Ejemplo n.º 1
0
void RateAgeACLNMixingMove::rejectCompoundMove( void ) {
    	
    // undo the proposal
	TimeTree& tau = tree->getValue();
	std::vector<double>& nrates = rates->getValue();
	double &rootR = rootRate->getValue();
	
	size_t nn = tau.getNumberOfNodes();
	double c = storedC;
	
	for(size_t i=0; i<nn; i++){
		TopologyNode* node = &tau.getNode(i);
		if(node->isTip() == false){
			double curAge = node->getAge();
			double undoAge = curAge / c;
			tau.setAge( node->getIndex(), undoAge );
		}
	}
	
	size_t nr = nrates.size();
	rootR = rootR * c;
	for(size_t i=0; i<nr; i++){
        double curRt = nrates[i];
        double undoRt = curRt * c;
        nrates[i] = undoRt;
	}
	
#ifdef ASSERTIONS_TREE
    if ( fabs(storedRootAge - tau.getRoot().getAge()) > 1E-8 ) {
        throw RbException("Error while rejecting RateAgeACLNMixingMove proposal: Node ages were not correctly restored!");
    }
#endif
}
Ejemplo n.º 2
0
void RealNodeContainer::recursiveClampAt(const TopologyNode& from, const ContinuousCharacterData* data, size_t l) {
 
    if (from.isTip())   {
        
        // get taxon index
        size_t index = from.getIndex();
        std::string taxon = tree->getTipNames()[index];
        size_t dataindex = data->getIndexOfTaxon(taxon);
        
        if (data->getCharacter(dataindex,l) != -1000) {
           (*this)[index] = data->getCharacter(dataindex,l);
            clampVector[index] = true;
            //std::cerr << "taxon : " << index << '\t' << taxon << " trait value : " << (*this)[index] << '\n';
        }
        else    {
            std::cerr << "taxon : " << taxon << " is missing for trait " << l+1 << '\n';
        }
    }

    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveClampAt(from.getChild(i),data,l);
    }    
}
std::set<TopologyNode*> SpeciesNarrowExchangeProposal::getOldestSubtreesNodesInPopulation( Tree &tau, TopologyNode &n )
{
    
    // I need all the oldest nodes/subtrees that have the same tips.
    // Those nodes need to be scaled too.
    
    // get the beginning and ending age of the population
    double max_age = -1.0;
    if ( n.isRoot() == false )
    {
        max_age = n.getParent().getAge();
    }
    
    // get all the taxa from the species tree that are descendants of node i
    std::vector<TopologyNode*> species_taxa;
    TreeUtilities::getTaxaInSubtree( &n, species_taxa );
    
    // get all the individuals
    std::set<TopologyNode*> individualTaxa;
    for (size_t i = 0; i < species_taxa.size(); ++i)
    {
        const std::string &name = species_taxa[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa.insert( ind[j] );
        }
    }
    
    // create the set of the nodes within this population
    std::set<TopologyNode*> nodesInPopulationSet;
    
    // now go through all nodes in the gene
    while ( individualTaxa.empty() == false )
    {
        std::set<TopologyNode*>::iterator it = individualTaxa.begin();
        individualTaxa.erase( it );
        
        TopologyNode *geneNode = *it;
        
        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa.insert( &geneNode->getParent() );
        }
        else if ( geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }
        
    }
    
    return nodesInPopulationSet;
}
Ejemplo n.º 4
0
/**
 * Perform the proposal.
 *
 * A Beta-simplex proposal randomly changes some values of a simplex, although the other values
 * change too because of the renormalization.
 * First, some random indices are drawn. Then, the proposal draws a new somplex
 *   u ~ Beta(val[index] * alpha)
 * where alpha is the tuning parameter.The new value is set to u.
 * The simplex is then renormalized.
 *
 * \return The hastings ratio.
 */
double SubtreeScaleProposal::doProposal( void )
{
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = variable->getValue();
    
    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
    
    // lower bound
    double min_age = 0.0;
    TreeUtilities::getOldestTip(&tau, node, min_age);
    
    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = min_age + (parent_age - min_age) * rng->uniform01();
    
    double scalingFactor = my_new_age / my_age;
    
    size_t nNodes = node->getNumberOfNodesInSubtree(false);
    
    // rescale the subtrees
    TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
    
    if (min_age != 0.0)
    {
        for (size_t i = 0; i < tau.getNumberOfTips(); i++)
        {
            if (tau.getNode(i).getAge() < 0.0) {
                return RbConstants::Double::neginf;
            }
        }
    }
    
    // compute the Hastings ratio
    double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
    
    return lnHastingsratio;
    
}
Ejemplo n.º 5
0
/**
 * Recursive call to attach ordered interior node times to the time tree psi. Call it initially with the
 * root of the tree.
 */
void HeterogeneousRateBirthDeath::attachTimes(Tree* psi, std::vector<TopologyNode *> &nodes, size_t index, const std::vector<double> &interiorNodeTimes, double originTime )
{
    
    if (index < num_taxa-1)
    {
        // Get the rng
        RandomNumberGenerator* rng = GLOBAL_RNG;
        
        // Randomly draw one node from the list of nodes
        size_t node_index = static_cast<size_t>( floor(rng->uniform01()*nodes.size()) );
        
        // Get the node from the list
        TopologyNode* parent = nodes.at(node_index);
        psi->getNode( parent->getIndex() ).setAge( originTime - interiorNodeTimes[index] );
        
        // Remove the randomly drawn node from the list
        nodes.erase(nodes.begin()+long(node_index));
        
