void CallAndMessageChecker::checkPreCall(const CallEvent &Call,
                                         CheckerContext &C) const {
  ProgramStateRef State = C.getState();

  // If this is a call to a C++ method, check if the callee is null or
  // undefined.
  if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
    SVal V = CC->getCXXThisVal();
    if (V.isUndef()) {
      if (!BT_cxx_call_undef)
        BT_cxx_call_undef.reset(
            new BuiltinBug(this, "Called C++ object pointer is uninitialized"));
      emitBadCall(BT_cxx_call_undef.get(), C, CC->getCXXThisExpr());
      return;
    }

    ProgramStateRef StNonNull, StNull;
    llvm::tie(StNonNull, StNull) =
        State->assume(V.castAs<DefinedOrUnknownSVal>());

    if (StNull && !StNonNull) {
      if (!BT_cxx_call_null)
        BT_cxx_call_null.reset(
            new BuiltinBug(this, "Called C++ object pointer is null"));
      emitBadCall(BT_cxx_call_null.get(), C, CC->getCXXThisExpr());
      return;
    }

    State = StNonNull;
  }

  const Decl *D = Call.getDecl();
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    // If we have a declaration, we can make sure we pass enough parameters to
    // the function.
    unsigned Params = FD->getNumParams();
    if (Call.getNumArgs() < Params) {
      ExplodedNode *N = C.generateSink();
      if (!N)
        return;

      LazyInit_BT("Function call with too few arguments", BT_call_few_args);

      SmallString<512> Str;
      llvm::raw_svector_ostream os(Str);
      os << "Function taking " << Params << " argument"
         << (Params == 1 ? "" : "s") << " is called with less ("
         << Call.getNumArgs() << ")";

      BugReport *R = new BugReport(*BT_call_few_args, os.str(), N);
      C.emitReport(R);
    }
  }

  // Don't check for uninitialized field values in arguments if the
  // caller has a body that is available and we have the chance to inline it.
  // This is a hack, but is a reasonable compromise betweens sometimes warning
  // and sometimes not depending on if we decide to inline a function.
  const bool checkUninitFields =
    !(C.getAnalysisManager().shouldInlineCall() && (D && D->getBody()));

  OwningPtr<BugType> *BT;
  if (isa<ObjCMethodCall>(Call))
    BT = &BT_msg_arg;
  else
    BT = &BT_call_arg;

  for (unsigned i = 0, e = Call.getNumArgs(); i != e; ++i)
    if (PreVisitProcessArg(C, Call.getArgSVal(i), Call.getArgSourceRange(i),
                           Call.getArgExpr(i), /*IsFirstArgument=*/i == 0,
                           checkUninitFields, Call, *BT))
      return;

  // If we make it here, record our assumptions about the callee.
  C.addTransition(State);
}
void CFRetainReleaseChecker::checkPreStmt(const CallExpr *CE,
                                          CheckerContext &C) const {
  // If the CallExpr doesn't have exactly 1 argument just give up checking.
  if (CE->getNumArgs() != 1)
    return;

  // Get the function declaration of the callee.
  const ProgramState *state = C.getState();
  SVal X = state->getSVal(CE->getCallee());
  const FunctionDecl *FD = X.getAsFunctionDecl();

  if (!FD)
    return;
  
  if (!BT) {
    ASTContext &Ctx = C.getASTContext();
    Retain = &Ctx.Idents.get("CFRetain");
    Release = &Ctx.Idents.get("CFRelease");
    BT.reset(new APIMisuse("null passed to CFRetain/CFRelease"));
  }

  // Check if we called CFRetain/CFRelease.
  const IdentifierInfo *FuncII = FD->getIdentifier();
  if (!(FuncII == Retain || FuncII == Release))
    return;

  // FIXME: The rest of this just checks that the argument is non-null.
  // It should probably be refactored and combined with AttrNonNullChecker.

