Ejemplo n.º 1
0
/**
 * Perform the proposal.
 *
 * A Uniform-simplex proposal randomly changes some values of a simplex, although the other values
 * change too because of the renormalization.
 * First, some random indices are drawn. Then, the proposal draws a new somplex
 *   u ~ Uniform(val[index] * alpha)
 * where alpha is the tuning parameter.The new value is set to u.
 * The simplex is then renormalized.
 *
 * \return The hastings ratio.
 */
double RootTimeSlideUniformProposal::doProposal( void )
{
    
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    Tree& tau = variable->getValue();
    
    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node = &tau.getRoot();
    
    // we need to work with the times
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }
    
    // now we store all necessary values
    storedAge = my_age;
    
    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = (origin->getValue() - child_Age) * rng->uniform01() + child_Age;
    
    // set the age
    node->setAge( my_new_age );
    
    return 0.0;
    
}
void AutocorrelatedBranchMatrixDistribution::recursiveSimulate(const TopologyNode& node, RbVector< RateMatrix > *values, const std::vector< double > &scaledParent) {
    
    // get the index
    size_t nodeIndex = node.getIndex();
    
    // first we simulate our value
    RandomNumberGenerator* rng = GLOBAL_RNG;
    // do we keep our parents values?
    double u = rng->uniform01();
    if ( u < changeProbability->getValue() ) {
        // change
        
        // draw a new value for the base frequencies
        std::vector<double> newParent = RbStatistics::Dirichlet::rv(scaledParent, *rng);
        std::vector<double> newScaledParent = newParent;
        
        // compute the new scaled parent
        std::vector<double>::iterator end = newScaledParent.end();
        for (std::vector<double>::iterator it = newScaledParent.begin(); it != end; ++it) {
            (*it) *= alpha->getValue();
        }
        
        RateMatrix_GTR rm = RateMatrix_GTR( newParent.size() );
        RbPhylogenetics::Gtr::computeRateMatrix( exchangeabilityRates->getValue(), newParent, &rm );
        
        uniqueBaseFrequencies.push_back( newParent );
        uniqueMatrices.push_back( rm );
        matrixIndex[nodeIndex] = uniqueMatrices.size()-1;
        values->insert(nodeIndex, rm);
        
        size_t numChildren = node.getNumberOfChildren();
        if ( numChildren > 0 ) {
            
            for (size_t i = 0; i < numChildren; ++i) {
                const TopologyNode& child = node.getChild(i);
                recursiveSimulate(child,values,newScaledParent);
            }
        }
        
    }
    else {
        // no change
        size_t parentIndex = node.getParent().getIndex();
        values->insert(nodeIndex, uniqueMatrices[ matrixIndex[ parentIndex ] ]);
        
        size_t numChildren = node.getNumberOfChildren();
        if ( numChildren > 0 ) {
            
            for (size_t i = 0; i < numChildren; ++i) {
                const TopologyNode& child = node.getChild(i);
                recursiveSimulate(child,values,scaledParent);
            }
        }
    }
    
}
Ejemplo n.º 3
0
size_t SpeciesTreeNodeSlideProposal::fillPreorderIndices(TopologyNode &node, size_t loc, std::vector<size_t> &indices)
{
    if ( node.isInternal() == true )
    {
        size_t l = fillPreorderIndices(node.getChild( 0 ), loc, indices);
        indices[node.getIndex()] = l;
        loc = fillPreorderIndices(node.getChild( 1 ), l + 1, indices);
    }
    
    return loc;
}
void MultivariateBrownianPhyloProcess::recursiveCorruptAll(const TopologyNode& from)    {
    
    dirtyNodes[from.getIndex()] = true;
    for (size_t i = 0; i < from.getNumberOfChildren(); ++i) {
        recursiveCorruptAll(from.getChild(i));
    }    
}
void MultivariateBrownianPhyloProcess::recursiveSimulate(const TopologyNode& from)  {
    
    size_t index = from.getIndex();
    if (from.isRoot())    {
        
        std::vector<double>& val = (*value)[index];
        for (size_t i=0; i<getDim(); i++)   {
            val[i] = 0;
        }
    }
    
    else    {
        
        // x ~ normal(x_up, sigma^2 * branchLength)

        std::vector<double>& val = (*value)[index];
                
        sigma->getValue().drawNormalSampleCovariance((*value)[index]);

        size_t upindex = from.getParent().getIndex();
        std::vector<double>& upval = (*value)[upindex];

        for (size_t i=0; i<getDim(); i++)   {
            val[i] += upval[i];
        }        
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveSimulate(from.getChild(i));
    }
    
}
Ejemplo n.º 6
0
void RealNodeContainer::recursiveClampAt(const TopologyNode& from, const ContinuousCharacterData* data, size_t l) {
 
    if (from.isTip())   {
        
        // get taxon index
        size_t index = from.getIndex();
        std::string taxon = tree->getTipNames()[index];
        size_t dataindex = data->getIndexOfTaxon(taxon);
        
        if (data->getCharacter(dataindex,l) != -1000) {
           (*this)[index] = data->getCharacter(dataindex,l);
            clampVector[index] = true;
            //std::cerr << "taxon : " << index << '\t' << taxon << " trait value : " << (*this)[index] << '\n';
        }
        else    {
            std::cerr << "taxon : " << taxon << " is missing for trait " << l+1 << '\n';
        }
    }

    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveClampAt(from.getChild(i),data,l);
    }    
}
Ejemplo n.º 7
0
void PhyloWhiteNoiseProcess::recursiveSimulate(const TopologyNode& from)
{
    
    if (! from.isRoot())
    {
        // get the index
        size_t index = from.getIndex();
    
        // compute the variance along the branch
        double mean = 1.0;
        double stdev = sigma->getValue() / sqrt(from.getBranchLength());
        double alpha = mean * mean / (stdev * stdev);
        double beta = mean / (stdev * stdev);
    
        // simulate a new Val
        RandomNumberGenerator* rng = GLOBAL_RNG;
        double v = RbStatistics::Gamma::rv( alpha,beta, *rng);
    
        // we store this val here
        (*value)[index] = v;
    
    }
    
    // simulate the val for each child (if any)
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i)
    {
        const TopologyNode& child = from.getChild(i);
        recursiveSimulate(child);
    }
    
}
Ejemplo n.º 8
0
double BrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
    
    double lnProb = 0.0;
    size_t index = from.getIndex();
    double val = (*value)[index];

    if (! from.isRoot()) {
        
        // x ~ normal(x_up, sigma^2 * branchLength)
        
        size_t upindex = from.getParent().getIndex();
        double standDev = sigma->getValue() * sqrt(from.getBranchLength());
        double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();
        lnProb += RbStatistics::Normal::lnPdf(val, standDev, mean);
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    
    for (size_t i = 0; i < numChildren; ++i) {
        lnProb += recursiveLnProb(from.getChild(i));
    }
    
    return lnProb;
    