        // Add the left child if an interior node
        TopologyNode* leftChild = &parent->getChild(0);
        if ( !leftChild->isTip() )
        {
            nodes.push_back(leftChild);
        }
        
        // Add the right child if an interior node
        TopologyNode* rightChild = &parent->getChild(1);
        if ( !rightChild->isTip() )
        {
            nodes.push_back(rightChild);
        }
        
        // Recursive call to this function
        attachTimes(psi, nodes, index+1, interiorNodeTimes, originTime);
    }
    
}
Ejemplo n.º 6
0
void RealNodeContainer::recursiveGetStatsOverTips(const TopologyNode& from, double& e1, double& e2, int& n) const {

    if(from.isTip())   {
        double tmp = (*this)[from.getIndex()];

        n++;
        e1 += tmp;
        e2 += tmp * tmp;
    }
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveGetStatsOverTips(from.getChild(i),e1,e2,n);
    }
    
}
Ejemplo n.º 7
0
void RealNodeContainer::recursiveGetTipValues(const TopologyNode& from, ContinuousCharacterData& nameToVal) const {
    
    if(from.isTip())   {
        double tmp = (*this)[from.getIndex()];
        std::string name =  tree->getTipNames()[from.getIndex()];
        
        ContinuousTaxonData dataVec = ContinuousTaxonData(name);
        double contObs = tmp;
        dataVec.addCharacter( contObs );
        nameToVal.addTaxonData( dataVec );
        return;
    }
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveGetTipValues(from.getChild(i), nameToVal );
    }
    
}
Ejemplo n.º 8
0
std::string RealNodeContainer::recursiveGetNewick(const TopologyNode& from) const {

    std::ostringstream s;
    
    if (from.isTip())   {
        s << getTimeTree()->getTipNames()[from.getIndex()] << "_";
//        std::cerr << from.getIndex() << '\t' << getTimeTree()->getTipNames()[from.getIndex()] << "_";
//        std::cerr << (*this)[from.getIndex()] << '\n';
//        exit(1);
    }
    else    {
        s << "(";
        // propagate forward
        size_t numChildren = from.getNumberOfChildren();
        for (size_t i = 0; i < numChildren; ++i) {
            s << recursiveGetNewick(from.getChild(i));
            if (i < numChildren-1)  {
                s << ",";
            }
        }
        s << ")";
    }
    s << (*this)[from.getIndex()];
/*    if (from.isTip() && (! isClamped(from.getIndex()))) {
        std::cerr << "leaf is not clamped\n";
        // get taxon index
        size_t index = from.getIndex();
        std::cerr << "index : " << index << '\n';
        std::string taxon = tree->getTipNames()[index];
        std::cerr << "taxon : " << index << '\t' << taxon << '\n';
        std::cerr << " trait value : " << (*this)[index] << '\n';        
        exit(1);
    }*/
//    if (!from.isRoot()) {
        s << ":";
        s << getTimeTree()->getBranchLength(from.getIndex());
//    }
    
    return s.str();
}
Ejemplo n.º 9
0
/** Perform the move */
double SubtreeScale::performSimpleMove( void ) {
    
    // Get random number generator    
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = variable->getValue();
    
    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
        
    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = parent_age * rng->uniform01();
    
    double scalingFactor = my_new_age / my_age;
    
    size_t nNodes = node->getNumberOfNodesInSubtree(false);
    
    // rescale the subtrees
    TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
    
    // compute the Hastings ratio
    double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
    
    return lnHastingsratio;
}
Ejemplo n.º 10
0
/**
 * Perform the proposal.
 *
 * A Uniform-simplex proposal randomly changes some values of a simplex, although the other values
 * change too because of the renormalization.
 * First, some random indices are drawn. Then, the proposal draws a new somplex
 *   u ~ Uniform(val[index] * alpha)
 * where alpha is the tuning parameter.The new value is set to u.
 * The simplex is then renormalized.
 *
 * \return The hastings ratio.
 */
double NodeTimeSlideUniformProposal::doProposal( void )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    Tree& tau = variable->getValue();

    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;

    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;

    // set the age
    tau.getNode(node->getIndex()).setAge( my_new_age );

    return 0.0;

}
Ejemplo n.º 11
0
/** Perform the move */
double RateAgeACLNMixingMove::performCompoundMove( void ) {
    
    // Get random number generator    
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = tree->getValue();
	std::vector<double>& nrates = rates->getValue();
	double &rootR = rootRate->getValue();
	
	
	size_t nn = tau.getNumberOfNodes();
	double u = rng->uniform01();
	double c = exp( epsilon * (u - 0.5) );
	
	for(size_t i=0; i<nn; i++){
		TopologyNode* node = &tau.getNode(i);
		if(node->isTip() == false){
			double curAge = node->getAge();
			double newAge = curAge * c;
			tau.setAge( node->getIndex(), newAge );
			if(node->isRoot()){
				storedRootAge = curAge;
			}
		}
	}
	
	size_t nr = nrates.size();
	rootR = rootR / c;
	for(size_t i=0; i<nrates.size(); i++){
        double curRt = nrates[i];
        double newRt = curRt / c;
        nrates[i] = newRt;
	}
	
	storedC = c;
	double pr = (((double)nn) - (double)nr) * log(c);
	return pr;
}
Ejemplo n.º 12
0
void PhyloBrownianProcessREML::recursiveComputeLnProbability( const TopologyNode &node, size_t nodeIndex )
{

