std::set<TopologyNode*> SpeciesNarrowExchangeProposal::getOldestSubtreesNodesInPopulation( Tree &tau, TopologyNode &n )
{
    
    // I need all the oldest nodes/subtrees that have the same tips.
    // Those nodes need to be scaled too.
    
    // get the beginning and ending age of the population
    double max_age = -1.0;
    if ( n.isRoot() == false )
    {
        max_age = n.getParent().getAge();
    }
    
    // get all the taxa from the species tree that are descendants of node i
    std::vector<TopologyNode*> species_taxa;
    TreeUtilities::getTaxaInSubtree( &n, species_taxa );
    
    // get all the individuals
    std::set<TopologyNode*> individualTaxa;
    for (size_t i = 0; i < species_taxa.size(); ++i)
    {
        const std::string &name = species_taxa[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa.insert( ind[j] );
        }
    }
    
    // create the set of the nodes within this population
    std::set<TopologyNode*> nodesInPopulationSet;
    
    // now go through all nodes in the gene
    while ( individualTaxa.empty() == false )
    {
        std::set<TopologyNode*>::iterator it = individualTaxa.begin();
        individualTaxa.erase( it );
        
        TopologyNode *geneNode = *it;
        
        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa.insert( &geneNode->getParent() );
        }
        else if ( geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }
        
    }
    
    return nodesInPopulationSet;
}
Ejemplo n.º 2
0
void PhyloWhiteNoiseProcess::recursiveSimulate(const TopologyNode& from)
{
    
    if (! from.isRoot())
    {
        // get the index
        size_t index = from.getIndex();
    
        // compute the variance along the branch
        double mean = 1.0;
        double stdev = sigma->getValue() / sqrt(from.getBranchLength());
        double alpha = mean * mean / (stdev * stdev);
        double beta = mean / (stdev * stdev);
    
        // simulate a new Val
        RandomNumberGenerator* rng = GLOBAL_RNG;
        double v = RbStatistics::Gamma::rv( alpha,beta, *rng);
    
        // we store this val here
        (*value)[index] = v;
    
    }
    
    // simulate the val for each child (if any)
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i)
    {
        const TopologyNode& child = from.getChild(i);
        recursiveSimulate(child);
    }
    
}
void MultivariateBrownianPhyloProcess::recursiveSimulate(const TopologyNode& from)  {
    
    size_t index = from.getIndex();
    if (from.isRoot())    {
        
        std::vector<double>& val = (*value)[index];
        for (size_t i=0; i<getDim(); i++)   {
            val[i] = 0;
        }
    }
    
    else    {
        
        // x ~ normal(x_up, sigma^2 * branchLength)

        std::vector<double>& val = (*value)[index];
                
        sigma->getValue().drawNormalSampleCovariance((*value)[index]);

        size_t upindex = from.getParent().getIndex();
        std::vector<double>& upval = (*value)[upindex];

        for (size_t i=0; i<getDim(); i++)   {
            val[i] += upval[i];
        }        
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveSimulate(from.getChild(i));
    }
    
}
Ejemplo n.º 4
0
void PhyloBrownianProcessREML::recursivelyFlagNodeDirty( const TopologyNode &n )
{
    
    // we need to flag this node and all ancestral nodes for recomputation
    size_t index = n.getIndex();
    
    // if this node is already dirty, the also all the ancestral nodes must have been flagged as dirty
    if ( !dirtyNodes[index] )
    {
        // the root doesn't have an ancestor
        if ( !n.isRoot() )
        {
            recursivelyFlagNodeDirty( n.getParent() );
        }
        
        // set the flag
        dirtyNodes[index] = true;
        
        // if we previously haven't touched this node, then we need to change the active likelihood pointer
        if ( changedNodes[index] == false )
        {
            activeLikelihood[index] = (activeLikelihood[index] == 0 ? 1 : 0);
            changedNodes[index] = true;
        }
        
    }
    
}
Ejemplo n.º 5
0
double BrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
    
    double lnProb = 0.0;
    size_t index = from.getIndex();
    double val = (*value)[index];

    if (! from.isRoot()) {
        
        // x ~ normal(x_up, sigma^2 * branchLength)
        
        size_t upindex = from.getParent().getIndex();
        double standDev = sigma->getValue() * sqrt(from.getBranchLength());
        double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();
        lnProb += RbStatistics::Normal::lnPdf(val, standDev, mean);
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    
    for (size_t i = 0; i < numChildren; ++i) {
        lnProb += recursiveLnProb(from.getChild(i));
    }
    
    return lnProb;
    
}
Ejemplo n.º 6
0
void BrownianPhyloProcess::recursiveSimulate(const TopologyNode& from)  {
    
    size_t index = from.getIndex();
    
    if (! from.isRoot())    {
        
        // x ~ normal(x_up, sigma^2 * branchLength)
        
        size_t upindex = from.getParent().getIndex();
        double standDev = sigma->getValue() * sqrt(from.getBranchLength());
        double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();

        // simulate the new Val
        RandomNumberGenerator* rng = GLOBAL_RNG;
        (*value)[index] = RbStatistics::Normal::rv( mean, standDev, *rng);
     