}
void AutocorrelatedLognormalRateBranchwiseVarDistribution::recursiveSimulate(const TopologyNode& node, double parentRate) {
    
    // get the index
    size_t nodeIndex = node.getIndex();
    
    // compute the variance along the branch
	double scale = scaleValue->getValue();
    double variance = sigma->getValue()[nodeIndex] * node.getBranchLength() * scale;
	double mu = log(parentRate) - (variance * 0.5);
	double stDev = sqrt(variance);
    
    // simulate a new rate
    RandomNumberGenerator* rng = GLOBAL_RNG;
    double nodeRate = RbStatistics::Lognormal::rv( mu, stDev, *rng );
    
    // we store this rate here
    (*value)[nodeIndex] = nodeRate;
    
    // simulate the rate for each child (if any)
    size_t numChildren = node.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        const TopologyNode& child = node.getChild(i);
        recursiveSimulate(child,nodeRate);
    }
}
double AutocorrelatedLognormalRateBranchwiseVarDistribution::recursiveLnProb( const TopologyNode& n ) {
    
    // get the index
    size_t nodeIndex = n.getIndex();
    
    double lnProb = 0.0;
    size_t numChildren = n.getNumberOfChildren();
	double scale = scaleValue->getValue();
    
    if ( numChildren > 0 ) {
        double parentRate = log( (*value)[nodeIndex] );
        
        for (size_t i = 0; i < numChildren; ++i) {
            const TopologyNode& child = n.getChild(i);
            lnProb += recursiveLnProb(child);
            
            size_t childIndex = child.getIndex();
            // compute the variance
            double variance = sigma->getValue()[childIndex] * child.getBranchLength() * scale;
            
            double childRate = (*value)[childIndex];

			// the mean of the LN dist is parentRate = exp[mu + (variance / 2)],
			// where mu is the location param of the LN dist (see Kishino & Thorne 2001)
			double mu = parentRate - (variance * 0.5);
			double stDev = sqrt(variance);
            lnProb += RbStatistics::Lognormal::lnPdf(mu, stDev, childRate);
        } 
    }
    return lnProb;
    
}
Ejemplo n.º 11
0
void BrownianPhyloProcess::recursiveSimulate(const TopologyNode& from)  {
    
    size_t index = from.getIndex();
    
    if (! from.isRoot())    {
        
        // x ~ normal(x_up, sigma^2 * branchLength)
        
        size_t upindex = from.getParent().getIndex();
        double standDev = sigma->getValue() * sqrt(from.getBranchLength());
        double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();

        // simulate the new Val
        RandomNumberGenerator* rng = GLOBAL_RNG;
        (*value)[index] = RbStatistics::Normal::rv( mean, standDev, *rng);
     
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveSimulate(from.getChild(i));
    }
    
}
Ejemplo n.º 12
0
TopologyNode* SpeciesTreeNodeSlideProposal::mauReconstructSub(Tree &tree, size_t from, size_t to, std::vector<TopologyNode*> &order, std::vector<bool>&wasSwaped)
{
    if( from == to )
    {
        return order[2*from];
    }
    
    size_t node_index = -1;
    {
        double h = -1;
        
        for(size_t i = from; i < to; ++i)
        {
            double v = order[2 * i + 1]->getAge();
            if( h < v )
            {
                h = v;
                node_index = i;
            }
        }
    }
    
    TopologyNode* node = order[2 * node_index + 1];
    
    TopologyNode& lchild = node->getChild( 0 );
    TopologyNode& rchild = node->getChild( 1 );
    
    TopologyNode* lTargetChild = mauReconstructSub(tree, from, node_index, order, wasSwaped);
    TopologyNode* rTargetChild = mauReconstructSub(tree, node_index+1, to, order, wasSwaped);
    
    if( wasSwaped[node_index] )
    {
        TopologyNode* z = lTargetChild;
        lTargetChild = rTargetChild;
        rTargetChild = z;
    }
    
    if( &lchild != lTargetChild )
    {
        // replace the left child
        node->removeChild( &lchild );
        node->addChild( lTargetChild );
    }
    
    if( &rchild != rTargetChild )
    {
        // replace the right child
        node->removeChild( &rchild );
        node->addChild( rTargetChild );
    }
    
    return node;
}
Ejemplo n.º 13
0
/**
 * Perform the proposal.
 *
 * A Uniform-simplex proposal randomly changes some values of a simplex, although the other values
 * change too because of the renormalization.
 * First, some random indices are drawn. Then, the proposal draws a new somplex
 *   u ~ Uniform(val[index] * alpha)
 * where alpha is the tuning parameter.The new value is set to u.
 * The simplex is then renormalized.
 *
 * \return The hastings ratio.
 */
double NodeTimeSlideUniformProposal::doProposal( void )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    Tree& tau = variable->getValue();

    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;

    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;

    // set the age
    tau.getNode(node->getIndex()).setAge( my_new_age );

    return 0.0;

}
Ejemplo n.º 14
0
/**
 * Recursive call to attach ordered interior node times to the time tree psi. Call it initially with the
 * root of the tree.
 */
void HeterogeneousRateBirthDeath::attachTimes(Tree* psi, std::vector<TopologyNode *> &nodes, size_t index, const std::vector<double> &interiorNodeTimes, double originTime )
{
    
    if (index < num_taxa-1)
    {
        // Get the rng
        RandomNumberGenerator* rng = GLOBAL_RNG;
        
        // Randomly draw one node from the list of nodes
        size_t node_index = static_cast<size_t>( floor(rng->uniform01()*nodes.size()) );
        
        // Get the node from the list
        TopologyNode* parent = nodes.at(node_index);
        psi->getNode( parent->getIndex() ).setAge( originTime - interiorNodeTimes[index] );
        
        // Remove the randomly drawn node from the list
        nodes.erase(nodes.begin()+long(node_index));
        
        // Add the left child if an interior node
        TopologyNode* leftChild = &parent->getChild(0);
        if ( !leftChild->isTip() )
        {
            nodes.push_back(leftChild);
        }
        
        // Add the right child if an interior node
        TopologyNode* rightChild = &parent->getChild(1);
        if ( !rightChild->isTip() )
        {
            nodes.push_back(rightChild);
        }
        
        // Recursive call to this function
        attachTimes(psi, nodes, index+1, interiorNodeTimes, originTime);
    }
    