    // check for recomputation
    if ( node.isTip() == false && dirtyNodes[nodeIndex] )
    {
        // mark as computed
        dirtyNodes[nodeIndex] = false;

        std::vector<double> &p_node  = this->partialLikelihoods[this->activeLikelihood[nodeIndex]][nodeIndex];
        std::vector<double> &mu_node  = this->contrasts[this->activeLikelihood[nodeIndex]][nodeIndex];

        
        // get the number of children
        size_t num_children = node.getNumberOfChildren();
        
        for (size_t j = 1; j < num_children; ++j)
        {
        
            size_t leftIndex = nodeIndex;
            const TopologyNode *left = &node;
            if ( j == 1 )
            {
                left = &node.getChild(0);
                leftIndex = left->getIndex();
                recursiveComputeLnProbability( *left, leftIndex );
            }
            
            const TopologyNode &right = node.getChild(j);
            size_t rightIndex = right.getIndex();
            recursiveComputeLnProbability( right, rightIndex );

            const std::vector<double> &p_left  = this->partialLikelihoods[this->activeLikelihood[leftIndex]][leftIndex];
            const std::vector<double> &p_right = this->partialLikelihoods[this->activeLikelihood[rightIndex]][rightIndex];

            // get the per node and site contrasts
            const std::vector<double> &mu_left  = this->contrasts[this->activeLikelihood[leftIndex]][leftIndex];
            const std::vector<double> &mu_right = this->contrasts[this->activeLikelihood[rightIndex]][rightIndex];

            // get the propagated uncertainties
            double delta_left  = this->contrastUncertainty[this->activeLikelihood[leftIndex]][leftIndex];
            double delta_right = this->contrastUncertainty[this->activeLikelihood[rightIndex]][rightIndex];

            // get the scaled branch lengths
            double v_left  = 0;
            if ( j == 1 )
            {
                v_left = this->computeBranchTime(leftIndex, left->getBranchLength());
            }
            double v_right = this->computeBranchTime(rightIndex, right.getBranchLength());

            // add the propagated uncertainty to the branch lengths
            double t_left  = v_left  + delta_left;
            double t_right = v_right + delta_right;

            // set delta_node = (t_l*t_r)/(t_l+t_r);
            this->contrastUncertainty[this->activeLikelihood[nodeIndex]][nodeIndex] = (t_left*t_right) / (t_left+t_right);

            double stdev = sqrt(t_left+t_right);
            for (int i=0; i<this->numSites; i++)
            {

                mu_node[i] = (mu_left[i]*t_right + mu_right[i]*t_left) / (t_left+t_right);

                // get the site specific rate of evolution
                double standDev = this->computeSiteRate(i) * stdev;

                // compute the contrasts for this site and node
                double contrast = mu_left[i] - mu_right[i];

                // compute the probability for the contrasts at this node
                double lnl_node = RbStatistics::Normal::lnPdf(0, standDev, contrast);

                // sum up the probabilities of the contrasts
                p_node[i] = lnl_node + p_left[i] + p_right[i];

            } // end for-loop over all sites

        } // end for-loop over all children
        
    } // end if we need to compute something for this node.

}
Ejemplo n.º 13
0
std::vector<TopologyNode*> TreeNodeAgeUpdateProposal::getNodesInPopulation( Tree &tau, TopologyNode &n )
{

    // I need all the oldest nodes/subtrees that have the same tips.
    // Those nodes need to be scaled too.

    // get the beginning and ending age of the population
    double max_age = -1.0;
    if ( n.isRoot() == false )
    {
        max_age = n.getParent().getAge();
    }

    // get all the taxa from the species tree that are descendants of node i
    double min_age_left = n.getChild(0).getAge();
    std::vector<TopologyNode*> speciesTaxa_left;
    TreeUtilities::getTaxaInSubtree( &n.getChild(0), speciesTaxa_left );

    // get all the individuals
    std::set<TopologyNode*> individualTaxa_left;
    for (size_t i = 0; i < speciesTaxa_left.size(); ++i)
    {
        const std::string &name = speciesTaxa_left[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa_left.insert( ind[j] );
        }
    }

    // create the set of the nodes within this population
    std::set<TopologyNode*> nodesInPopulationSet;

    // now go through all nodes in the gene
    while ( individualTaxa_left.empty() == false )
    {
        // get the first element
        std::set<TopologyNode*>::iterator it = individualTaxa_left.begin();

        // store the pointer
        TopologyNode *geneNode = *it;

        // and now remove the element from the list
        individualTaxa_left.erase( it );

        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->getAge() > min_age_left && geneNode->getAge() < max_age && geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }

        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa_left.insert( &geneNode->getParent() );
        }

    }

    // get all the taxa from the species tree that are descendants of node i
    double min_age_right = n.getChild(1).getAge();
    std::vector<TopologyNode*> speciesTaxa_right;
    TreeUtilities::getTaxaInSubtree( &n.getChild(1), speciesTaxa_right );

    // get all the individuals
    std::set<TopologyNode*> individualTaxa_right;
    for (size_t i = 0; i < speciesTaxa_right.size(); ++i)
    {
        const std::string &name = speciesTaxa_right[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa_right.insert( ind[j] );
        }
    }

    // now go through all nodes in the gene
    while ( individualTaxa_right.empty() == false )
    {
        // get the first element
        std::set<TopologyNode*>::iterator it = individualTaxa_right.begin();

        // store the pointer
        TopologyNode *geneNode = *it;

        // and now remove the element from the list
        individualTaxa_right.erase( it );

        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->getAge() > min_age_right && geneNode->getAge() < max_age && geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }

        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa_right.insert( &geneNode->getParent() );
        }

