// static
already_AddRefed<InternalHeaders>
InternalHeaders::CORSHeaders(InternalHeaders* aHeaders)
{
  RefPtr<InternalHeaders> cors = new InternalHeaders(aHeaders->mGuard);
  ErrorResult result;

  nsAutoCString acExposedNames;
  aHeaders->Get(NS_LITERAL_CSTRING("Access-Control-Expose-Headers"), acExposedNames, result);
  MOZ_ASSERT(!result.Failed());

  AutoTArray<nsCString, 5> exposeNamesArray;
  nsCCharSeparatedTokenizer exposeTokens(acExposedNames, ',');
  while (exposeTokens.hasMoreTokens()) {
    const nsDependentCSubstring& token = exposeTokens.nextToken();
    if (token.IsEmpty()) {
      continue;
    }

    if (!NS_IsValidHTTPToken(token)) {
      NS_WARNING("Got invalid HTTP token in Access-Control-Expose-Headers. Header value is:");
      NS_WARNING(acExposedNames.get());
      exposeNamesArray.Clear();
      break;
    }

    exposeNamesArray.AppendElement(token);
  }

  nsCaseInsensitiveCStringArrayComparator comp;
  for (uint32_t i = 0; i < aHeaders->mList.Length(); ++i) {
    const Entry& entry = aHeaders->mList[i];
    if (entry.mName.EqualsASCII("cache-control") ||
        entry.mName.EqualsASCII("content-language") ||
        entry.mName.EqualsASCII("content-type") ||
        entry.mName.EqualsASCII("expires") ||
        entry.mName.EqualsASCII("last-modified") ||
        entry.mName.EqualsASCII("pragma") ||
        exposeNamesArray.Contains(entry.mName, comp)) {
      cors->Append(entry.mName, entry.mValue, result);
      MOZ_ASSERT(!result.Failed());
    }
  }

  return cors.forget();
}
nsresult
gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText *aShapedText,
                                    uint32_t       aOffset,
                                    uint32_t       aLength,
                                    CTRunRef       aCTRun,
                                    int32_t        aStringOffset)
{
    // The word has been bidi-wrapped; aStringOffset is the number
    // of chars at the beginning of the CTLine that we should skip.
    // aCTRun is a glyph run from the CoreText layout process.

    int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1;

    int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun);
    if (numGlyphs == 0) {
        return NS_OK;
    }

    int32_t wordLength = aLength;

    // character offsets get really confusing here, as we have to keep track of
    // (a) the text in the actual textRun we're constructing
    // (c) the string that was handed to CoreText, which contains the text of the font run
    //     plus directional-override padding
    // (d) the CTRun currently being processed, which may be a sub-run of the CoreText line
    //     (but may extend beyond the actual font run into the bidi wrapping text).
    //     aStringOffset tells us how many initial characters of the line to ignore.

    // get the source string range within the CTLine's text
    CFRange stringRange = ::CTRunGetStringRange(aCTRun);
    // skip the run if it is entirely outside the actual range of the font run
    if (stringRange.location - aStringOffset + stringRange.length <= 0 ||
        stringRange.location - aStringOffset >= wordLength) {
        return NS_OK;
    }

    // retrieve the laid-out glyph data from the CTRun
    UniquePtr<CGGlyph[]> glyphsArray;
    UniquePtr<CGPoint[]> positionsArray;
    UniquePtr<CFIndex[]> glyphToCharArray;
    const CGGlyph* glyphs = nullptr;
    const CGPoint* positions = nullptr;
    const CFIndex* glyphToChar = nullptr;

    // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds,
    // and so allocating a new array and copying data with CTRunGetGlyphs
    // will be extremely rare.
    // If this were not the case, we could use an AutoTArray<> to
    // try and avoid the heap allocation for small runs.
    // It's possible that some future change to CoreText will mean that
    // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<>
    // may become an attractive option.
    glyphs = ::CTRunGetGlyphsPtr(aCTRun);
    if (!glyphs) {
        glyphsArray = MakeUniqueFallible<CGGlyph[]>(numGlyphs);
        if (!glyphsArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get());
        glyphs = glyphsArray.get();
    }

    positions = ::CTRunGetPositionsPtr(aCTRun);
    if (!positions) {
        positionsArray = MakeUniqueFallible<CGPoint[]>(numGlyphs);
        if (!positionsArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get());
        positions = positionsArray.get();
    }