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        recursiveSimulate(from.getChild(i));
    }
    
}
Ejemplo n.º 7
0
/**
 * Perform the proposal.
 *
 * A Beta-simplex proposal randomly changes some values of a simplex, although the other values
 * change too because of the renormalization.
 * First, some random indices are drawn. Then, the proposal draws a new somplex
 *   u ~ Beta(val[index] * alpha)
 * where alpha is the tuning parameter.The new value is set to u.
 * The simplex is then renormalized.
 *
 * \return The hastings ratio.
 */
double SubtreeScaleProposal::doProposal( void )
{
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = variable->getValue();
    
    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
    
    // lower bound
    double min_age = 0.0;
    TreeUtilities::getOldestTip(&tau, node, min_age);
    
    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = min_age + (parent_age - min_age) * rng->uniform01();
    
    double scalingFactor = my_new_age / my_age;
    
    size_t nNodes = node->getNumberOfNodesInSubtree(false);
    
    // rescale the subtrees
    TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
    
    if (min_age != 0.0)
    {
        for (size_t i = 0; i < tau.getNumberOfTips(); i++)
        {
            if (tau.getNode(i).getAge() < 0.0) {
                return RbConstants::Double::neginf;
            }
        }
    }
    
    // compute the Hastings ratio
    double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
    
    return lnHastingsratio;
    
}
double MultivariateBrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
    
    double lnProb = 0.0;
    size_t index = from.getIndex();
    std::vector<double> val = (*value)[index];
    
    if (! from.isRoot()) {
        
        if (1)  {
//        if (dirtyNodes[index])  {

            // x ~ normal(x_up, sigma^2 * branchLength)

            size_t upindex = from.getParent().getIndex();
            std::vector<double> upval = (*value)[upindex];

            const MatrixReal& om = sigma->getValue().getInverse();

            double s2 = 0;
            for (size_t i = 0; i < getDim(); i++) {
                double tmp = 0;
                for (size_t j = 0; j < getDim(); j++) {
                    tmp += om[i][j] * (val[j] - upval[j]);
                }
                s2 += (val[i] - upval[i]) * tmp;
            }

            double logprob = 0;
            logprob -= 0.5 * s2 / from.getBranchLength();
            logprob -= 0.5 * (sigma->getValue().getLogDet() + sigma->getValue().getDim() * log(from.getBranchLength()));
            nodeLogProbs[index] = logprob;
            dirtyNodes[index] = false;
        }
        lnProb += nodeLogProbs[index];
    }
    
    // propagate forward
    size_t numChildren = from.getNumberOfChildren();
    
    for (size_t i = 0; i < numChildren; ++i) {
        lnProb += recursiveLnProb(from.getChild(i));
    }
    
    return lnProb;
    
}
Ejemplo n.º 9
0
void RateMap_Biogeography::calculateTransitionProbabilities(const TopologyNode& node, TransitionProbabilityMatrix &P) const
{
   
    double branchLength = node.getBranchLength();
    
    double r = ( branchHeterogeneousClockRates ? heterogeneousClockRates[node.getIndex()] : homogeneousClockRate );
    const std::vector<double>& glr = ( branchHeterogeneousGainLossRates ? heterogeneousGainLossRates[node.getIndex()] : homogeneousGainLossRates );

    if (node.isRoot())
        branchLength = 1e10;

    double expPart = exp( -(glr[0] + glr[1]) * r * branchLength);
    double p = glr[0] / (glr[0] + glr[1]);
    double q = 1.0 - p;
    
    P[0][0] = p + q * expPart;
    P[0][1] = q - q * expPart;
    P[1][0] = p - p * expPart;
    P[1][1] = q + p * expPart;
}
/**
 * Compute the diversity of the tree at time t.
 *
 * \param[in]    t      time at which we want to know the diversity.
 *
 * \return The diversity (number of species in the reconstructed tree).
 */
int PiecewiseConstantSerialSampledBirthDeathProcess::survivors(double t) const
{

    const std::vector<TopologyNode*>& nodes = value->getNodes();

    int survivors = 0;
    for (std::vector<TopologyNode*>::const_iterator it = nodes.begin(); it != nodes.end(); ++it)
    {
        TopologyNode* n = *it;
        if ( n->getAge() < t )
        {
            if ( n->isRoot() || n->getParent().getAge() > t )
            {
                survivors++;
            }
        }
    }

    return survivors;
}
Ejemplo n.º 11
0
/** Perform the move */
double SubtreeScale::performSimpleMove( void ) {
    
    // Get random number generator    
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = variable->getValue();
    
    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
        
    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = parent_age * rng->uniform01();
    
    double scalingFactor = my_new_age / my_age;
    
    size_t nNodes = node->getNumberOfNodesInSubtree(false);
    
    // rescale the subtrees
    TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
    
    // compute the Hastings ratio
    double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
    
    return lnHastingsratio;
}
Ejemplo n.º 12
0
/**
 * Perform the proposal.
 *
 * A Uniform-simplex proposal randomly changes some values of a simplex, although the other values
 * change too because of the renormalization.
 * First, some random indices are drawn. Then, the proposal draws a new somplex
 *   u ~ Uniform(val[index] * alpha)
 * where alpha is the tuning parameter.The new value is set to u.
 * The simplex is then renormalized.
 *
 * \return The hastings ratio.
 */
double NodeTimeSlideUniformProposal::doProposal( void )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    Tree& tau = variable->getValue();

