xMin && localWorkspace->dataX(hNum)[i] < m_Xmin ) continue;
              if( xMax && localWorkspace->dataX(hNum)[i+1] > m_Xmax)
              {
                xValue.push_back(localWorkspace->dataX(hNum)[i]);
                break;
              }
              xValue.push_back(localWorkspace->dataX(hNum)[i]);
              if( i == (int)nVals - 1 )
              {
                xValue.push_back(localWorkspace->dataX(hNum)[i+1]);
              } 	    
              yValue.push_back(localWorkspace->dataY(hNum)[i]);
              errors.push_back(localWorkspace->dataE(hNum)[i]);
            }
            //sanity check
            assert( (int)xValue.size() == (int)yValue.size() + 1 );

            writeVTKPiece(outVTP, xValue, yValue, errors, hNum);
            prog.report();
          }
        }
      }
      else
      {
        outVTP.close();
        Poco::File(filename).remove();
        throw Exception::NotImplementedError("SaveVTK only implemented for Workspace2D\n");
      }

      // Final XML end block tags
      outVTP << "</UnstructuredGrid>\n</VTKFile>\n";
      outVTP.close();
    }