  // Get the argument's value.
  const Expr *Arg = CE->getArg(0);
  SVal ArgVal = state->getSVal(Arg);
  DefinedSVal *DefArgVal = dyn_cast<DefinedSVal>(&ArgVal);
  if (!DefArgVal)
    return;

  // Get a NULL value.
  SValBuilder &svalBuilder = C.getSValBuilder();
  DefinedSVal zero = cast<DefinedSVal>(svalBuilder.makeZeroVal(Arg->getType()));

  // Make an expression asserting that they're equal.
  DefinedOrUnknownSVal ArgIsNull = svalBuilder.evalEQ(state, zero, *DefArgVal);

  // Are they equal?
  const ProgramState *stateTrue, *stateFalse;
  llvm::tie(stateTrue, stateFalse) = state->assume(ArgIsNull);

  if (stateTrue && !stateFalse) {
    ExplodedNode *N = C.generateSink(stateTrue);
    if (!N)
      return;

    const char *description = (FuncII == Retain)
                            ? "Null pointer argument in call to CFRetain"
                            : "Null pointer argument in call to CFRelease";

    BugReport *report = new BugReport(*BT, description, N);
    report->addRange(Arg->getSourceRange());
    report->addVisitor(bugreporter::getTrackNullOrUndefValueVisitor(N, Arg));
    C.EmitReport(report);
    return;
  }

  // From here on, we know the argument is non-null.
  C.addTransition(stateFalse);
}
Example #3
0
/// Propagate the nullability information through binds and warn when nullable
/// pointer or null symbol is assigned to a pointer with a nonnull type.
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
                                   CheckerContext &C) const {
  const TypedValueRegion *TVR =
      dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
  if (!TVR)
    return;

  QualType LocType = TVR->getValueType();
  if (!LocType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
  if (!ValDefOrUnknown)
    return;

  NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);

  Nullability ValNullability = Nullability::Unspecified;
  if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
    ValNullability = getNullabilityAnnotation(Sym->getType());

  Nullability LocNullability = getNullabilityAnnotation(LocType);

  // If the type of the RHS expression is nonnull, don't warn. This
  // enables explicit suppression with a cast to nonnull.
  Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
  const Expr *ValueExpr = matchValueExprForBind(S);
  if (ValueExpr) {
    ValueExprTypeLevelNullability =
      getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
  }

  bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
                                RhsNullness == NullConstraint::IsNull);
  if (Filter.CheckNullPassedToNonnull &&
      NullAssignedToNonNull &&
      ValNullability != Nullability::Nonnull &&
      ValueExprTypeLevelNullability != Nullability::Nonnull &&
      !isARCNilInitializedLocal(C, S)) {
    static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
    ExplodedNode *N = C.generateErrorNode(State, &Tag);
    if (!N)
      return;


    const Stmt *ValueStmt = S;
    if (ValueExpr)
      ValueStmt = ValueExpr;

    SmallString<256> SBuf;
    llvm::raw_svector_ostream OS(SBuf);
    OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
    OS << " assigned to a pointer which is expected to have non-null value";
    reportBugIfInvariantHolds(OS.str(),
                              ErrorKind::NilAssignedToNonnull, N, nullptr, C,
                              ValueStmt);
    return;
  }

  // If null was returned from a non-null function, mark the nullability
  // invariant as violated even if the diagnostic was suppressed.
  if (NullAssignedToNonNull) {
    State = State->set<InvariantViolated>(true);
    C.addTransition(State);
    return;
  }

  // Intentionally missing case: '0' is bound to a reference. It is handled by
  // the DereferenceChecker.

  const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
  if (!ValueRegion)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(ValueRegion);

  if (TrackedNullability) {
    if (RhsNullness == NullConstraint::IsNotNull ||
        TrackedNullability->getValue() != Nullability::Nullable)
      return;
    if (Filter.CheckNullablePassedToNonnull &&
        LocNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
      reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
                                "which is expected to have non-null value",
                                ErrorKind::NullableAssignedToNonnull, N,
                                ValueRegion, C);
    }
    return;
  }

  const auto *BinOp = dyn_cast<BinaryOperator>(S);

  if (ValNullability == Nullability::Nullable) {
    // Trust the static information of the value more than the static
    // information on the location.
    const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(ValNullability, NullabilitySource));
    C.addTransition(State);
    return;
  }

  if (LocNullability == Nullability::Nullable) {
    const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(LocNullability, NullabilitySource));
    C.addTransition(State);
  }
}
Example #4
0
void MoveChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const {
  ProgramStateRef State = C.getState();

  // Remove the MemRegions from the map on which a ctor/dtor call or assignment
  // happened.