    }




    // convert the set into a vector
    std::vector<TopologyNode*> nodesInPopulation;
    for (std::set<TopologyNode*>::iterator it = nodesInPopulationSet.begin(); it != nodesInPopulationSet.end(); ++it)
    {
        nodesInPopulation.push_back( *it );
    }

    return nodesInPopulation;
}
Ejemplo n.º 14
0
/**
 * Perform the proposal.
 *
 * \return The hastings ratio.
 */
double TreeNodeAgeUpdateProposal::doProposal( void )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    Tree& tau = speciesTree->getValue();

    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;

    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;

    // Sebastian: This is for debugging to test if the proposal's acceptance rate is 1.0 as it should be!
//    my_new_age = my_age;

    int upslideNodes = 0;
    int downslideNodes = 0;

    for ( size_t i=0; i<geneTrees.size(); ++i )
    {
        // get the i-th gene tree
        Tree& geneTree = geneTrees[i]->getValue();

        std::vector<TopologyNode*> nodes = getNodesInPopulation(geneTree, *node );

        for (size_t j=0; j<nodes.size(); ++j)
        {

            double a = nodes[j]->getAge();
            double new_a = a;
            if ( a > my_age )
            {
                ++upslideNodes;
                new_a = parent_age - (parent_age - my_new_age)/(parent_age - my_age) * (parent_age - a);
            }
            else
            {
                ++downslideNodes;
                new_a = child_Age + (my_new_age - child_Age)/(my_age - child_Age) * (a - child_Age);
            }

            // set the new age of this gene tree node
            geneTree.getNode( nodes[j]->getIndex() ).setAge( new_a );
        }

        // Sebastian: This is only for debugging. It makes the code slower. Hopefully it is not necessary anymore.
//        geneTrees[i]->touch( true );

    }

    // Sebastian: We need to work on a mechanism to make these proposal safe for non-ultrametric trees!
    //    if (min_age != 0.0)
    //    {
    //        for (size_t i = 0; i < tau.getNumberOfTips(); i++)
    //        {
    //            if (tau.getNode(i).getAge() < 0.0)
    //            {
    //                return RbConstants::Double::neginf;
    //            }
    //        }
    //    }


    // set the age of the species tree node
    tau.getNode( node->getIndex() ).setAge( my_new_age );

    // compute the Hastings ratio
    double lnHastingsratio = upslideNodes * log( (parent_age - my_new_age)/(parent_age - my_age) ) + downslideNodes * log( (my_new_age - child_Age)/(my_age - child_Age) );

    return lnHastingsratio;

}
Ejemplo n.º 15
0
/** Perform the move */
void RateAgeBetaShift::performMcmcMove( double lHeat, double pHeat )
{
    
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    Tree& tau = tree->getValue();
    RbOrderedSet<DagNode*> affected;
    tree->getAffectedNodes( affected );
    
    double oldLnLike = 0.0;
    bool checkLikelihoodShortcuts = rng->uniform01() < 0.001;
    if ( checkLikelihoodShortcuts == true )
    {
        for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
        {
            (*it)->touch();
            oldLnLike += (*it)->getLnProbability();
        }
    }
    
    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    size_t nodeIdx = 0;
    do {
        double u = rng->uniform01();
        nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(nodeIdx);
    } while ( node->isRoot() || node->isTip() ); 
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
    
    
    storedRates[nodeIdx] = rates[nodeIdx]->getValue();
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        storedRates[childIdx] = rates[childIdx]->getValue();
    }
    
    
    // draw new ages and compute the hastings ratio at the same time
    double m = (my_age-child_Age) / (parent_age-child_Age);
    double a = delta * m + 1.0;
    double b = delta * (1.0-m) + 1.0;
    double new_m = RbStatistics::Beta::rv(a, b, *rng);
    double my_new_age = (parent_age-child_Age) * new_m + child_Age;
    
    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
    double new_a = delta * new_m + 1.0;
    double new_b = delta * (1.0-new_m) + 1.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);
    
    // set the age
    tau.getNode(nodeIdx).setAge( my_new_age );
    
    // touch the tree so that the likelihoods are getting stored
    tree->touch();
    
    // get the probability ratio of the tree
    double treeProbRatio = tree->getLnProbabilityRatio();
    
    
    // set the rates
    double pa = node->getParent().getAge();
    double my_new_rate =(pa - my_age) * storedRates[nodeIdx] / (pa - my_new_age);
    
    // now we set the new value
    // this will automcatically call a touch
    rates[nodeIdx]->setValue( new double( my_new_rate ) );
    
    // get the probability ratio of the new rate
    double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();
    
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        double a = node->getChild(i).getAge();
        double child_new_rate = (my_age - a) * storedRates[childIdx] / (my_new_age - a);
        
        // now we set the new value
        // this will automcatically call a touch
        rates[childIdx]->setValue( new double( child_new_rate ) );

        // get the probability ratio of the new rate
        ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();
        
        
    }
    
    if ( checkLikelihoodShortcuts == true )
    {
        double lnProbRatio = 0;
        double newLnLike = 0;
        for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
        {

            double tmp = (*it)->getLnProbabilityRatio();
            lnProbRatio += tmp;
            newLnLike += (*it)->getLnProbability();
        }
    
        if ( fabs(lnProbRatio) > 1E-8 )
        {
            double lnProbRatio2 = 0;
            double newLnLike2 = 0;
            for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
            {
                
                double tmp2 = (*it)->getLnProbabilityRatio();
                lnProbRatio2 += tmp2;
                newLnLike2 += (*it)->getLnProbability();
            }
            
            throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
        }
        
    }
    
    double hastingsRatio = backward - forward;
    double ln_acceptance_ratio = lHeat * pHeat * (treeProbRatio + ratesProbRatio) + hastingsRatio;
    
    if (ln_acceptance_ratio >= 0.0)
    {
        numAccepted++;
        
        tree->keep();
        rates[nodeIdx]->keep();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->keep();
        }
    }
    else if (ln_acceptance_ratio < -300.0)
    {
        reject();
        tree->restore();
        rates[nodeIdx]->restore();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->restore();
        }
    }
    else
    {
        double r = exp(ln_acceptance_ratio);
        // Accept or reject the move
        double u = GLOBAL_RNG->uniform01();
        if (u < r)
        {
            numAccepted++;
            