    // Remember that the glyphToChar indices relate to the CoreText line,
    // not to the beginning of the textRun, the font run,
    // or the stringRange of the glyph run
    glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun);
    if (!glyphToChar) {
        glyphToCharArray = MakeUniqueFallible<CFIndex[]>(numGlyphs);
        if (!glyphToCharArray) {
            return NS_ERROR_OUT_OF_MEMORY;
        }
        ::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0), glyphToCharArray.get());
        glyphToChar = glyphToCharArray.get();
    }

    double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0),
                                                  nullptr, nullptr, nullptr);

    AutoTArray<gfxShapedText::DetailedGlyph,1> detailedGlyphs;
    gfxShapedText::CompressedGlyph *charGlyphs =
        aShapedText->GetCharacterGlyphs() + aOffset;

    // CoreText gives us the glyphindex-to-charindex mapping, which relates each glyph
    // to a source text character; we also need the charindex-to-glyphindex mapping to
    // find the glyph for a given char. Note that some chars may not map to any glyph
    // (ligature continuations), and some may map to several glyphs (eg Indic split vowels).
    // We set the glyph index to NO_GLYPH for chars that have no associated glyph, and we
    // record the last glyph index for cases where the char maps to several glyphs,
    // so that our clumping will include all the glyph fragments for the character.

    // The charToGlyph array is indexed by char position within the stringRange of the glyph run.

    static const int32_t NO_GLYPH = -1;
    AutoTArray<int32_t,SMALL_GLYPH_RUN> charToGlyphArray;
    if (!charToGlyphArray.SetLength(stringRange.length, fallible)) {
        return NS_ERROR_OUT_OF_MEMORY;
    }
    int32_t *charToGlyph = charToGlyphArray.Elements();
    for (int32_t offset = 0; offset < stringRange.length; ++offset) {
        charToGlyph[offset] = NO_GLYPH;
    }
    for (int32_t i = 0; i < numGlyphs; ++i) {
        int32_t loc = glyphToChar[i] - stringRange.location;
        if (loc >= 0 && loc < stringRange.length) {
            charToGlyph[loc] = i;
        }
    }

    // Find character and glyph clumps that correspond, allowing for ligatures,
    // indic reordering, split glyphs, etc.
    //
    // The idea is that we'll find a character sequence starting at the first char of stringRange,
    // and extend it until it includes the character associated with the first glyph;
    // we also extend it as long as there are "holes" in the range of glyphs. So we
    // will eventually have a contiguous sequence of characters, starting at the beginning
    // of the range, that map to a contiguous sequence of glyphs, starting at the beginning
    // of the glyph array. That's a clump; then we update the starting positions and repeat.
    //
    // NB: In the case of RTL layouts, we iterate over the stringRange in reverse.
    //

    // This may find characters that fall outside the range 0:wordLength,
    // so we won't necessarily use everything we find here.

    bool isRightToLeft = aShapedText->IsRightToLeft();
    int32_t glyphStart = 0; // looking for a clump that starts at this glyph index
    int32_t charStart = isRightToLeft ?
        stringRange.length - 1 : 0; // and this char index (in the stringRange of the glyph run)

    while (glyphStart < numGlyphs) { // keep finding groups until all glyphs are accounted for
        bool inOrder = true;
        int32_t charEnd = glyphToChar[glyphStart] - stringRange.location;
        NS_WARN_IF_FALSE(charEnd >= 0 && charEnd < stringRange.length,
                         "glyph-to-char mapping points outside string range");
        // clamp charEnd to the valid range of the string
        charEnd = std::max(charEnd, 0);
        charEnd = std::min(charEnd, int32_t(stringRange.length));

        int32_t glyphEnd = glyphStart;
        int32_t charLimit = isRightToLeft ? -1 : stringRange.length;
        do {
            // This is normally executed once for each iteration of the outer loop,
            // but in unusual cases where the character/glyph association is complex,
            // the initial character range might correspond to a non-contiguous
            // glyph range with "holes" in it. If so, we will repeat this loop to
            // extend the character range until we have a contiguous glyph sequence.
            NS_ASSERTION((direction > 0 && charEnd < charLimit) ||
                         (direction < 0 && charEnd > charLimit),
                         "no characters left in range?");
            charEnd += direction;
            while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd += direction;
            }