    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;

    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;

    // set the age
    tau.getNode(node->getIndex()).setAge( my_new_age );

    return 0.0;

}
Ejemplo n.º 13
0
double PhyloWhiteNoiseProcess::recursiveLnProb(const TopologyNode &from)   {

    double lnProb = 0.0;
    if (! from.isRoot())   {
        // compute the variance
        double mean = 1.0;
        double stdev = sigma->getValue() / sqrt(from.getBranchLength());
        double alpha = mean * mean / (stdev * stdev);
        double beta = mean / (stdev * stdev);
        double v = (*value)[from.getIndex()];
        lnProb += log( RbStatistics::Gamma::lnPdf(alpha,beta,v) );
    }
    
    size_t numChildren = from.getNumberOfChildren();
    for (size_t i = 0; i < numChildren; ++i) {
        const TopologyNode& child = from.getChild(i);
        lnProb += recursiveLnProb(child);
            
    }
    
    return lnProb;
}
Ejemplo n.º 14
0
/** Perform the move */
double RateAgeACLNMixingMove::performCompoundMove( void ) {
    
    // Get random number generator    
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = tree->getValue();
	std::vector<double>& nrates = rates->getValue();
	double &rootR = rootRate->getValue();
	
	
	size_t nn = tau.getNumberOfNodes();
	double u = rng->uniform01();
	double c = exp( epsilon * (u - 0.5) );
	
	for(size_t i=0; i<nn; i++){
		TopologyNode* node = &tau.getNode(i);
		if(node->isTip() == false){
			double curAge = node->getAge();
			double newAge = curAge * c;
			tau.setAge( node->getIndex(), newAge );
			if(node->isRoot()){
				storedRootAge = curAge;
			}
		}
	}
	
	size_t nr = nrates.size();
	rootR = rootR / c;
	for(size_t i=0; i<nrates.size(); i++){
        double curRt = nrates[i];
        double newRt = curRt / c;
        nrates[i] = newRt;
	}
	
	storedC = c;
	double pr = (((double)nn) - (double)nr) * log(c);
	return pr;
}
Ejemplo n.º 15
0
/** Perform the move */
double GibbsPruneAndRegraft::performSimpleMove( void ) 
{
    
    // Get random number generator    
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    TimeTree& tau = variable->getValue();
    
    // potential affected nodes for likelihood computation
    std::set<DagNode *> affected;
    variable->getAffectedNodes( affected );
    
    double backwardLikelihood = variable->getLnProbability();
    for (std::set<DagNode*>::const_iterator it = affected.begin(); it != affected.end(); ++it) 
    {
        backwardLikelihood += (*it)->getLnProbability();
    }
    int offset = (int) -backwardLikelihood;
    double backward = exp(backwardLikelihood + offset);
    
    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->getParent().isRoot() );
    
    TopologyNode* parent        = &node->getParent(); 
    TopologyNode& grandparent   = parent->getParent();
    TopologyNode& brother       = parent->getChild( 0 );
    // check if we got the correct child
    if ( &brother == node ) 
    {
        brother = parent->getChild( 1 );
    }
    
    // collect the possible reattachement points
    std::vector<TopologyNode*> new_brothers;
    findNewBrothers(new_brothers, *parent, &tau.getRoot());
    std::vector<double> weights = std::vector<double>(new_brothers.size(), 0.0);
    double sumOfWeights = 0.0;
    for (size_t i = 0; i<new_brothers.size(); ++i) 
    {
        // get the new brother
        TopologyNode* newBro = new_brothers[i];
        
        // do the proposal
        TopologyNode *newGrandparent = pruneAndRegraft(&brother, newBro, parent, grandparent);
        
        // flag for likelihood recomputation
        variable->touch();
        
        // compute the likelihood of the new value
        double priorRatio = variable->getLnProbability();
        double likelihoodRatio = 0.0;
        for (std::set<DagNode*>::const_iterator it = affected.begin(); it != affected.end(); ++it) 
        {
            likelihoodRatio += (*it)->getLnProbability();
        }
        weights[i] = exp(priorRatio + likelihoodRatio + offset);
        sumOfWeights += weights[i];
        
        // undo proposal
        pruneAndRegraft(newBro, &brother, parent, *newGrandparent);
        
        // restore the previous likelihoods;
        variable->restore();
    }
    
    if (sumOfWeights <= 1E-100) {
        // hack
        // the proposals have such a small likelihood that they can be neglected
//        throw new OperatorFailedException("Couldn't find another proposal with a decent likelihood.");
        return 0.0;
    }
    
    double ran = rng->uniform01() * sumOfWeights;
    size_t index = 0;
    while (ran > 0.0) {
        ran -= weights[index];
        index++;
    }
    index--;
    
    TopologyNode* newBro = new_brothers[index];
    