            //keep
            tree->keep();
            rates[nodeIdx]->keep();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->keep();
            }
        }
        else
        {
            reject();
            tree->restore();
            rates[nodeIdx]->restore();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->restore();
            }
        }
    }

}
Ejemplo n.º 16
0
/** Perform the move */
void RateAgeBetaShift::performMove( double heat, bool raiseLikelihoodOnly )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    TimeTree& tau = tree->getValue();

    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    size_t nodeIdx = 0;
    do {
        double u = rng->uniform01();
        nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(nodeIdx);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;


    storedRates[nodeIdx] = rates[nodeIdx]->getValue();
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        storedRates[childIdx] = rates[childIdx]->getValue();
    }


    // draw new ages and compute the hastings ratio at the same time
    double m = (my_age-child_Age) / (parent_age-child_Age);
    double a = delta * m + 1.0;
    double b = delta * (1.0-m) + 1.0;
    double new_m = RbStatistics::Beta::rv(a, b, *rng);
    double my_new_age = (parent_age-child_Age) * new_m + child_Age;

    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
    double new_a = delta * new_m + 1.0;
    double new_b = delta * (1.0-new_m) + 1.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);

    // set the age
    tau.setAge( node->getIndex(), my_new_age );
    tree->touch();

    double treeProbRatio = tree->getLnProbabilityRatio();


    // set the rates
    rates[nodeIdx]->setValue( new double((node->getParent().getAge() - my_age) * storedRates[nodeIdx] / (node->getParent().getAge() - my_new_age)));
    double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();

    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        rates[childIdx]->setValue( new double((my_age - node->getChild(i).getAge()) * storedRates[childIdx] / (my_new_age - node->getChild(i).getAge())));
        ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();

    }

    std::set<DagNode*> affected;
    tree->getAffectedNodes( affected );
    double lnProbRatio = 0;
    for (std::set<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
    {
        (*it)->touch();
        lnProbRatio += (*it)->getLnProbabilityRatio();
    }

    if ( fabs(lnProbRatio) > 1E-6 ) {
//        throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
        std::cout << "Likelihood shortcut computation failed in rate-age-proposal." << std::endl;
    }

    double hastingsRatio = backward - forward;
    double lnAcceptanceRatio = treeProbRatio + ratesProbRatio + hastingsRatio;

    if (lnAcceptanceRatio >= 0.0)
    {
        numAccepted++;

        tree->keep();
        rates[nodeIdx]->keep();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->keep();
        }
    }
    else if (lnAcceptanceRatio < -300.0)
    {
        reject();
        tree->restore();
        rates[nodeIdx]->restore();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->restore();
        }
    }
    else
    {
        double r = exp(lnAcceptanceRatio);
        // Accept or reject the move
        double u = GLOBAL_RNG->uniform01();
        if (u < r)
        {
            numAccepted++;

            //keep
            tree->keep();
            rates[nodeIdx]->keep();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->keep();
            }
        }
        else
        {
            reject();
            tree->restore();
            rates[nodeIdx]->restore();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->restore();
            }
        }
    }

}
/**
 * Perform the proposal.
 *
 * \return The hastings ratio.
 */
double SpeciesSubtreeScaleBetaProposal::doProposal( void )
{
    
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    Tree& tau = speciesTree->getValue();
    
    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
    
    // lower bound
    double min_age = 0.0;
    TreeUtilities::getOldestTip(&tau, node, min_age);
    
    // draw new ages
    double current_value = my_age / (parent_age - min_age);
    double a = alpha + 1.0;
    double b = (a-1.0) / current_value - a + 2.0;
    double new_value = RbStatistics::Beta::rv(a, b, *rng);

    // Sebastian: This is for debugging to test if the proposal's acceptance rate is 1.0 as it should be!
//    new_value = current_value;
    
    double my_new_age = new_value * (parent_age - min_age);
    
    double scaling_factor = my_new_age / my_age;
    
    size_t num_nodes = node->getNumberOfNodesInSubtree( false );
    
    for ( size_t i=0; i<geneTrees.size(); ++i )
    {
        // get the i-th gene tree
        Tree& gene_tree = geneTrees[i]->getValue();
        
        std::vector<TopologyNode*> nodes = getOldestNodesInPopulation(gene_tree, *node );
        
        for (size_t j=0; j<nodes.size(); ++j)
        {
            // add the number of nodes that we are going to scale in the subtree
            num_nodes += nodes[j]->getNumberOfNodesInSubtree( false );
            
            if ( nodes[j]->isTip() == true )
            {
                std::cerr << "Trying to scale a tip\n";
            }
            
            if ( nodes[j]->isRoot() == true )
            {
                std::cerr << "Trying to scale the root\n";
            }
            
            // rescale the subtree of this gene tree
            TreeUtilities::rescaleSubtree(&gene_tree, nodes[j], scaling_factor );
            
        }
        
        // Sebastian: This is only for debugging. It makes the code slower. Hopefully it is not necessary anymore.
//        geneTrees[i]->touch( true );
        