  // Checking constructor calls.
  if (const auto *CC = dyn_cast<CXXConstructorCall>(&Call)) {
    State = removeFromState(State, CC->getCXXThisVal().getAsRegion());
    auto CtorDec = CC->getDecl();
    // Check for copying a moved-from object and report the bug.
    if (CtorDec && CtorDec->isCopyOrMoveConstructor()) {
      const MemRegion *ArgRegion = CC->getArgSVal(0).getAsRegion();
      const CXXRecordDecl *RD = CtorDec->getParent();
      MisuseKind MK = CtorDec->isMoveConstructor() ? MK_Move : MK_Copy;
      modelUse(State, ArgRegion, RD, MK, C);
      return;
    }
  }

  const auto IC = dyn_cast<CXXInstanceCall>(&Call);
  if (!IC)
    return;

  // Calling a destructor on a moved object is fine.
  if (isa<CXXDestructorCall>(IC))
    return;

  const MemRegion *ThisRegion = IC->getCXXThisVal().getAsRegion();
  if (!ThisRegion)
    return;

  // The remaining part is check only for method call on a moved-from object.
  const auto MethodDecl = dyn_cast_or_null<CXXMethodDecl>(IC->getDecl());
  if (!MethodDecl)
    return;

  // We want to investigate the whole object, not only sub-object of a parent
  // class in which the encountered method defined.
  ThisRegion = ThisRegion->getMostDerivedObjectRegion();

  if (isStateResetMethod(MethodDecl)) {
    State = removeFromState(State, ThisRegion);
    C.addTransition(State);
    return;
  }

  if (isMoveSafeMethod(MethodDecl))
    return;

  // Store class declaration as well, for bug reporting purposes.
  const CXXRecordDecl *RD = MethodDecl->getParent();

  if (MethodDecl->isOverloadedOperator()) {
    OverloadedOperatorKind OOK = MethodDecl->getOverloadedOperator();

    if (OOK == OO_Equal) {
      // Remove the tracked object for every assignment operator, but report bug
      // only for move or copy assignment's argument.
      State = removeFromState(State, ThisRegion);

      if (MethodDecl->isCopyAssignmentOperator() ||
          MethodDecl->isMoveAssignmentOperator()) {
        const MemRegion *ArgRegion = IC->getArgSVal(0).getAsRegion();
        MisuseKind MK =
            MethodDecl->isMoveAssignmentOperator() ? MK_Move : MK_Copy;
        modelUse(State, ArgRegion, RD, MK, C);
        return;
      }
      C.addTransition(State);
      return;
    }

    if (OOK == OO_Star || OOK == OO_Arrow) {
      modelUse(State, ThisRegion, RD, MK_Dereference, C);
      return;
    }
  }

  modelUse(State, ThisRegion, RD, MK_FunCall, C);
}
void CFNumberCreateChecker::checkPreStmt(const CallExpr *CE,
        CheckerContext &C) const {
    ProgramStateRef state = C.getState();
    const FunctionDecl *FD = C.getCalleeDecl(CE);
    if (!FD)
        return;

    ASTContext &Ctx = C.getASTContext();
    if (!II)
        II = &Ctx.Idents.get("CFNumberCreate");

    if (FD->getIdentifier() != II || CE->getNumArgs() != 3)
        return;

    // Get the value of the "theType" argument.
    const LocationContext *LCtx = C.getLocationContext();
    SVal TheTypeVal = state->getSVal(CE->getArg(1), LCtx);

    // FIXME: We really should allow ranges of valid theType values, and
    //   bifurcate the state appropriately.
    Optional<nonloc::ConcreteInt> V = TheTypeVal.getAs<nonloc::ConcreteInt>();
    if (!V)
        return;

    uint64_t NumberKind = V->getValue().getLimitedValue();
    Optional<uint64_t> OptTargetSize = GetCFNumberSize(Ctx, NumberKind);

    // FIXME: In some cases we can emit an error.
    if (!OptTargetSize)
        return;

    uint64_t TargetSize = *OptTargetSize;