    // now we store all necessary values
    storedBrother       = &brother;
    storedNewBrother    = newBro;
    
    pruneAndRegraft(&brother, newBro, parent, grandparent);
    
    double forward = weights[index];
    
    double forwardProb = (forward / sumOfWeights);
    double backwardProb = (backward / (sumOfWeights - forward + backward));
    double hastingsRatio = log(backwardProb / forwardProb);
    
    return hastingsRatio;
}
/**
 * Perform the proposal.
 *
 * \return The hastings ratio.
 */
double SpeciesSubtreeScaleBetaProposal::doProposal( void )
{
    
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    Tree& tau = speciesTree->getValue();
    
    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
    
    // lower bound
    double min_age = 0.0;
    TreeUtilities::getOldestTip(&tau, node, min_age);
    
    // draw new ages
    double current_value = my_age / (parent_age - min_age);
    double a = alpha + 1.0;
    double b = (a-1.0) / current_value - a + 2.0;
    double new_value = RbStatistics::Beta::rv(a, b, *rng);

    // Sebastian: This is for debugging to test if the proposal's acceptance rate is 1.0 as it should be!
//    new_value = current_value;
    
    double my_new_age = new_value * (parent_age - min_age);
    
    double scaling_factor = my_new_age / my_age;
    
    size_t num_nodes = node->getNumberOfNodesInSubtree( false );
    
    for ( size_t i=0; i<geneTrees.size(); ++i )
    {
        // get the i-th gene tree
        Tree& gene_tree = geneTrees[i]->getValue();
        
        std::vector<TopologyNode*> nodes = getOldestNodesInPopulation(gene_tree, *node );
        
        for (size_t j=0; j<nodes.size(); ++j)
        {
            // add the number of nodes that we are going to scale in the subtree
            num_nodes += nodes[j]->getNumberOfNodesInSubtree( false );
            
            if ( nodes[j]->isTip() == true )
            {
                std::cerr << "Trying to scale a tip\n";
            }
            
            if ( nodes[j]->isRoot() == true )
            {
                std::cerr << "Trying to scale the root\n";
            }
            
            // rescale the subtree of this gene tree
            TreeUtilities::rescaleSubtree(&gene_tree, nodes[j], scaling_factor );
            
        }
        
        // Sebastian: This is only for debugging. It makes the code slower. Hopefully it is not necessary anymore.
//        geneTrees[i]->touch( true );
        
    }
    
    // Sebastian: We need to work on a mechanism to make these proposal safe for non-ultrametric trees!
    //    if (min_age != 0.0)
    //    {
    //        for (size_t i = 0; i < tau.getNumberOfTips(); i++)
    //        {
    //            if (tau.getNode(i).getAge() < 0.0)
    //            {
    //                return RbConstants::Double::neginf;
    //            }
    //        }
    //    }
    
    // rescale the subtree of the species tree
    TreeUtilities::rescaleSubtree(&tau, node, scaling_factor );
    
    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_value);
    double new_a = alpha + 1.0;
    double new_b = (a-1.0) / new_value - a + 2.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, current_value);
    double lnHastingsratio = (backward - forward) * (num_nodes-1);
    
    return lnHastingsratio;
}
Ejemplo n.º 17
0
std::vector<TopologyNode*> TreeNodeAgeUpdateProposal::getNodesInPopulation( Tree &tau, TopologyNode &n )
{

    // I need all the oldest nodes/subtrees that have the same tips.
    // Those nodes need to be scaled too.

    // get the beginning and ending age of the population
    double max_age = -1.0;
    if ( n.isRoot() == false )
    {
        max_age = n.getParent().getAge();
    }

    // get all the taxa from the species tree that are descendants of node i
    double min_age_left = n.getChild(0).getAge();
    std::vector<TopologyNode*> speciesTaxa_left;
    TreeUtilities::getTaxaInSubtree( &n.getChild(0), speciesTaxa_left );

    // get all the individuals
    std::set<TopologyNode*> individualTaxa_left;
    for (size_t i = 0; i < speciesTaxa_left.size(); ++i)
    {
        const std::string &name = speciesTaxa_left[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa_left.insert( ind[j] );
        }
    }

    // create the set of the nodes within this population
    std::set<TopologyNode*> nodesInPopulationSet;

    // now go through all nodes in the gene
    while ( individualTaxa_left.empty() == false )
    {
        // get the first element
        std::set<TopologyNode*>::iterator it = individualTaxa_left.begin();

        // store the pointer
        TopologyNode *geneNode = *it;

        // and now remove the element from the list
        individualTaxa_left.erase( it );

        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->getAge() > min_age_left && geneNode->getAge() < max_age && geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }

        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa_left.insert( &geneNode->getParent() );
        }

    }

    // get all the taxa from the species tree that are descendants of node i
    double min_age_right = n.getChild(1).getAge();
    std::vector<TopologyNode*> speciesTaxa_right;
    TreeUtilities::getTaxaInSubtree( &n.getChild(1), speciesTaxa_right );

    // get all the individuals
    std::set<TopologyNode*> individualTaxa_right;
    for (size_t i = 0; i < speciesTaxa_right.size(); ++i)
    {
        const std::string &name = speciesTaxa_right[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individualTaxa_right.insert( ind[j] );
        }
    }