    }
    
    // Sebastian: We need to work on a mechanism to make these proposal safe for non-ultrametric trees!
    //    if (min_age != 0.0)
    //    {
    //        for (size_t i = 0; i < tau.getNumberOfTips(); i++)
    //        {
    //            if (tau.getNode(i).getAge() < 0.0)
    //            {
    //                return RbConstants::Double::neginf;
    //            }
    //        }
    //    }
    
    // rescale the subtree of the species tree
    TreeUtilities::rescaleSubtree(&tau, node, scaling_factor );
    
    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_value);
    double new_a = alpha + 1.0;
    double new_b = (a-1.0) / new_value - a + 2.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, current_value);
    double lnHastingsratio = (backward - forward) * (num_nodes-1);
    
    return lnHastingsratio;
}
Ejemplo n.º 18
0
std::string PhylowoodNhxMonitor::buildNhxString(void)
{
    std::stringstream nhxStrm;
    
    // begin nexus file
    nhxStrm << "#NEXUS" << "\n\n";
    
    // phylowood settings block
    nhxStrm << "Begin phylowood;\n";
    nhxStrm << "\tdrawtype pie\n";
    nhxStrm << "\tmodeltype biogeography\n";
    nhxStrm << "\tareatype discrete\n";
    nhxStrm << "\tmaptype clean\n";
    nhxStrm << "\tpieslicestyle even\n";
    nhxStrm << "\tpiefillstyle outwards\n";
    nhxStrm << "\ttimestart -" << tree->getValue().getRoot().getAge() << "\n";
    nhxStrm << "\tmarkerradius " << 200 << "\n";
    nhxStrm << "\tminareaval " << 0.1 << "\n";
    nhxStrm << "End;\n\n";
    
    // bayarea-fig block
    nhxStrm << "Begin bayarea-fig;\n";
    nhxStrm << "\tmapheight\t100\n";
    nhxStrm << "\tmapwidth\t150\n";
    nhxStrm << "\tcanvasheight\t2000\n";
    nhxStrm << "\tcanvaswidth\t1000\n";
    nhxStrm << "\tminareaval\t0.15\n";
    nhxStrm << "\tareacolors black\n";
    nhxStrm << "\tareatypes";
    for (unsigned i = 0; i < numCharacters; i++)
        nhxStrm << " 1";
    nhxStrm << "\n";
    nhxStrm << "\tareanames Default\n";
    nhxStrm << "End;\n\n";
    
    // taxa block
    nhxStrm << "Begin taxa;\n";
    nhxStrm << "\tDimensions ntax=" << tree->getValue().getNumberOfTips() << ";\n";
    nhxStrm << "\tTaxlabels\n";
    for (unsigned i = 0; i < tree->getValue().getNumberOfNodes(); i++)
    {
        TopologyNode* p = &tree->getValue().getNode(i);
        if (p->isTip())
        {
            nhxStrm << "\t\t" << p->getName() << "\n";
        }
    }
    nhxStrm << "\t\t;\n";
    nhxStrm << "End;\n\n";
    
    // geo block
    nhxStrm << "Begin geo;\n";
    nhxStrm << "\tDimensions ngeo=" << numCharacters << ";\n";
    nhxStrm << "\tCoords\n";
    
    for (unsigned i = 0; i < numCharacters; i++)
    {
        nhxStrm << "\t\t" << i << "\t" << geographicCoordinates[i][0] << "\t" << geographicCoordinates[i][1];
        if (i < (numCharacters - 1))
            nhxStrm << ",";
        nhxStrm << "\n";
    }
    nhxStrm << "\t\t;\n";
    nhxStrm << "End;\n\n";
    
    // tree block
    nhxStrm << "Begin trees;\n";
    nhxStrm << "\tTranslate\n";
    for (unsigned i = 0; i < tree->getValue().getNumberOfNodes(); i++)
    {
        TopologyNode* p = &tree->getValue().getNode(i);
        if (p->isTip())
        {
            nhxStrm << "\t\t" << p->getIndex() << "\t" << p->getName();
            if (i < (tree->getValue().getNumberOfNodes() - 1))
                nhxStrm << ",";
            nhxStrm << "\n";
        }
    }
    nhxStrm << "\t\t;\n";
    
    // write tree string
    std::string treeStr = "";
    treeStr = buildExtendedNewick(); //buildExtendedNewick(&tree->getValue().getRoot());
    std::cout << treeStr << "\n";
    std::cout << "nhxStr\n" << treeStr << "\n";
    nhxStrm << "tree TREE1 = " << treeStr << ";\n";
    nhxStrm << "End;\n";
    
    std::cout << "[";
    for (size_t i = 0; i < numCharacters; i++)
    {
        if (i != 0)
            std::cout << ",";
        std::cout << (double)childCharacterCounts[0][i] / numSamples;
    }
    std::cout << "]\n";
    
    return nhxStrm.str();
}
Ejemplo n.º 19
0
void StateDependentSpeciationExtinctionProcess::recursivelyDrawJointConditionalAncestralStates(const TopologyNode &node, std::vector<size_t>& startStates, std::vector<size_t>& endStates)
{
    
    size_t node_index = node.getIndex();
    
    if ( node.isTip() == true )
    {
        const AbstractHomologousDiscreteCharacterData& data = static_cast<TreeDiscreteCharacterData*>(this->value)->getCharacterData();
        const AbstractDiscreteTaxonData& taxon_data = data.getTaxonData( node.getName() );
        
        const DiscreteCharacterState &char_state = taxon_data.getCharacter(0);
        