    // Look at the value of the integer being passed by reference.  Essentially
    // we want to catch cases where the value passed in is not equal to the
    // size of the type being created.
    SVal TheValueExpr = state->getSVal(CE->getArg(2), LCtx);

    // FIXME: Eventually we should handle arbitrary locations.  We can do this
    //  by having an enhanced memory model that does low-level typing.
    Optional<loc::MemRegionVal> LV = TheValueExpr.getAs<loc::MemRegionVal>();
    if (!LV)
        return;

    const TypedValueRegion* R = dyn_cast<TypedValueRegion>(LV->stripCasts());
    if (!R)
        return;

    QualType T = Ctx.getCanonicalType(R->getValueType());

    // FIXME: If the pointee isn't an integer type, should we flag a warning?
    //  People can do weird stuff with pointers.

    if (!T->isIntegralOrEnumerationType())
        return;

    uint64_t SourceSize = Ctx.getTypeSize(T);

    // CHECK: is SourceSize == TargetSize
    if (SourceSize == TargetSize)
        return;

    // Generate an error.  Only generate a sink if 'SourceSize < TargetSize';
    // otherwise generate a regular node.
    //
    // FIXME: We can actually create an abstract "CFNumber" object that has
    //  the bits initialized to the provided values.
    //
    if (ExplodedNode *N = SourceSize < TargetSize ? C.generateSink()
                          : C.addTransition()) {
        SmallString<128> sbuf;
        llvm::raw_svector_ostream os(sbuf);

        os << (SourceSize == 8 ? "An " : "A ")
           << SourceSize << " bit integer is used to initialize a CFNumber "
           "object that represents "
           << (TargetSize == 8 ? "an " : "a ")
           << TargetSize << " bit integer. ";

        if (SourceSize < TargetSize)
            os << (TargetSize - SourceSize)
               << " bits of the CFNumber value will be garbage." ;
        else
            os << (SourceSize - TargetSize)
               << " bits of the input integer will be lost.";

        if (!BT)
            BT.reset(new APIMisuse("Bad use of CFNumberCreate"));

        BugReport *report = new BugReport(*BT, os.str(), N);
        report->addRange(CE->getArg(2)->getSourceRange());
        C.emitReport(report);
    }
}
void VariadicMethodTypeChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
        CheckerContext &C) const {
    if (!BT) {
        BT.reset(new APIMisuse("Arguments passed to variadic method aren't all "
                               "Objective-C pointer types"));

        ASTContext &Ctx = C.getASTContext();
        arrayWithObjectsS = GetUnarySelector("arrayWithObjects", Ctx);
        dictionaryWithObjectsAndKeysS =
            GetUnarySelector("dictionaryWithObjectsAndKeys", Ctx);
        setWithObjectsS = GetUnarySelector("setWithObjects", Ctx);
        orderedSetWithObjectsS = GetUnarySelector("orderedSetWithObjects", Ctx);

        initWithObjectsS = GetUnarySelector("initWithObjects", Ctx);
        initWithObjectsAndKeysS = GetUnarySelector("initWithObjectsAndKeys", Ctx);
    }

    if (!isVariadicMessage(msg))
        return;

    // We are not interested in the selector arguments since they have
    // well-defined types, so the compiler will issue a warning for them.
    unsigned variadicArgsBegin = msg.getSelector().getNumArgs();

    // We're not interested in the last argument since it has to be nil or the
    // compiler would have issued a warning for it elsewhere.
    unsigned variadicArgsEnd = msg.getNumArgs() - 1;

    if (variadicArgsEnd <= variadicArgsBegin)
        return;

    // Verify that all arguments have Objective-C types.
    Optional<ExplodedNode*> errorNode;
    ProgramStateRef state = C.getState();

    for (unsigned I = variadicArgsBegin; I != variadicArgsEnd; ++I) {
        QualType ArgTy = msg.getArgExpr(I)->getType();
        if (ArgTy->isObjCObjectPointerType())
            continue;

        // Block pointers are treaded as Objective-C pointers.
        if (ArgTy->isBlockPointerType())
            continue;