    // now go through all nodes in the gene
    while ( individualTaxa_right.empty() == false )
    {
        // get the first element
        std::set<TopologyNode*>::iterator it = individualTaxa_right.begin();

        // store the pointer
        TopologyNode *geneNode = *it;

        // and now remove the element from the list
        individualTaxa_right.erase( it );

        // add this node to our list of node we need to scale, if:
        // a) this is the root node
        // b) this is not the root and the age of the parent node is larger than the parent's age of the species node
        if ( geneNode->getAge() > min_age_right && geneNode->getAge() < max_age && geneNode->isTip() == false )
        {
            // add this node if it is within the age of our population
            nodesInPopulationSet.insert( geneNode );
        }

        if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
        {
            // push the parent to our current list
            individualTaxa_right.insert( &geneNode->getParent() );
        }

    }




    // convert the set into a vector
    std::vector<TopologyNode*> nodesInPopulation;
    for (std::set<TopologyNode*>::iterator it = nodesInPopulationSet.begin(); it != nodesInPopulationSet.end(); ++it)
    {
        nodesInPopulation.push_back( *it );
    }

    return nodesInPopulation;
}
Ejemplo n.º 18
0
/**
 * Perform the proposal.
 *
 * \return The hastings ratio.
 */
double TreeNodeAgeUpdateProposal::doProposal( void )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    Tree& tau = speciesTree->getValue();

    // pick a random node which is not the root and neither the direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;

    // draw new ages and compute the hastings ratio at the same time
    double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;

    // Sebastian: This is for debugging to test if the proposal's acceptance rate is 1.0 as it should be!
//    my_new_age = my_age;

    int upslideNodes = 0;
    int downslideNodes = 0;

    for ( size_t i=0; i<geneTrees.size(); ++i )
    {
        // get the i-th gene tree
        Tree& geneTree = geneTrees[i]->getValue();

        std::vector<TopologyNode*> nodes = getNodesInPopulation(geneTree, *node );

        for (size_t j=0; j<nodes.size(); ++j)
        {

            double a = nodes[j]->getAge();
            double new_a = a;
            if ( a > my_age )
            {
                ++upslideNodes;
                new_a = parent_age - (parent_age - my_new_age)/(parent_age - my_age) * (parent_age - a);
            }
            else
            {
                ++downslideNodes;
                new_a = child_Age + (my_new_age - child_Age)/(my_age - child_Age) * (a - child_Age);
            }

            // set the new age of this gene tree node
            geneTree.getNode( nodes[j]->getIndex() ).setAge( new_a );
        }

        // Sebastian: This is only for debugging. It makes the code slower. Hopefully it is not necessary anymore.
//        geneTrees[i]->touch( true );

    }

    // Sebastian: We need to work on a mechanism to make these proposal safe for non-ultrametric trees!
    //    if (min_age != 0.0)
    //    {
    //        for (size_t i = 0; i < tau.getNumberOfTips(); i++)
    //        {
    //            if (tau.getNode(i).getAge() < 0.0)
    //            {
    //                return RbConstants::Double::neginf;
    //            }
    //        }
    //    }


    // set the age of the species tree node
    tau.getNode( node->getIndex() ).setAge( my_new_age );

    // compute the Hastings ratio
    double lnHastingsratio = upslideNodes * log( (parent_age - my_new_age)/(parent_age - my_age) ) + downslideNodes * log( (my_new_age - child_Age)/(my_age - child_Age) );

    return lnHastingsratio;

}
Ejemplo n.º 19
0
/** Perform the move */
void RateAgeBetaShift::performMcmcMove( double lHeat, double pHeat )
{
    
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    Tree& tau = tree->getValue();
    RbOrderedSet<DagNode*> affected;
    tree->getAffectedNodes( affected );
    
    double oldLnLike = 0.0;
    bool checkLikelihoodShortcuts = rng->uniform01() < 0.001;
    if ( checkLikelihoodShortcuts == true )
    {
        for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
        {
            (*it)->touch();
            oldLnLike += (*it)->getLnProbability();
        }
    }
    
    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    size_t nodeIdx = 0;
    do {
        double u = rng->uniform01();
        nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(nodeIdx);
    } while ( node->isRoot() || node->isTip() ); 
    
    TopologyNode& parent = node->getParent();
    
    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }
    
    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;
    
    
    storedRates[nodeIdx] = rates[nodeIdx]->getValue();
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        storedRates[childIdx] = rates[childIdx]->getValue();
    }
    
    
    // draw new ages and compute the hastings ratio at the same time
    double m = (my_age-child_Age) / (parent_age-child_Age);
    double a = delta * m + 1.0;
    double b = delta * (1.0-m) + 1.0;
    double new_m = RbStatistics::Beta::rv(a, b, *rng);
    double my_new_age = (parent_age-child_Age) * new_m + child_Age;
    
    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
    double new_a = delta * new_m + 1.0;
    double new_b = delta * (1.0-new_m) + 1.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);
    
    // set the age
    tau.getNode(nodeIdx).setAge( my_new_age );
    
    // touch the tree so that the likelihoods are getting stored
    tree->touch();
    