}
Ejemplo n.º 15
0
void RealNodeContainer::recursiveGetStats(const TopologyNode& from, double& e1, double& e2, int& n) const {

    double tmp = (*this)[from.getIndex()];

    n++;
    e1 += tmp;
    e2 += tmp * tmp;
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveGetStats(from.getChild(i),e1,e2,n);
    }
    
}
double MultivariateBrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
    
    double lnProb = 0.0;
    size_t index = from.getIndex();
    std::vector<double> val = (*value)[index];
    
    if (! from.isRoot()) {
        
        if (1)  {
//        if (dirtyNodes[index])  {

            // x ~ normal(x_up, sigma^2 * branchLength)

            size_t upindex = from.getParent().getIndex();
            std::vector<double> upval = (*value)[upindex];

            const MatrixReal& om = sigma->getValue().getInverse();

            double s2 = 0;
            for (size_t i = 0; i < getDim(); i++) {
                double tmp = 0;
                for (size_t j = 0; j < getDim(); j++) {
                    tmp += om[i][j] * (val[j] - upval[j]);
                }
                s2 += (val[i] - upval[i]) * tmp;
            }

            double logprob = 0;
            logprob -= 0.5 * s2 / from.getBranchLength();
            logprob -= 0.5 * (sigma->getValue().getLogDet() + sigma->getValue().getDim() * log(from.getBranchLength()));
            nodeLogProbs[index] = logprob;
            dirtyNodes[index] = false;
        }
        lnProb += nodeLogProbs[index];
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    
    for (size_t i = 0; i < numChildren; ++i) {
        lnProb += recursiveLnProb(from.getChild(i));
    }
    
    return lnProb;
    
}
double AutocorrelatedBranchMatrixDistribution::recursiveLnProb( const TopologyNode& n ) {
    
    // get the index
    size_t nodeIndex = n.getIndex();
    
    double lnProb = 0.0;
    size_t numChildren = n.getNumberOfChildren();
    
    if ( numChildren > 0 ) {
        std::vector<double> parent = (*value)[nodeIndex].getStationaryFrequencies();

        std::vector<double>::iterator end = parent.end();
        for (std::vector<double>::iterator it = parent.begin(); it != end; ++it) {
            (*it) *= alpha->getValue();
        }

        for (size_t i = 0; i < numChildren; ++i) {
            const TopologyNode& child = n.getChild(i);
            lnProb += recursiveLnProb(child);
            
            size_t childIndex = child.getIndex();
            //        RateMatrix& rm = (*value)[childIndex];
            
            // compare if the child has a different matrix
            if ( matrixIndex[nodeIndex] == matrixIndex[childIndex] ) {
                // no change -> just the probability of no change
                lnProb += log( 1.0 - changeProbability->getValue() );
            } else {
                // change:
                
                // probability of change
                lnProb += log( changeProbability->getValue() );
                
                const std::vector<double>& descendant = (*value)[childIndex].getStationaryFrequencies();
        //            const std::vector<double>& descendant = uniqueMatrices[ matrixIndex[childIndex] ].getStationaryFrequencies();
                
                // probability of new descendant values
                double p = RbStatistics::Dirichlet::lnPdf(parent, descendant);
                lnProb += p;
            }
        } 
    }
    
    return lnProb;
    
}
Ejemplo n.º 18
0
void RealNodeContainer::recursiveGetTipValues(const TopologyNode& from, ContinuousCharacterData& nameToVal) const {
    
    if(from.isTip())   {
        double tmp = (*this)[from.getIndex()];
        std::string name =  tree->getTipNames()[from.getIndex()];
        
        ContinuousTaxonData dataVec = ContinuousTaxonData(name);
        double contObs = tmp;
        dataVec.addCharacter( contObs );
        nameToVal.addTaxonData( dataVec );
        return;
    }
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveGetTipValues(from.getChild(i), nameToVal );
    }
    
}
Ejemplo n.º 19
0
std::string RealNodeContainer::recursiveGetNewick(const TopologyNode& from) const {

    std::ostringstream s;
    
    if (from.isTip())   {
        s << getTimeTree()->getTipNames()[from.getIndex()] << "_";
//        std::cerr << from.getIndex() << '\t' << getTimeTree()->getTipNames()[from.getIndex()] << "_";
//        std::cerr << (*this)[from.getIndex()] << '\n';
//        exit(1);
    }
    else    {
        s << "(";
        // propagate forward
        size_t numChildren = from.getNumberOfChildren();
        for (size_t i = 0; i < numChildren; ++i) {
            s << recursiveGetNewick(from.getChild(i));
            if (i < numChildren-1)  {
                s << ",";
            }
        }
        s << ")";
    }
    s << (*this)[from.getIndex()];
/*    if (from.isTip() && (! isClamped(from.getIndex()))) {
        std::cerr << "leaf is not clamped\n";
        // get taxon index
        size_t index = from.getIndex();
        std::cerr << "index : " << index << '\n';
        std::string taxon = tree->getTipNames()[index];
        std::cerr << "taxon : " << index << '\t' << taxon << '\n';
        std::cerr << " trait value : " << (*this)[index] << '\n';        
        exit(1);
    }*/
//    if (!from.isRoot()) {
        s << ":";
        s << getTimeTree()->getBranchLength(from.getIndex());
//    }
    
    return s.str();
}
Ejemplo n.º 20
0
double PhyloWhiteNoiseProcess::recursiveLnProb(const TopologyNode &from)   {

    double lnProb = 0.0;
    if (! from.isRoot())   {
        // compute the variance
        double mean = 1.0;
        double stdev = sigma->getValue() / sqrt(from.getBranchLength());
        double alpha = mean * mean / (stdev * stdev);
        double beta = mean / (stdev * stdev);
        double v = (*value)[from.getIndex()];
        lnProb += log( RbStatistics::Gamma::lnPdf(alpha,beta,v) );
    }
    
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        const TopologyNode& child = from.getChild(i);
        lnProb += recursiveLnProb(child);
            
    }
    
    return lnProb;
}
Ejemplo n.º 21
0
void StateDependentSpeciationExtinctionProcess::recursivelyDrawJointConditionalAncestralStates(const TopologyNode &node, std::vector<size_t>& startStates, std::vector<size_t>& endStates)
{
    
    size_t node_index = node.getIndex();
    
    if ( node.isTip() == true )
    {
        const AbstractHomologousDiscreteCharacterData& data = static_cast<TreeDiscreteCharacterData*>(this->value)->getCharacterData();
        const AbstractDiscreteTaxonData& taxon_data = data.getTaxonData( node.getName() );
        
        const DiscreteCharacterState &char_state = taxon_data.getCharacter(0);
        