        // we need to treat ambiguous state differently
        if ( char_state.isAmbiguous() == false )
        {
            endStates[node_index] = char_state.getStateIndex();
        }
        else
        {
            // initialize the conditional likelihoods for this branch
            state_type branch_conditional_probs = std::vector<double>(2 * num_states, 0);
            size_t start_state = startStates[node_index];
            branch_conditional_probs[ num_states + start_state ] = 1.0;
            
            // first calculate extinction likelihoods via a backward time pass
            double end_age = node.getParent().getAge();
            numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, true, true);
            
            // now calculate conditional likelihoods along branch in forward time
            end_age        = node.getParent().getAge() - node.getAge();
            numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, false, false);
            
            double total_prob = 0.0;
            for (size_t i = 0; i < num_states; ++i)
            {
                if ( char_state.isMissingState() == true || char_state.isGapState() == true || char_state.isStateSet(i) == true )
                {
                    total_prob += branch_conditional_probs[i];
                }
            }
            
            RandomNumberGenerator* rng = GLOBAL_RNG;
            size_t u = rng->uniform01() * total_prob;
            
            for (size_t i = 0; i < num_states; ++i)
            {
                
                if ( char_state.isMissingState() == true || char_state.isGapState() == true || char_state.isStateSet(i) == true )
                {
                    u -= branch_conditional_probs[i];
                    if ( u <= 0.0 )
                    {
                        endStates[node_index] = i;
                        break;
                    }
                    
                }
                
            }
            
        }
    }
    else
    {
        // sample characters by their probability conditioned on the branch's start state going to end states
        
        // initialize the conditional likelihoods for this branch
        state_type branch_conditional_probs = std::vector<double>(2 * num_states, 0);
        size_t start_state = startStates[node_index];
        branch_conditional_probs[ num_states + start_state ] = 1.0;
        
        // first calculate extinction likelihoods via a backward time pass
        double end_age = node.getParent().getAge();
        numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, true, true);
        
        // now calculate conditional likelihoods along branch in forward time
        end_age        = node.getParent().getAge() - node.getAge();
        numericallyIntegrateProcess(branch_conditional_probs, 0, end_age, false, false);
        
        // TODO: if character mapping compute likelihoods for each time slice....
//        double current_time_slice = floor(begin_age / dt);
//        bool computed_at_least_one = false;
//        
//        // first iterate forward along the branch subtending this node to get the
//        // probabilities of the end states conditioned on the start state
//        while (current_time_slice * dt >= end_age || !computed_at_least_one)
//        {
//            double begin_age_slice = current_time_slice * dt;
//            double end_age_slice = (current_time_slice + 1) * dt;
//            numericallyIntegrateProcess(branch_conditional_probs, begin_age_slice, end_age_slice, false);
//            
//            computed_at_least_one = true;
//            current_time_slice--;
//        }
        
        std::map<std::vector<unsigned>, double> event_map;
        std::vector<double> speciation_rates;
        if ( use_cladogenetic_events == true )
        {
            // get cladogenesis event map (sparse speciation rate matrix)
            const DeterministicNode<MatrixReal>* cpn = static_cast<const DeterministicNode<MatrixReal>* >( cladogenesis_matrix );
            const TypedFunction<MatrixReal>& tf = cpn->getFunction();
            const AbstractCladogenicStateFunction* csf = dynamic_cast<const AbstractCladogenicStateFunction*>( &tf );
            
            event_map = csf->getEventMap();
        }
        else
        {
            speciation_rates = lambda->getValue();
        }
        
        // get likelihoods of descendant nodes
        const TopologyNode &left = node.getChild(0);
        size_t left_index = left.getIndex();
        state_type left_likelihoods = partial_likelihoods[left_index][active_likelihood[left_index]];
        const TopologyNode &right = node.getChild(1);
        size_t right_index = right.getIndex();
        state_type right_likelihoods = partial_likelihoods[right_index][active_likelihood[right_index]];
        
        std::map<std::vector<unsigned>, double> sample_probs;
        double sample_probs_sum = 0.0;
        std::map<std::vector<unsigned>, double>::iterator it;

        // calculate probabilities for each state
        if ( use_cladogenetic_events == true )
        {
            // iterate over each cladogenetic event possible
            // and initialize probabilities for each clado event
            for (it = event_map.begin(); it != event_map.end(); it++)
            {
                const std::vector<unsigned>& states = it->first;
                double speciation_rate = it->second;
                
                // we need to sample from the ancestor, left, and right states jointly,
                // so keep track of the probability of each clado event
                double prob = left_likelihoods[num_states + states[1]] * right_likelihoods[num_states + states[2]];
                prob *= speciation_rate * branch_conditional_probs[num_states + states[0]];
                sample_probs[ states ] = prob;
                sample_probs_sum += prob;
            }
        }
        else
        {
            for (size_t i = 0; i < num_states; i++)
            {
                double prob = left_likelihoods[num_states + i] * right_likelihoods[num_states + i] * speciation_rates[i];
                prob *= branch_conditional_probs[num_states + i];
                std::vector<unsigned> states = boost::assign::list_of(i)(i)(i);
                sample_probs[ states ] = prob;
                sample_probs_sum += prob;
            }
        }
        