    // get the probability ratio of the tree
    double treeProbRatio = tree->getLnProbabilityRatio();
    
    
    // set the rates
    double pa = node->getParent().getAge();
    double my_new_rate =(pa - my_age) * storedRates[nodeIdx] / (pa - my_new_age);
    
    // now we set the new value
    // this will automcatically call a touch
    rates[nodeIdx]->setValue( new double( my_new_rate ) );
    
    // get the probability ratio of the new rate
    double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();
    
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        double a = node->getChild(i).getAge();
        double child_new_rate = (my_age - a) * storedRates[childIdx] / (my_new_age - a);
        
        // now we set the new value
        // this will automcatically call a touch
        rates[childIdx]->setValue( new double( child_new_rate ) );

        // get the probability ratio of the new rate
        ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();
        
        
    }
    
    if ( checkLikelihoodShortcuts == true )
    {
        double lnProbRatio = 0;
        double newLnLike = 0;
        for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
        {

            double tmp = (*it)->getLnProbabilityRatio();
            lnProbRatio += tmp;
            newLnLike += (*it)->getLnProbability();
        }
    
        if ( fabs(lnProbRatio) > 1E-8 )
        {
            double lnProbRatio2 = 0;
            double newLnLike2 = 0;
            for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
            {
                
                double tmp2 = (*it)->getLnProbabilityRatio();
                lnProbRatio2 += tmp2;
                newLnLike2 += (*it)->getLnProbability();
            }
            
            throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
        }
        
    }
    
    double hastingsRatio = backward - forward;
    double ln_acceptance_ratio = lHeat * pHeat * (treeProbRatio + ratesProbRatio) + hastingsRatio;
    
    if (ln_acceptance_ratio >= 0.0)
    {
        numAccepted++;
        
        tree->keep();
        rates[nodeIdx]->keep();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->keep();
        }
    }
    else if (ln_acceptance_ratio < -300.0)
    {
        reject();
        tree->restore();
        rates[nodeIdx]->restore();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->restore();
        }
    }
    else
    {
        double r = exp(ln_acceptance_ratio);
        // Accept or reject the move
        double u = GLOBAL_RNG->uniform01();
        if (u < r)
        {
            numAccepted++;
            
            //keep
            tree->keep();
            rates[nodeIdx]->keep();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->keep();
            }
        }
        else
        {
            reject();
            tree->restore();
            rates[nodeIdx]->restore();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->restore();
            }
        }
    }

}
/**
 * Perform the proposal.
 *
 * \return The hastings ratio.
 */
double SpeciesNarrowExchangeProposal::doProposal( void )
{
    
    // empty the previous vectors
    storedGeneTreeNodes.clear();
    storedOldBrothers.clear();
    
    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;
    
    Tree& tau = speciesTree->getValue();
    
    // pick a random node which is not the root and neithor a direct descendant of the root
    TopologyNode* node;
    do {
        double u = rng->uniform01();
        size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(index);
    } while ( node->isRoot() || node->getParent().isRoot() );
    
    TopologyNode& parent = node->getParent();
    TopologyNode& grandparent = parent.getParent();
    TopologyNode* uncle = &grandparent.getChild( 0 );
    // check if we got the correct child
    if ( uncle == &parent )
    {
        uncle = &grandparent.getChild( 1 );
    }
    TopologyNode* brother = &parent.getChild( 0 );
    // check if we got the correct child
    if ( brother == node )
    {
        brother = &parent.getChild( 1 );
    }
    
    // we need to work with the times
    double parent_age   = parent.getAge();
    double uncles_age   = uncle->getAge();
    
    if( uncles_age < parent_age )
    {
        failed = false;
        
        double lnHastingsRatio = 0.0;
        
        // now we store all necessary values
        storedChoosenNode   = node;
        storedUncle         = uncle;
        
        // now we need to find for each gene tree the nodes that need to be moved as well
        // only nodes that have a coalescent event within the lifetime of the parents populations
        // from lineages belonging to the chosen node with lineages belonging to the brother population
        // need to be changed
        for ( size_t i=0; i<geneTrees.size(); ++i )
        {
            // get the i-th gene tree
            Tree& geneTree = geneTrees[i]->getValue();
            
            std::vector<TopologyNode*> nodes = getNodesToChange(geneTree, *node, *brother );
            
            // get the set of nodes in my uncles populations
            // these are the nodes that are possible re-attachment points
            std::set<TopologyNode*> new_siblings = getOldestSubtreesNodesInPopulation(geneTree, *uncle);
            std::set<TopologyNode*> old_siblings = getOldestSubtreesNodesInPopulation(geneTree, *brother);
            
            for (size_t j=0; j<nodes.size(); ++j)
            {
                
                TopologyNode *the_gene_node = nodes[i];

                // first we need to compute the backward probability
                std::set<TopologyNode*> old_candidate_siblings = getPossibleSiblings(the_gene_node, old_siblings);
                
                // add the backward probability to the hastings ratio
                lnHastingsRatio += log( old_siblings.size() );
                
                // then we need to compute the forward probability
                std::set<TopologyNode*> new_candidate_siblings = getPossibleSiblings(the_gene_node, new_siblings);
                