        // we need to treat ambiguous state differently
        if ( char_state.isAmbiguous() == false )
        {
            endStates[node_index] = char_state.getStateIndex();
        }
        else
        {
            // initialize the conditional likelihoods for this branch
            state_type branch_conditional_probs = std::vector<double>(2 * num_states, 0);
            size_t start_state = startStates[node_index];
            branch_conditional_probs[ num_states + start_state ] = 1.0;
            
            // first calculate extinction likelihoods via a backward time pass
            double end_age = node.getParent().getAge();
            numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, true, true);
            
            // now calculate conditional likelihoods along branch in forward time
            end_age        = node.getParent().getAge() - node.getAge();
            numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, false, false);
            
            double total_prob = 0.0;
            for (size_t i = 0; i < num_states; ++i)
            {
                if ( char_state.isMissingState() == true || char_state.isGapState() == true || char_state.isStateSet(i) == true )
                {
                    total_prob += branch_conditional_probs[i];
                }
            }
            
            RandomNumberGenerator* rng = GLOBAL_RNG;
            size_t u = rng->uniform01() * total_prob;
            
            for (size_t i = 0; i < num_states; ++i)
            {
                
                if ( char_state.isMissingState() == true || char_state.isGapState() == true || char_state.isStateSet(i) == true )
                {
                    u -= branch_conditional_probs[i];
                    if ( u <= 0.0 )
                    {
                        endStates[node_index] = i;
                        break;
                    }
                    
                }
                
            }
            
        }
    }
    else
    {
        // sample characters by their probability conditioned on the branch's start state going to end states
        
        // initialize the conditional likelihoods for this branch
        state_type branch_conditional_probs = std::vector<double>(2 * num_states, 0);
        size_t start_state = startStates[node_index];
        branch_conditional_probs[ num_states + start_state ] = 1.0;
        
        // first calculate extinction likelihoods via a backward time pass
        double end_age = node.getParent().getAge();
        numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, true, true);
        
        // now calculate conditional likelihoods along branch in forward time
        end_age        = node.getParent().getAge() - node.getAge();
        numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, false, false);
        
        // TODO: if character mapping compute likelihoods for each time slice....
//        double current_time_slice = floor(begin_age / dt);
//        bool computed_at_least_one = false;
//        
//        // first iterate forward along the branch subtending this node to get the
//        // probabilities of the end states conditioned on the start state
//        while (current_time_slice * dt >= end_age || !computed_at_least_one)
//        {
//            double begin_age_slice = current_time_slice * dt;
//            double end_age_slice = (current_time_slice + 1) * dt;
//            numericallyIntegrateProcess(branch_conditional_probs, begin_age_slice, end_age_slice, false);
//            
//            computed_at_least_one = true;
//            current_time_slice--;
//        }
        
        std::map<std::vector<unsigned>, double> event_map;
        std::vector<double> speciation_rates;
        if ( use_cladogenetic_events == true )
        {
            // get cladogenesis event map (sparse speciation rate matrix)
            const DeterministicNode<MatrixReal>* cpn = static_cast<const DeterministicNode<MatrixReal>* >( cladogenesis_matrix );
            const TypedFunction<MatrixReal>& tf = cpn->getFunction();
            const AbstractCladogenicStateFunction* csf = dynamic_cast<const AbstractCladogenicStateFunction*>( &tf );
            
            event_map = csf->getEventMap();
        }
        else
        {
            speciation_rates = lambda->getValue();
        }
        
        // get likelihoods of descendant nodes
        const TopologyNode &left = node.getChild(0);
        size_t left_index = left.getIndex();
        state_type left_likelihoods = partial_likelihoods[left_index][active_likelihood[left_index]];
        const TopologyNode &right = node.getChild(1);
        size_t right_index = right.getIndex();
        state_type right_likelihoods = partial_likelihoods[right_index][active_likelihood[right_index]];
        
        std::map<std::vector<unsigned>, double> sample_probs;
        double sample_probs_sum = 0.0;
        std::map<std::vector<unsigned>, double>::iterator it;

        // calculate probabilities for each state
        if ( use_cladogenetic_events == true )
        {
            // iterate over each cladogenetic event possible
            // and initialize probabilities for each clado event
            for (it = event_map.begin(); it != event_map.end(); it++)
            {
                const std::vector<unsigned>& states = it->first;
                double speciation_rate = it->second;
                
                // we need to sample from the ancestor, left, and right states jointly,
                // so keep track of the probability of each clado event
                double prob = left_likelihoods[num_states + states[1]] * right_likelihoods[num_states + states[2]];
                prob *= speciation_rate * branch_conditional_probs[num_states + states[0]];
                sample_probs[ states ] = prob;
                sample_probs_sum += prob;
            }
        }
        else
        {
            for (size_t i = 0; i < num_states; i++)
            {
                double prob = left_likelihoods[num_states + i] * right_likelihoods[num_states + i] * speciation_rates[i];
                prob *= branch_conditional_probs[num_states + i];
                std::vector<unsigned> states = boost::assign::list_of(i)(i)(i);
                sample_probs[ states ] = prob;
                sample_probs_sum += prob;
            }
        }
        
        // finally, sample ancestor, left, and right character states from probs
        size_t a, l, r;

        if (sample_probs_sum == 0)
        {
            RandomNumberGenerator* rng = GLOBAL_RNG;
            size_t u = rng->uniform01() * sample_probs.size();
            size_t v = 0;
            for (it = sample_probs.begin(); it != sample_probs.end(); it++)
            {
                if (u < v)
                {
                    const std::vector<unsigned>& states = it->first;
                    a = states[0];
                    l = states[1];
                    r = states[2];
                    endStates[node_index] = a;
                    startStates[left_index] = l;
                    startStates[right_index] = r;
                    break;
                 }
                 v++;
             }
        }
        else
        {
            RandomNumberGenerator* rng = GLOBAL_RNG;
            double u = rng->uniform01() * sample_probs_sum;
            
            for (it = sample_probs.begin(); it != sample_probs.end(); it++)
            {
                u -= it->second;
                if (u < 0.0)
                {
                    const std::vector<unsigned>& states = it->first;
                    a = states[0];
                    l = states[1];
                    r = states[2];
                    endStates[node_index] = a;
                    startStates[left_index] = l;
                    startStates[right_index] = r;
                    break;
                }
            }
        }
        
        // recurse towards tips
        recursivelyDrawJointConditionalAncestralStates(left, startStates, endStates);
        recursivelyDrawJointConditionalAncestralStates(right, startStates, endStates);
    }
    
}
Ejemplo n.º 22
0
/** Perform the move */
void RateAgeBetaShift::performMove( double heat, bool raiseLikelihoodOnly )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    TimeTree& tau = tree->getValue();