        // finally, sample ancestor, left, and right character states from probs
        size_t a, l, r;

        if (sample_probs_sum == 0)
        {
            RandomNumberGenerator* rng = GLOBAL_RNG;
            size_t u = rng->uniform01() * sample_probs.size();
            size_t v = 0;
            for (it = sample_probs.begin(); it != sample_probs.end(); it++)
            {
                if (u < v)
                {
                    const std::vector<unsigned>& states = it->first;
                    a = states[0];
                    l = states[1];
                    r = states[2];
                    endStates[node_index] = a;
                    startStates[left_index] = l;
                    startStates[right_index] = r;
                    break;
                 }
                 v++;
             }
        }
        else
        {
            RandomNumberGenerator* rng = GLOBAL_RNG;
            double u = rng->uniform01() * sample_probs_sum;
            
            for (it = sample_probs.begin(); it != sample_probs.end(); it++)
            {
                u -= it->second;
                if (u < 0.0)
                {
                    const std::vector<unsigned>& states = it->first;
                    a = states[0];
                    l = states[1];
                    r = states[2];
                    endStates[node_index] = a;
                    startStates[left_index] = l;
                    startStates[right_index] = r;
                    break;
                }
            }
        }
        
        // recurse towards tips
        recursivelyDrawJointConditionalAncestralStates(left, startStates, endStates);
        recursivelyDrawJointConditionalAncestralStates(right, startStates, endStates);
    }
    
}
Ejemplo n.º 20
0
void CharacterDependentCladoBirthDeathProcess::recursivelyDrawJointConditionalAncestralStates(const TopologyNode &node, std::vector<size_t>& startStates, std::vector<size_t>& endStates)
{
    
    size_t node_index = node.getIndex();
    
    if ( node.isTip() == true )
    {
        const AbstractHomologousDiscreteCharacterData& data = static_cast<TreeDiscreteCharacterData*>(this->value)->getCharacterData();
        const AbstractDiscreteTaxonData& taxon_data = data.getTaxonData( node.getName() );
        endStates[node_index] = taxon_data.getCharacter(0).getStateIndex();
    }
    else
    {
        const TopologyNode &left = node.getChild(0);
        size_t left_index = left.getIndex();
        state_type left_likelihoods = partial_likelihoods[left_index];
        const TopologyNode &right = node.getChild(1);
        size_t right_index = right.getIndex();
        state_type right_likelihoods = partial_likelihoods[right_index];
        
        // sample characters by their probability conditioned on the branch's start state going to end states
        state_type branch_conditional_probs = std::vector<double>(2 * num_states, 0);
        size_t start_state = startStates[node_index];
        branch_conditional_probs[ num_states + start_state ] = 1.0;
        
        double dt = root_age->getValue() / NUM_TIME_SLICES;
        double endAge = node.getAge();
        double beginAge = node.getParent().getAge();
        double current_time_slice = floor(beginAge / dt);
        bool computed_at_least_one = false;

        // get cladogenesis event map (sparse speciation rate matrix)
        const DeterministicNode<MatrixReal>* cpn = static_cast<const DeterministicNode<MatrixReal>* >( cladogenesis_matrix );
        const TypedFunction<MatrixReal>& tf = cpn->getFunction();
        const AbstractCladogenicStateFunction* csf = dynamic_cast<const AbstractCladogenicStateFunction*>( &tf );
        std::map<std::vector<unsigned>, double> eventMap = csf->getEventMap();

        // first iterate forward along the branch subtending this node to get the
        // probabilities of the end states conditioned on the start state
        while (current_time_slice * dt >= endAge || !computed_at_least_one)
        {
            // populate pre-computed extinction probs into branch_conditional_probs
            if (current_time_slice > 0)
            {
                for (size_t i = 0; i < num_states; i++)
                {
                    branch_conditional_probs[i] = extinction_probabilities[current_time_slice - 1][i];
                }
            }
            
            CDCladoSEObserved ode = CDCladoSEObserved(extinction_rates, &Q->getValue(), eventMap, rate->getValue());
            boost::numeric::odeint::bulirsch_stoer< state_type > stepper(1E-8, 0.0, 0.0, 0.0);
            boost::numeric::odeint::integrate_adaptive( stepper, ode , branch_conditional_probs , current_time_slice * dt , (current_time_slice + 1) * dt, dt );
            
            computed_at_least_one = true;
            current_time_slice--;
        }
        
        std::map<std::vector<unsigned>, double> sample_probs;
        double sample_probs_sum = 0.0;
        std::map<std::vector<unsigned>, double>::iterator it;
       
        // iterate over each cladogenetic event possible
        for (it = eventMap.begin(); it != eventMap.end(); it++)
        {
            const std::vector<unsigned>& states = it->first;
            double speciation_rate = it->second;
            sample_probs[ states ] = 0.0;
            
            // we need to sample from the ancestor, left, and right states jointly,
            // so keep track of the probability of each clado event
            double prob = left_likelihoods[num_states + states[1]] * right_likelihoods[num_states + states[2]];
            prob *= speciation_rate * branch_conditional_probs[num_states + states[0]];
            sample_probs[ states ] += prob;
            sample_probs_sum += prob;

        }
        
        // finally, sample ancestor, left, and right character states from probs
        size_t a, l, r;
        
        RandomNumberGenerator* rng = GLOBAL_RNG;
        double u = rng->uniform01() * sample_probs_sum;
        
        for (it = sample_probs.begin(); it != sample_probs.end(); it++)
        {
            u -= it->second;
            if (u < 0.0)
            {
                const std::vector<unsigned>& states = it->first;
                a = states[0];
                l = states[1];
                r = states[2];
                endStates[node_index] = a;
                startStates[left_index] = l;
                startStates[right_index] = r;
                break;
            }
        }
        
        // recurse towards tips
        recursivelyDrawJointConditionalAncestralStates(left, startStates, endStates);
        recursivelyDrawJointConditionalAncestralStates(right, startStates, endStates);
    }

}