                // add the forward  probability to the hastings ratio
                lnHastingsRatio += log( new_candidate_siblings.size() );
                
                // actually pick a new sibling
                size_t new_index = size_t( floor(rng->uniform01() * new_candidate_siblings.size() ) );
                std::set<TopologyNode*>::iterator it = new_candidate_siblings.begin();
                std::advance(it,new_index);
                TopologyNode *new_child = *it;
                
                // store nodes
                storedGeneTreeNodes.push_back( the_gene_node );
                TopologyNode &the_parent = the_gene_node->getParent();
                TopologyNode *old_brother = &the_parent.getChild( 0 );
                if ( old_brother == the_gene_node )
                {
                    old_brother = &the_parent.getChild( 1 );
                }
                storedOldBrothers.push_back( old_brother );
                
                // perform a prune and regraft move
                prune( &the_parent, the_gene_node );
                regraft( the_gene_node, new_child );
                
            }
            
            // Sebastian: This is only for debugging. It makes the code slower. Hopefully it is not necessary anymore.
            //        geneTrees[i]->touch( true );
            
        }
        
        
        // now exchange the two nodes
        grandparent.removeChild( uncle );
        parent.removeChild( node );
        grandparent.addChild( node );
        parent.addChild( uncle );
        node->setParent( &grandparent );
        uncle->setParent( &parent );
        
        return 0.0;
    }
    else
    {
        failed = true;
        return RbConstants::Double::neginf;
    }
    
}
std::set<TopologyNode*> SpeciesNarrowExchangeProposal::getNodesInPopulation( Tree &tau, TopologyNode &n )
{
    
    // I need all the oldest nodes/subtrees that have the same tips.
    // Those nodes need to be scaled too.
    
    // get the beginning and ending age of the population
    double max_age = -1.0;
    if ( n.isRoot() == false )
    {
        max_age = n.getParent().getAge();
    }
    
    // get all the taxa from the species tree that are descendants of the node
    double min_age = n.getAge();
    std::vector<TopologyNode*> species_taxa;
    TreeUtilities::getTaxaInSubtree( &n, species_taxa );
    
    // get all the individuals
    std::set<TopologyNode*> individual_taxa;
    for (size_t i = 0; i < species_taxa.size(); ++i)
    {
        const std::string &name = species_taxa[i]->getName();
        std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
        for (size_t j = 0; j < ind.size(); ++j)
        {
            individual_taxa.insert( ind[j] );
        }
    }
    
    // create the set of the nodes within this population
    std::set<TopologyNode*> nodesInPopulationSet;
    
    // now go through all nodes in the gene
    while ( individual_taxa.empty() == false )
    {
        std::set<TopologyNode*>::iterator it = individual_taxa.begin();
        individual_taxa.erase( it );
        
        TopologyNode *gene_node = *it;
        
        if ( gene_node->getAge() < min_age )
        {
            // the age of the node is younger than the populations start age
            // -> add the node to the current working set
            individual_taxa.insert( &gene_node->getParent() );
            
        }
        else if ( gene_node->getAge() < max_age || max_age == -1.0 )
        {
            // the age of the node is within the population
            // -> add the node to the current return set
            nodesInPopulationSet.insert( gene_node );
            
            // if this is not the root then we need to add the parent node to the working set
            if ( gene_node->isRoot() == false )
            {
                individual_taxa.insert( &gene_node->getParent() );
                
            }
            
        }
        
    }
    
    return nodesInPopulationSet;
}
Ejemplo n.º 22
0
/** Perform the move */
void RateAgeBetaShift::performMove( double heat, bool raiseLikelihoodOnly )
{

    // Get random number generator
    RandomNumberGenerator* rng     = GLOBAL_RNG;

    TimeTree& tau = tree->getValue();

    // pick a random node which is not the root and neithor the direct descendant of the root
    TopologyNode* node;
    size_t nodeIdx = 0;
    do {
        double u = rng->uniform01();
        nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
        node = &tau.getNode(nodeIdx);
    } while ( node->isRoot() || node->isTip() );

    TopologyNode& parent = node->getParent();

    // we need to work with the times
    double parent_age  = parent.getAge();
    double my_age      = node->getAge();
    double child_Age   = node->getChild( 0 ).getAge();
    if ( child_Age < node->getChild( 1 ).getAge())
    {
        child_Age = node->getChild( 1 ).getAge();
    }

    // now we store all necessary values
    storedNode = node;
    storedAge = my_age;


    storedRates[nodeIdx] = rates[nodeIdx]->getValue();
    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        storedRates[childIdx] = rates[childIdx]->getValue();
    }


    // draw new ages and compute the hastings ratio at the same time
    double m = (my_age-child_Age) / (parent_age-child_Age);
    double a = delta * m + 1.0;
    double b = delta * (1.0-m) + 1.0;
    double new_m = RbStatistics::Beta::rv(a, b, *rng);
    double my_new_age = (parent_age-child_Age) * new_m + child_Age;

    // compute the Hastings ratio
    double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
    double new_a = delta * new_m + 1.0;
    double new_b = delta * (1.0-new_m) + 1.0;
    double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);