    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    size_t nodeIdx = 0;
    do {
        double u = rng->uniform01();
        nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(nodeIdx);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;


    storedRates[nodeIdx] = rates[nodeIdx]->getValue();
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        storedRates[childIdx] = rates[childIdx]->getValue();
    }


    // draw new ages and compute the hastings ratio at the same time
    double m = (my_age-child_Age) / (parent_age-child_Age);
    double a = delta * m + 1.0;
    double b = delta * (1.0-m) + 1.0;
    double new_m = RbStatistics::Beta::rv(a, b, *rng);
    double my_new_age = (parent_age-child_Age) * new_m + child_Age;

    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
    double new_a = delta * new_m + 1.0;
    double new_b = delta * (1.0-new_m) + 1.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);

    // set the age
    tau.setAge( node->getIndex(), my_new_age );
    tree->touch();

    double treeProbRatio = tree->getLnProbabilityRatio();


    // set the rates
    rates[nodeIdx]->setValue( new double((node->getParent().getAge() - my_age) * storedRates[nodeIdx] / (node->getParent().getAge() - my_new_age)));
    double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();

    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        rates[childIdx]->setValue( new double((my_age - node->getChild(i).getAge()) * storedRates[childIdx] / (my_new_age - node->getChild(i).getAge())));
        ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();

    }

    std::set<DagNode*> affected;
    tree->getAffectedNodes( affected );
    double lnProbRatio = 0;
    for (std::set<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
    {
        (*it)->touch();
        lnProbRatio += (*it)->getLnProbabilityRatio();
    }

    if ( fabs(lnProbRatio) > 1E-6 ) {
//        throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
        std::cout << "Likelihood shortcut computation failed in rate-age-proposal." << std::endl;
    }

    double hastingsRatio = backward - forward;
    double lnAcceptanceRatio = treeProbRatio + ratesProbRatio + hastingsRatio;

    if (lnAcceptanceRatio >= 0.0)
    {
        numAccepted++;

        tree->keep();
        rates[nodeIdx]->keep();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->keep();
        }
    }
    else if (lnAcceptanceRatio < -300.0)
    {
        reject();
        tree->restore();
        rates[nodeIdx]->restore();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->restore();
        }
    }
    else
    {
        double r = exp(lnAcceptanceRatio);
        // Accept or reject the move
        double u = GLOBAL_RNG->uniform01();
        if (u < r)
        {
            numAccepted++;

            //keep
            tree->keep();
            rates[nodeIdx]->keep();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->keep();
            }
        }
        else
        {
            reject();
            tree->restore();
            rates[nodeIdx]->restore();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->restore();
            }
        }
    }

}
Ejemplo n.º 23
0
std::vector<TopologyNode*> TreeNodeAgeUpdateProposal::getNodesInPopulation( Tree &tau, TopologyNode &n )
{

    // I need all the oldest nodes/subtrees that have the same tips.
    // Those nodes need to be scaled too.

    // get the beginning and ending age of the population
    double max_age = -1.0;
    if ( n.isRoot() == false )
    {
        max_age = n.getParent().getAge();
    }

    // get all the taxa from the species tree that are descendants of node i
    double min_age_left = n.getChild(0).getAge();
    std::vector<TopologyNode*> speciesTaxa_left;
    TreeUtilities::getTaxaInSubtree( &n.getChild(0), speciesTaxa_left );

    // get all the individuals
    std::set<TopologyNode*> individualTaxa_left;
    for (size_t i = 0; i < speciesTaxa_left.size(); ++i)
    {
        const std::string &name = speciesTaxa_left[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa_left.insert( ind[j] );
        }
    }

    // create the set of the nodes within this population
    std::set<TopologyNode*> nodesInPopulationSet;

    // now go through all nodes in the gene
    while ( individualTaxa_left.empty() == false )
    {
        // get the first element
        std::set<TopologyNode*>::iterator it = individualTaxa_left.begin();

        // store the pointer
        TopologyNode *geneNode = *it;

        // and now remove the element from the list
        individualTaxa_left.erase( it );

        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->getAge() > min_age_left && geneNode->getAge() < max_age && geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }

        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa_left.insert( &geneNode->getParent() );
        }

    }

    // get all the taxa from the species tree that are descendants of node i
    double min_age_right = n.getChild(1).getAge();
    std::vector<TopologyNode*> speciesTaxa_right;
    TreeUtilities::getTaxaInSubtree( &n.getChild(1), speciesTaxa_right );

    // get all the individuals
    std::set<TopologyNode*> individualTaxa_right;
    for (size_t i = 0; i < speciesTaxa_right.size(); ++i)
    {
        const std::string &name = speciesTaxa_right[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa_right.insert( ind[j] );
        }
    }

    // now go through all nodes in the gene
    while ( individualTaxa_right.empty() == false )
    {
        // get the first element
        std::set<TopologyNode*>::iterator it = individualTaxa_right.begin();

        // store the pointer
        TopologyNode *geneNode = *it;

        // and now remove the element from the list
        individualTaxa_right.erase( it );

        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->getAge() > min_age_right && geneNode->getAge() < max_age && geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }

        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa_right.insert( &geneNode->getParent() );
        }

    }




    // convert the set into a vector
    std::vector<TopologyNode*> nodesInPopulation;
    for (std::set<TopologyNode*>::iterator it = nodesInPopulationSet.begin(); it != nodesInPopulationSet.end(); ++it)
    {
        nodesInPopulation.push_back( *it );
    }

    return nodesInPopulation;
}
Ejemplo n.º 24
0
/**
 * Perform the proposal.
 *
 * \return The hastings ratio.
 */
double TreeNodeAgeUpdateProposal::doProposal( void )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    Tree& tau = speciesTree->getValue();

    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;

    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;

    // Sebastian: This is for debugging to test if the proposal's acceptance rate is 1.0 as it should be!
//    my_new_age = my_age;

    int upslideNodes = 0;
    int downslideNodes = 0;

    for ( size_t i=0; i<geneTrees.size(); ++i )
    {
        // get the i-th gene tree
        Tree& geneTree = geneTrees[i]->getValue();

        std::vector<TopologyNode*> nodes = getNodesInPopulation(geneTree, *node );

        for (size_t j=0; j<nodes.size(); ++j)
        {

            double a = nodes[j]->getAge();
            double new_a = a;
            if ( a > my_age )
            {
                ++upslideNodes;
                new_a = parent_age - (parent_age - my_new_age)/(parent_age - my_age) * (parent_age - a);
            }
            else
            {
                ++downslideNodes;
                new_a = child_Age + (my_new_age - child_Age)/(my_age - child_Age) * (a - child_Age);
            }