        // Ignore pointer constants.
        if (msg.getArgSVal(I).getAs<loc::ConcreteInt>())
            continue;

        // Ignore pointer types annotated with 'NSObject' attribute.
        if (C.getASTContext().isObjCNSObjectType(ArgTy))
            continue;

        // Ignore CF references, which can be toll-free bridged.
        if (coreFoundation::isCFObjectRef(ArgTy))
            continue;

        // Generate only one error node to use for all bug reports.
        if (!errorNode.hasValue())
            errorNode = C.addTransition();

        if (!errorNode.getValue())
            continue;

        SmallString<128> sbuf;
        llvm::raw_svector_ostream os(sbuf);

        StringRef TypeName = GetReceiverInterfaceName(msg);
        if (!TypeName.empty())
            os << "Argument to '" << TypeName << "' method '";
        else
            os << "Argument to method '";

        os << msg.getSelector().getAsString()
           << "' should be an Objective-C pointer type, not '";
        ArgTy.print(os, C.getLangOpts());
        os << "'";

        BugReport *R = new BugReport(*BT, os.str(), errorNode.getValue());
        R->addRange(msg.getArgSourceRange(I));
        C.emitReport(R);
    }
}
Example #7
0
/// Calculate the nullability of the result of a message expr based on the
/// nullability of the receiver, the nullability of the return value, and the
/// constraints.
void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
                                              CheckerContext &C) const {
  auto Decl = M.getDecl();
  if (!Decl)
    return;
  QualType RetType = Decl->getReturnType();
  if (!RetType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<PreconditionViolated>())
    return;

  const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
  if (!ReturnRegion)
    return;

  auto Interface = Decl->getClassInterface();
  auto Name = Interface ? Interface->getName() : "";
  // In order to reduce the noise in the diagnostics generated by this checker,
  // some framework and programming style based heuristics are used. These
  // heuristics are for Cocoa APIs which have NS prefix.
  if (Name.startswith("NS")) {
    // Developers rely on dynamic invariants such as an item should be available
    // in a collection, or a collection is not empty often. Those invariants can
    // not be inferred by any static analysis tool. To not to bother the users
    // with too many false positives, every item retrieval function should be
    // ignored for collections. The instance methods of dictionaries in Cocoa
    // are either item retrieval related or not interesting nullability wise.
    // Using this fact, to keep the code easier to read just ignore the return
    // value of every instance method of dictionaries.
    if (M.isInstanceMessage() && Name.find("Dictionary") != StringRef::npos) {
      State =
          State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }
    // For similar reasons ignore some methods of Cocoa arrays.
    StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
    if (Name.find("Array") != StringRef::npos &&
        (FirstSelectorSlot == "firstObject" ||
         FirstSelectorSlot == "lastObject")) {
      State =
          State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }

    // Encoding related methods of string should not fail when lossless
    // encodings are used. Using lossless encodings is so frequent that ignoring
    // this class of methods reduced the emitted diagnostics by about 30% on
    // some projects (and all of that was false positives).
    if (Name.find("String") != StringRef::npos) {
      for (auto Param : M.parameters()) {
        if (Param->getName() == "encoding") {
          State = State->set<NullabilityMap>(ReturnRegion,
                                             Nullability::Contradicted);
          C.addTransition(State);
          return;
        }
      }
    }
  }

  const ObjCMessageExpr *Message = M.getOriginExpr();
  Nullability SelfNullability = getReceiverNullability(M, State);

  const NullabilityState *NullabilityOfReturn =
      State->get<NullabilityMap>(ReturnRegion);

  if (NullabilityOfReturn) {
    // When we have a nullability tracked for the return value, the nullability
    // of the expression will be the most nullable of the receiver and the
    // return value.
    Nullability RetValTracked = NullabilityOfReturn->getValue();
    Nullability ComputedNullab =
        getMostNullable(RetValTracked, SelfNullability);
    if (ComputedNullab != RetValTracked &&
        ComputedNullab != Nullability::Unspecified) {
      const Stmt *NullabilitySource =
          ComputedNullab == RetValTracked
              ? NullabilityOfReturn->getNullabilitySource()
              : Message->getInstanceReceiver();
      State = State->set<NullabilityMap>(
          ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
      C.addTransition(State);
    }
    return;
  }