    // set the age
    tau.setAge( node->getIndex(), my_new_age );
    tree->touch();

    double treeProbRatio = tree->getLnProbabilityRatio();


    // set the rates
    rates[nodeIdx]->setValue( new double((node->getParent().getAge() - my_age) * storedRates[nodeIdx] / (node->getParent().getAge() - my_new_age)));
    double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();

    for (size_t i = 0; i < node->getNumberOfChildren(); i++)
    {
        size_t childIdx = node->getChild(i).getIndex();
        rates[childIdx]->setValue( new double((my_age - node->getChild(i).getAge()) * storedRates[childIdx] / (my_new_age - node->getChild(i).getAge())));
        ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();

    }

    std::set<DagNode*> affected;
    tree->getAffectedNodes( affected );
    double lnProbRatio = 0;
    for (std::set<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
    {
        (*it)->touch();
        lnProbRatio += (*it)->getLnProbabilityRatio();
    }

    if ( fabs(lnProbRatio) > 1E-6 ) {
//        throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
        std::cout << "Likelihood shortcut computation failed in rate-age-proposal." << std::endl;
    }

    double hastingsRatio = backward - forward;
    double lnAcceptanceRatio = treeProbRatio + ratesProbRatio + hastingsRatio;

    if (lnAcceptanceRatio >= 0.0)
    {
        numAccepted++;

        tree->keep();
        rates[nodeIdx]->keep();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->keep();
        }
    }
    else if (lnAcceptanceRatio < -300.0)
    {
        reject();
        tree->restore();
        rates[nodeIdx]->restore();
        for (size_t i = 0; i < node->getNumberOfChildren(); i++)
        {
            size_t childIdx = node->getChild(i).getIndex();
            rates[childIdx]->restore();
        }
    }
    else
    {
        double r = exp(lnAcceptanceRatio);
        // Accept or reject the move
        double u = GLOBAL_RNG->uniform01();
        if (u < r)
        {
            numAccepted++;

            //keep
            tree->keep();
            rates[nodeIdx]->keep();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->keep();
            }
        }
        else
        {
            reject();
            tree->restore();
            rates[nodeIdx]->restore();
            for (size_t i = 0; i < node->getNumberOfChildren(); i++)
            {
                size_t childIdx = node->getChild(i).getIndex();
                rates[childIdx]->restore();
            }
        }
    }

}
Ejemplo n.º 23
0
void RateMap_Biogeography::calculateTransitionProbabilities(const TopologyNode& node, TransitionProbabilityMatrix &P, size_t charIdx) const
{

    double startAge = ( node.isRoot() ? 1e10 : node.getParent().getAge() );
    double endAge = node.getAge();
    double currAge = startAge;
    
    double r = ( branchHeterogeneousClockRates ? heterogeneousClockRates[node.getIndex()] : homogeneousClockRate );
    const std::vector<double>& glr = ( branchHeterogeneousGainLossRates ? heterogeneousGainLossRates[node.getIndex()] : homogeneousGainLossRates );
    
    // start at earliest epoch
    int epochIdx = getEpochIndex(startAge);
    

    // initialize P = I
    P[0][0] = 1.0;
    P[0][1] = 0.0;
    P[1][0] = 0.0;
    P[1][1] = 1.0;
    

    
    bool stop = false;
    while (!stop)
    {
        // get dispersal and extinction rates for site
        size_t idx = this->numCharacters * epochIdx + charIdx;
        
        double dispersalRate  = ( (availableAreaVector[ idx ] > 0) ? 1.0 : 0.0);
        double extinctionRate = ( (availableAreaVector[ idx ] > 0) ? 1.0 : 1e10);
        
        // get age of start of next oldest epoch
        double epochAge = epochs[ epochIdx ];
        
        // get next oldest age boundary (node or epoch)
        double incrAge = epochAge;
        
        // no more epochs, exit loop after computation
        if (endAge >= epochAge)
        {
            incrAge = endAge;
            stop = true;
        }
        
        // get branch length
        double diffAge = currAge - incrAge;
        
        // transition probabilities w/ sum-product
        double glr0 = glr[0] * extinctionRate;
        double glr1 = glr[1] * dispersalRate;
        double expPart = exp( -(glr0 + glr1) * r * diffAge);
        double p = glr0 / (glr0 + glr1);
        double q = 1.0 - p;
        
        double p00 = (p + q * expPart);
        double p01 = (q - q * expPart);
        double p10 = (p - p * expPart);
        double p11 = (q + p * expPart);

        double q00 = P[0][0];
        double q01 = P[0][1];
        double q10 = P[1][0];
        double q11 = P[1][1];
        
        P[0][0] = p00 * q00 + p01 * q10;
        P[0][1] = p00 * q01 + p01 * q11;
        P[1][0] = p10 * q00 + p11 * q10;
        P[1][1] = p10 * q01 + p11 * q11;
        
//        std::cout << P[0][0] << "," << P[0][1] << ";" << P[1][0] << "," << P[1][1] << "\n";
        
        
        
        if (!stop)
        {
            epochIdx += 1;
            currAge = epochAge;
        }
    }
}