            // set the new age of this gene tree node
            geneTree.getNode( nodes[j]->getIndex() ).setAge( new_a );
        }

        // Sebastian: This is only for debugging. It makes the code slower. Hopefully it is not necessary anymore.
//        geneTrees[i]->touch( true );

    }

    // Sebastian: We need to work on a mechanism to make these proposal safe for non-ultrametric trees!
    //    if (min_age != 0.0)
    //    {
    //        for (size_t i = 0; i < tau.getNumberOfTips(); i++)
    //        {
    //            if (tau.getNode(i).getAge() < 0.0)
    //            {
    //                return RbConstants::Double::neginf;
    //            }
    //        }
    //    }


    // set the age of the species tree node
    tau.getNode( node->getIndex() ).setAge( my_new_age );

    // compute the Hastings ratio
    double lnHastingsratio = upslideNodes * log( (parent_age - my_new_age)/(parent_age - my_age) ) + downslideNodes * log( (my_new_age - child_Age)/(my_age - child_Age) );

    return lnHastingsratio;

}
Ejemplo n.º 25
0
/** Perform the move */
void RateAgeBetaShift::performMcmcMove( double lHeat, double pHeat )
{
    
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    Tree& tau = tree->getValue();
    RbOrderedSet<DagNode*> affected;
    tree->getAffectedNodes( affected );
    
    double oldLnLike = 0.0;
    bool checkLikelihoodShortcuts = rng->uniform01() < 0.001;
    if ( checkLikelihoodShortcuts == true )
    {
        for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
        {
            (*it)->touch();
            oldLnLike += (*it)->getLnProbability();
        }
    }
    
    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    size_t nodeIdx = 0;
    do {
        double u = rng->uniform01();
        nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(nodeIdx);
    } while ( node->isRoot() || node->isTip() ); 
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
    
    
    storedRates[nodeIdx] = rates[nodeIdx]->getValue();
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        storedRates[childIdx] = rates[childIdx]->getValue();
    }
    
    
    // draw new ages and compute the hastings ratio at the same time
    double m = (my_age-child_Age) / (parent_age-child_Age);
    double a = delta * m + 1.0;
    double b = delta * (1.0-m) + 1.0;
    double new_m = RbStatistics::Beta::rv(a, b, *rng);
    double my_new_age = (parent_age-child_Age) * new_m + child_Age;
    
    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
    double new_a = delta * new_m + 1.0;
    double new_b = delta * (1.0-new_m) + 1.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);
    
    // set the age
    tau.getNode(nodeIdx).setAge( my_new_age );
    
    // touch the tree so that the likelihoods are getting stored
    tree->touch();
    
    // get the probability ratio of the tree
    double treeProbRatio = tree->getLnProbabilityRatio();
    
    
    // set the rates
    double pa = node->getParent().getAge();
    double my_new_rate =(pa - my_age) * storedRates[nodeIdx] / (pa - my_new_age);
    
    // now we set the new value
    // this will automcatically call a touch
    rates[nodeIdx]->setValue( new double( my_new_rate ) );
    
    // get the probability ratio of the new rate
    double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();
    
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        double a = node->getChild(i).getAge();
        double child_new_rate = (my_age - a) * storedRates[childIdx] / (my_new_age - a);
        
        // now we set the new value
        // this will automcatically call a touch
        rates[childIdx]->setValue( new double( child_new_rate ) );

        // get the probability ratio of the new rate
        ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();
        
        
    }
    
    if ( checkLikelihoodShortcuts == true )
    {
        double lnProbRatio = 0;
        double newLnLike = 0;
        for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
        {

            double tmp = (*it)->getLnProbabilityRatio();
            lnProbRatio += tmp;
            newLnLike += (*it)->getLnProbability();
        }
    
        if ( fabs(lnProbRatio) > 1E-8 )
        {
            double lnProbRatio2 = 0;
            double newLnLike2 = 0;
            for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
            {
                
                double tmp2 = (*it)->getLnProbabilityRatio();
                lnProbRatio2 += tmp2;
                newLnLike2 += (*it)->getLnProbability();
            }
            
            throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
        }
        
    }
    
    double hastingsRatio = backward - forward;
    double ln_acceptance_ratio = lHeat * pHeat * (treeProbRatio + ratesProbRatio) + hastingsRatio;
    
    if (ln_acceptance_ratio >= 0.0)
    {
        numAccepted++;
        
        tree->keep();
        rates[nodeIdx]->keep();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->keep();
        }
    }
    else if (ln_acceptance_ratio < -300.0)
    {
        reject();
        tree->restore();
        rates[nodeIdx]->restore();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->restore();
        }
    }
    else
    {
        double r = exp(ln_acceptance_ratio);
        // Accept or reject the move
        double u = GLOBAL_RNG->uniform01();
        if (u < r)
        {
            numAccepted++;
            
            //keep
            tree->keep();
            rates[nodeIdx]->keep();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->keep();
            }
        }
        else
        {
            reject();
            tree->restore();
            rates[nodeIdx]->restore();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->restore();
            }
        }
    }

}
Ejemplo n.º 26
0
/** Perform the move */
double GibbsPruneAndRegraft::performSimpleMove( void ) 
{
    
    // Get random number generator    
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = variable->getValue();
    
    // potential affected nodes for likelihood computation
    std::set<DagNode *> affected;
    variable->getAffectedNodes( affected );
    
    double backwardLikelihood = variable->getLnProbability();
    for (std::set<DagNode*>::const_iterator it = affected.begin(); it != affected.end(); ++it) 
    {
        backwardLikelihood += (*it)->getLnProbability();
    }
    int offset = (int) -backwardLikelihood;
    double backward = exp(backwardLikelihood + offset);
    
    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->getParent().isRoot() );
    
    TopologyNode* parent        = &node->getParent(); 
    TopologyNode& grandparent   = parent->getParent();
    TopologyNode& brother       = parent->getChild( 0 );
    // check if we got the correct child
    if ( &brother == node ) 
    {
        brother = parent->getChild( 1 );
    }
    
    // collect the possible reattachement points
    std::vector<TopologyNode*> new_brothers;
    findNewBrothers(new_brothers, *parent, &tau.getRoot());
    std::vector<double> weights = std::vector<double>(new_brothers.size(), 0.0);
    double sumOfWeights = 0.0;
    for (size_t i = 0; i<new_brothers.size(); ++i) 
    {
        // get the new brother
        TopologyNode* newBro = new_brothers[i];
        
        // do the proposal
        TopologyNode *newGrandparent = pruneAndRegraft(&brother, newBro, parent, grandparent);
        
        // flag for likelihood recomputation
        variable->touch();
        