            // find the maximum glyph index covered by the clump so far
            if (isRightToLeft) {
                for (int32_t i = charStart; i > charEnd; --i) {
                    if (charToGlyph[i] != NO_GLYPH) {
                        // update extent of glyph range
                        glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
                    }
                }
            } else {
                for (int32_t i = charStart; i < charEnd; ++i) {
                    if (charToGlyph[i] != NO_GLYPH) {
                        // update extent of glyph range
                        glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
                    }
                }
            }

            if (glyphEnd == glyphStart + 1) {
                // for the common case of a single-glyph clump, we can skip the following checks
                break;
            }

            if (glyphEnd == glyphStart) {
                // no glyphs, try to extend the clump
                continue;
            }

            // check whether all glyphs in the range are associated with the characters
            // in our clump; if not, we have a discontinuous range, and should extend it
            // unless we've reached the end of the text
            bool allGlyphsAreWithinCluster = true;
            int32_t prevGlyphCharIndex = charStart;
            for (int32_t i = glyphStart; i < glyphEnd; ++i) {
                int32_t glyphCharIndex = glyphToChar[i] - stringRange.location;
                if (isRightToLeft) {
                    if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) {
                        allGlyphsAreWithinCluster = false;
                        break;
                    }
                    if (glyphCharIndex > prevGlyphCharIndex) {
                        inOrder = false;
                    }
                    prevGlyphCharIndex = glyphCharIndex;
                } else {
                    if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) {
                        allGlyphsAreWithinCluster = false;
                        break;
                    }
                    if (glyphCharIndex < prevGlyphCharIndex) {
                        inOrder = false;
                    }
                    prevGlyphCharIndex = glyphCharIndex;
                }
            }
            if (allGlyphsAreWithinCluster) {
                break;
            }
        } while (charEnd != charLimit);

        NS_WARN_IF_FALSE(glyphStart < glyphEnd,
                         "character/glyph clump contains no glyphs!");
        if (glyphStart == glyphEnd) {
            ++glyphStart; // make progress - avoid potential infinite loop
            charStart = charEnd;
            continue;
        }

        NS_WARN_IF_FALSE(charStart != charEnd,
                         "character/glyph clump contains no characters!");
        if (charStart == charEnd) {
            glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s),
                                   // as there's nowhere to attach them
            continue;
        }

        // Now charStart..charEnd is a ligature clump, corresponding to glyphStart..glyphEnd;
        // Set baseCharIndex to the char we'll actually attach the glyphs to (1st of ligature),
        // and endCharIndex to the limit (position beyond the last char),
        // adjusting for the offset of the stringRange relative to the textRun.
        int32_t baseCharIndex, endCharIndex;
        if (isRightToLeft) {
            while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd--;
            }
            baseCharIndex = charEnd + stringRange.location - aStringOffset + 1;
            endCharIndex = charStart + stringRange.location - aStringOffset + 1;
        } else {
            while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) {
                charEnd++;
            }
            baseCharIndex = charStart + stringRange.location - aStringOffset;
            endCharIndex = charEnd + stringRange.location - aStringOffset;
        }

        // Then we check if the clump falls outside our actual string range; if so, just go to the next.
        if (endCharIndex <= 0 || baseCharIndex >= wordLength) {
            glyphStart = glyphEnd;
            charStart = charEnd;
            continue;
        }
        // Ensure we won't try to go beyond the valid length of the word's text
        baseCharIndex = std::max(baseCharIndex, 0);
        endCharIndex = std::min(endCharIndex, wordLength);

        // Now we're ready to set the glyph info in the textRun; measure the glyph width
        // of the first (perhaps only) glyph, to see if it is "Simple"
        int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit();
        double toNextGlyph;
        if (glyphStart < numGlyphs-1) {
            toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x;
        } else {
            toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
        }
        int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit);

        // Check if it's a simple one-to-one mapping
        int32_t glyphsInClump = glyphEnd - glyphStart;
        if (glyphsInClump == 1 &&
            gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) &&
            gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) &&
            charGlyphs[baseCharIndex].IsClusterStart() &&
            positions[glyphStart].y == 0.0)
        {
            charGlyphs[baseCharIndex].SetSimpleGlyph(advance,
                                                     glyphs[glyphStart]);
        } else {
            // collect all glyphs in a list to be assigned to the first char;
            // there must be at least one in the clump, and we already measured its advance,
            // hence the placement of the loop-exit test and the measurement of the next glyph
            while (1) {
                gfxTextRun::DetailedGlyph *details = detailedGlyphs.AppendElement();
                details->mGlyphID = glyphs[glyphStart];
                details->mXOffset = 0;
                details->mYOffset = -positions[glyphStart].y * appUnitsPerDevUnit;
                details->mAdvance = advance;
                if (++glyphStart >= glyphEnd) {
                   break;
                }
                if (glyphStart < numGlyphs-1) {
                    toNextGlyph = positions[glyphStart+1].x - positions[glyphStart].x;
                } else {
                    toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
                }
                advance = int32_t(toNextGlyph * appUnitsPerDevUnit);
            }