        // compute the likelihood of the new value
        double priorRatio = variable->getLnProbability();
        double likelihoodRatio = 0.0;
        for (std::set<DagNode*>::const_iterator it = affected.begin(); it != affected.end(); ++it) 
        {
            likelihoodRatio += (*it)->getLnProbability();
        }
        weights[i] = exp(priorRatio + likelihoodRatio + offset);
        sumOfWeights += weights[i];
        
        // undo proposal
        pruneAndRegraft(newBro, &brother, parent, *newGrandparent);
        
        // restore the previous likelihoods;
        variable->restore();
    }
    
    if (sumOfWeights <= 1E-100) {
        // hack
        // the proposals have such a small likelihood that they can be neglected
//        throw new OperatorFailedException("Couldn't find another proposal with a decent likelihood.");
        return 0.0;
    }
    
    double ran = rng->uniform01() * sumOfWeights;
    size_t index = 0;
    while (ran > 0.0) {
        ran -= weights[index];
        index++;
    }
    index--;
    
    TopologyNode* newBro = new_brothers[index];
    
    // now we store all necessary values
    storedBrother       = &brother;
    storedNewBrother    = newBro;
    
    pruneAndRegraft(&brother, newBro, parent, grandparent);
    
    double forward = weights[index];
    
    double forwardProb = (forward / sumOfWeights);
    double backwardProb = (backward / (sumOfWeights - forward + backward));
    double hastingsRatio = log(backwardProb / forwardProb);
    
    return hastingsRatio;
}
Ejemplo n.º 27
0
void CharacterDependentCladoBirthDeathProcess::recursivelyDrawJointConditionalAncestralStates(const TopologyNode &node, std::vector<size_t>& startStates, std::vector<size_t>& endStates)
{
    
    size_t node_index = node.getIndex();
    
    if ( node.isTip() == true )
    {
        const AbstractHomologousDiscreteCharacterData& data = static_cast<TreeDiscreteCharacterData*>(this->value)->getCharacterData();
        const AbstractDiscreteTaxonData& taxon_data = data.getTaxonData( node.getName() );
        endStates[node_index] = taxon_data.getCharacter(0).getStateIndex();
    }
    else
    {
        const TopologyNode &left = node.getChild(0);
        size_t left_index = left.getIndex();
        state_type left_likelihoods = partial_likelihoods[left_index];
        const TopologyNode &right = node.getChild(1);
        size_t right_index = right.getIndex();
        state_type right_likelihoods = partial_likelihoods[right_index];
        
        // sample characters by their probability conditioned on the branch's start state going to end states
        state_type branch_conditional_probs = std::vector<double>(2 * num_states, 0);
        size_t start_state = startStates[node_index];
        branch_conditional_probs[ num_states + start_state ] = 1.0;
        
        double dt = root_age->getValue() / NUM_TIME_SLICES;
        double endAge = node.getAge();
        double beginAge = node.getParent().getAge();
        double current_time_slice = floor(beginAge / dt);
        bool computed_at_least_one = false;

        // get cladogenesis event map (sparse speciation rate matrix)
        const DeterministicNode<MatrixReal>* cpn = static_cast<const DeterministicNode<MatrixReal>* >( cladogenesis_matrix );
        const TypedFunction<MatrixReal>& tf = cpn->getFunction();
        const AbstractCladogenicStateFunction* csf = dynamic_cast<const AbstractCladogenicStateFunction*>( &tf );
        std::map<std::vector<unsigned>, double> eventMap = csf->getEventMap();

        // first iterate forward along the branch subtending this node to get the
        // probabilities of the end states conditioned on the start state
        while (current_time_slice * dt >= endAge || !computed_at_least_one)
        {
            // populate pre-computed extinction probs into branch_conditional_probs
            if (current_time_slice > 0)
            {
                for (size_t i = 0; i < num_states; i++)
                {
                    branch_conditional_probs[i] = extinction_probabilities[current_time_slice - 1][i];
                }
            }
            
            CDCladoSEObserved ode = CDCladoSEObserved(extinction_rates, &Q->getValue(), eventMap, rate->getValue());
            boost::numeric::odeint::bulirsch_stoer< state_type > stepper(1E-8, 0.0, 0.0, 0.0);
            boost::numeric::odeint::integrate_adaptive( stepper, ode , branch_conditional_probs , current_time_slice * dt , (current_time_slice + 1) * dt, dt );
            
            computed_at_least_one = true;
            current_time_slice--;
        }
        
        std::map<std::vector<unsigned>, double> sample_probs;
        double sample_probs_sum = 0.0;
        std::map<std::vector<unsigned>, double>::iterator it;
       
        // iterate over each cladogenetic event possible
        for (it = eventMap.begin(); it != eventMap.end(); it++)
        {
            const std::vector<unsigned>& states = it->first;
            double speciation_rate = it->second;
            sample_probs[ states ] = 0.0;
            
            // we need to sample from the ancestor, left, and right states jointly,
            // so keep track of the probability of each clado event
            double prob = left_likelihoods[num_states + states[1]] * right_likelihoods[num_states + states[2]];
            prob *= speciation_rate * branch_conditional_probs[num_states + states[0]];
            sample_probs[ states ] += prob;
            sample_probs_sum += prob;

        }
        
        // finally, sample ancestor, left, and right character states from probs
        size_t a, l, r;
        
        RandomNumberGenerator* rng = GLOBAL_RNG;
        double u = rng->uniform01() * sample_probs_sum;
        
        for (it = sample_probs.begin(); it != sample_probs.end(); it++)
        {
            u -= it->second;
            if (u < 0.0)
            {
                const std::vector<unsigned>& states = it->first;
                a = states[0];
                l = states[1];
                r = states[2];
                endStates[node_index] = a;
                startStates[left_index] = l;
                startStates[right_index] = r;
                break;
            }
        }
        
        // recurse towards tips
        recursivelyDrawJointConditionalAncestralStates(left, startStates, endStates);
        recursivelyDrawJointConditionalAncestralStates(right, startStates, endStates);
    }

}
Ejemplo n.º 28
0
void PhyloBrownianProcessREML::recursiveComputeLnProbability( const TopologyNode &node, size_t nodeIndex )
{

    // check for recomputation
    if ( node.isTip() == false && dirtyNodes[nodeIndex] )
    {
        // mark as computed
        dirtyNodes[nodeIndex] = false;

        std::vector<double> &p_node  = this->partialLikelihoods[this->activeLikelihood[nodeIndex]][nodeIndex];
        std::vector<double> &mu_node  = this->contrasts[this->activeLikelihood[nodeIndex]][nodeIndex];

        
        // get the number of children
        size_t num_children = node.getNumberOfChildren();
        
        for (size_t j = 1; j < num_children; ++j)
        {
        
            size_t leftIndex = nodeIndex;
            const TopologyNode *left = &node;
            if ( j == 1 )
            {
                left = &node.getChild(0);
                leftIndex = left->getIndex();
                recursiveComputeLnProbability( *left, leftIndex );
            }
            
            const TopologyNode &right = node.getChild(j);
            size_t rightIndex = right.getIndex();
            recursiveComputeLnProbability( right, rightIndex );

            const std::vector<double> &p_left  = this->partialLikelihoods[this->activeLikelihood[leftIndex]][leftIndex];
            const std::vector<double> &p_right = this->partialLikelihoods[this->activeLikelihood[rightIndex]][rightIndex];

            // get the per node and site contrasts
            const std::vector<double> &mu_left  = this->contrasts[this->activeLikelihood[leftIndex]][leftIndex];
            const std::vector<double> &mu_right = this->contrasts[this->activeLikelihood[rightIndex]][rightIndex];

            // get the propagated uncertainties
            double delta_left  = this->contrastUncertainty[this->activeLikelihood[leftIndex]][leftIndex];
            double delta_right = this->contrastUncertainty[this->activeLikelihood[rightIndex]][rightIndex];

            // get the scaled branch lengths
            double v_left  = 0;
            if ( j == 1 )
            {
                v_left = this->computeBranchTime(leftIndex, left->getBranchLength());
            }
            double v_right = this->computeBranchTime(rightIndex, right.getBranchLength());

            // add the propagated uncertainty to the branch lengths
            double t_left  = v_left  + delta_left;
            double t_right = v_right + delta_right;

            // set delta_node = (t_l*t_r)/(t_l+t_r);
            this->contrastUncertainty[this->activeLikelihood[nodeIndex]][nodeIndex] = (t_left*t_right) / (t_left+t_right);

            double stdev = sqrt(t_left+t_right);
            for (int i=0; i<this->numSites; i++)
            {

                mu_node[i] = (mu_left[i]*t_right + mu_right[i]*t_left) / (t_left+t_right);

                // get the site specific rate of evolution
                double standDev = this->computeSiteRate(i) * stdev;

                // compute the contrasts for this site and node
                double contrast = mu_left[i] - mu_right[i];

                // compute the probability for the contrasts at this node
                double lnl_node = RbStatistics::Normal::lnPdf(0, standDev, contrast);

                // sum up the probabilities of the contrasts
                p_node[i] = lnl_node + p_left[i] + p_right[i];

            } // end for-loop over all sites

        } // end for-loop over all children
        
    } // end if we need to compute something for this node.

}
Ejemplo n.º 29
0
/**
 * Compute the log-transformed probability of the current value under the current parameter values.
 *
 * \return    The log-probability density.
 */
double ConstantRateFossilizedBirthDeathProcess::computeLnProbabilityTimes( void ) const
{
    
    double lnProbTimes = 0.0;
    double process_time = getOriginTime();
    size_t num_initial_lineages = 0;
    TopologyNode* root = &value->getRoot();
    
    if (useOrigin) {
        // If we are conditioning on survival from the origin,
        // then we must divide by 2 the log survival probability computed by AbstractBirthDeathProcess
        // TODO: Generalize AbstractBirthDeathProcess to allow conditioning on the origin
        if ( condition == "survival" )
        {
            lnProbTimes += log( pSurvival(0,process_time) );
        }
        num_initial_lineages = 1;

    }
    
    // if conditioning on root, root node must be a "true" bifurcation event
    else
    {
        if (root->getChild(0).isSampledAncestor() || root->getChild(1).isSampledAncestor())
            return RbConstants::Double::neginf;
        num_initial_lineages = 2;
    }

    // variable declarations and initialization
	double birth_rate = lambda->getValue();
    double death_rate = mu->getValue();
    double fossil_rate = psi->getValue();
    double sampling_prob = rho->getValue();
    
    // get helper variables
    double a = birth_rate - death_rate - fossil_rate;
    double c1 = std::fabs(sqrt(a * a + 4 * birth_rate * fossil_rate));
    double c2 = -(a - 2 * birth_rate * sampling_prob) / c1;
 
    // get node/time variables
    size_t num_nodes = value->getNumberOfNodes();

    // classify nodes
    int num_sampled_ancestors = 0;
    int num_fossil_taxa = 0;
    int num_extant_taxa = 0;
    int num_internal_nodes = 0;

    std::vector<double> fossil_tip_ages = std::vector<double>();
    std::vector<double> internal_node_ages = std::vector<double>();
	for (size_t i = 0; i < num_nodes; i++)
    {
		const TopologyNode& n = value->getNode( i );
        
        if ( n.isTip() && n.isFossil() && n.isSampledAncestor() )
        {
            // node is sampled ancestor
            num_sampled_ancestors++;
        }
        else if ( n.isTip() && n.isFossil() && !n.isSampledAncestor() )
        {
            // node is fossil leaf
            num_fossil_taxa++;
            fossil_tip_ages.push_back( n.getAge() );
        }
        else if ( n.isTip() && !n.isFossil() )
        {
            // node is extant leaf
            num_extant_taxa++;
        }
        else if ( n.isInternal() && !n.getChild(0).isSampledAncestor() && !n.getChild(1).isSampledAncestor() )
        {
            // node is bifurcation event (a "true" node)
            internal_node_ages.push_back( n.getAge() );
            num_internal_nodes++;
        }
	}
    
    // add the log probability for the fossilization events
    if (fossil_rate == 0.0 && num_fossil_taxa + num_sampled_ancestors > 0)
    {
        throw RbException("The sampling rate is zero, but the tree has sampled fossils.");
    }
    else if (fossil_rate > 0.0)
    {
        lnProbTimes += (num_fossil_taxa + num_sampled_ancestors) * log( fossil_rate );
    }
    
    // add the log probability for sampling the extant taxa
    lnProbTimes += num_extant_taxa * log( sampling_prob );
    
    // add the log probability of the initial sequences
    lnProbTimes += lnQ(process_time, c1, c2) - num_initial_lineages * log(1.0 - pHatZero(process_time)) - log(birth_rate);

	
	for(size_t i=0; i<internal_node_ages.size(); i++)
    {
		double t = internal_node_ages[i];
		lnProbTimes += log(2.0 * birth_rate) + lnQ(t, c1, c2);
	}

	for(size_t f=0; f < fossil_tip_ages.size(); f++)
    {
		double t = fossil_tip_ages[f];
		lnProbTimes += log(pZero(t, c1, c2)) - lnQ(t, c1, c2);
	}

    return lnProbTimes;
    
}