            gfxTextRun::CompressedGlyph textRunGlyph;
            textRunGlyph.SetComplex(charGlyphs[baseCharIndex].IsClusterStart(),
                                    true, detailedGlyphs.Length());
            aShapedText->SetGlyphs(aOffset + baseCharIndex, textRunGlyph,
                                   detailedGlyphs.Elements());

            detailedGlyphs.Clear();
        }

        // the rest of the chars in the group are ligature continuations, no associated glyphs
        while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) {
            gfxShapedText::CompressedGlyph &shapedTextGlyph = charGlyphs[baseCharIndex];
            NS_ASSERTION(!shapedTextGlyph.IsSimpleGlyph(), "overwriting a simple glyph");
            shapedTextGlyph.SetComplex(inOrder && shapedTextGlyph.IsClusterStart(), false, 0);
        }

        glyphStart = glyphEnd;
        charStart = charEnd;
    }

    return NS_OK;
}
gfxFontconfigUtils::LangSupportEntry *
gfxFontconfigUtils::GetLangSupportEntry(const FcChar8 *aLang, bool aWithFonts)
{
    // Currently any unrecognized languages from documents will be converted
    // to x-unicode by nsILanguageAtomService, so there is a limit on the
    // langugages that will be added here.  Reconsider when/if document
    // languages are passed to this routine.

    LangSupportEntry *entry = mLangSupportTable.PutEntry(aLang);
    if (!entry)
        return nullptr;

    FcLangResult best = FcLangDifferentLang;

    if (!entry->IsKeyInitialized()) {
        entry->InitKey(aLang);
    } else {
        // mSupport is already initialized.
        if (!aWithFonts)
            return entry;

        best = entry->mSupport;
        // If there is support for this language, an empty font list indicates
        // that the list hasn't been initialized yet.
        if (best == FcLangDifferentLang || entry->mFonts.Length() > 0)
            return entry;
    }

    // These FcFontSets are owned by fontconfig
    FcFontSet *fontSets[] = {
        FcConfigGetFonts(nullptr, FcSetSystem)
#ifdef MOZ_BUNDLED_FONTS
        , FcConfigGetFonts(nullptr, FcSetApplication)
#endif
    };

    AutoTArray<FcPattern*,100> fonts;

    for (unsigned fs = 0; fs < ArrayLength(fontSets); ++fs) {
        FcFontSet *fontSet = fontSets[fs];
        if (!fontSet) {
            continue;
        }
        for (int f = 0; f < fontSet->nfont; ++f) {
            FcPattern *font = fontSet->fonts[f];

            FcLangResult support = GetLangSupport(font, aLang);

            if (support < best) { // lower is better
                best = support;
                if (aWithFonts) {
                    fonts.Clear();
                } else if (best == FcLangEqual) {
                    break;
                }
            }

            // The font list in the LangSupportEntry is expected to be used
            // only when no default fonts support the language.  There would
            // be a large number of fonts in entries for languages using Latin
            // script but these do not need to be created because default
            // fonts already support these languages.
            if (aWithFonts && support != FcLangDifferentLang &&
                support == best) {
                fonts.AppendElement(font);
            }
        }
    }

    entry->mSupport = best;
    if (aWithFonts) {
        if (fonts.Length() != 0) {
            entry->mFonts.AppendElements(fonts.Elements(), fonts.Length());
        } else if (best != FcLangDifferentLang) {
            // Previously there was a font that supported this language at the
            // level of entry->mSupport, but it has now disappeared.  At least
            // entry->mSupport needs to be recalculated, but this is an
            // indication that the set of installed fonts has changed, so
            // update all caches.
            mLastConfig = nullptr; // invalidates caches
            UpdateFontListInternal(true);
            return GetLangSupportEntry(aLang, aWithFonts);
        }
    }

    return entry;
}