  // No tracked information. Use static type information for return value.
  Nullability RetNullability = getNullabilityAnnotation(RetType);

  // Properties might be computed. For this reason the static analyzer creates a
  // new symbol each time an unknown property  is read. To avoid false pozitives
  // do not treat unknown properties as nullable, even when they explicitly
  // marked nullable.
  if (M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined)
    RetNullability = Nullability::Nonnull;

  Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
  if (ComputedNullab == Nullability::Nullable) {
    const Stmt *NullabilitySource = ComputedNullab == RetNullability
                                        ? Message
                                        : Message->getInstanceReceiver();
    State = State->set<NullabilityMap>(
        ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
    C.addTransition(State);
  }
}
Example #8
0
void StreamChecker::Fclose(CheckerContext &C, const CallExpr *CE) const {
  const ProgramState *state = CheckDoubleClose(CE, C.getState(), C);
  if (state)
    C.addTransition(state);
}
Example #9
0
/// This method check when nullable pointer or null value is returned from a
/// function that has nonnull return type.
///
/// TODO: when nullability preconditons are violated, it is ok to violate the
/// nullability postconditons (i.e.: when one of the nonnull parameters are null
/// this check should not report any nullability related issue).
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
                                      CheckerContext &C) const {
  auto RetExpr = S->getRetValue();
  if (!RetExpr)
    return;

  if (!RetExpr->getType()->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<PreconditionViolated>())
    return;

  auto RetSVal =
      State->getSVal(S, C.getLocationContext()).getAs<DefinedOrUnknownSVal>();
  if (!RetSVal)
    return;

  AnalysisDeclContext *DeclCtxt =
      C.getLocationContext()->getAnalysisDeclContext();
  const FunctionType *FuncType = DeclCtxt->getDecl()->getFunctionType();
  if (!FuncType)
    return;

  NullConstraint Nullness = getNullConstraint(*RetSVal, State);

  Nullability StaticNullability =
      getNullabilityAnnotation(FuncType->getReturnType());

  if (Filter.CheckNullReturnedFromNonnull &&
      Nullness == NullConstraint::IsNull &&
      StaticNullability == Nullability::Nonnull) {
    static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
    ExplodedNode *N = C.generateSink(State, C.getPredecessor(), &Tag);
    reportBugIfPreconditionHolds(ErrorKind::NilReturnedToNonnull, N, nullptr, C,
                                 RetExpr);
    return;
  }

  const MemRegion *Region = getTrackRegion(*RetSVal);
  if (!Region)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);
  if (TrackedNullability) {
    Nullability TrackedNullabValue = TrackedNullability->getValue();
    if (Filter.CheckNullableReturnedFromNonnull &&
        Nullness != NullConstraint::IsNotNull &&
        TrackedNullabValue == Nullability::Nullable &&
        StaticNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
      reportBugIfPreconditionHolds(ErrorKind::NullableReturnedToNonnull, N,
                                   Region, C);
    }
    return;
  }
  if (StaticNullability == Nullability::Nullable) {
    State = State->set<NullabilityMap>(Region,
                                       NullabilityState(StaticNullability, S));
    C.addTransition(State);
  }
}
Example #10
0
/// This callback warns when a nullable pointer or a null value is passed to a
/// function that expects its argument to be nonnull.
void NullabilityChecker::checkPreCall(const CallEvent &Call,
                                      CheckerContext &C) const {
  if (!Call.getDecl())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<PreconditionViolated>())
    return;

  ProgramStateRef OrigState = State;

  unsigned Idx = 0;
  for (const ParmVarDecl *Param : Call.parameters()) {
    if (Param->isParameterPack())
      break;

    const Expr *ArgExpr = nullptr;
    if (Idx < Call.getNumArgs())
      ArgExpr = Call.getArgExpr(Idx);
    auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
    if (!ArgSVal)
      continue;

    if (!Param->getType()->isAnyPointerType() &&
        !Param->getType()->isReferenceType())
      continue;

    NullConstraint Nullness = getNullConstraint(*ArgSVal, State);

    Nullability ParamNullability = getNullabilityAnnotation(Param->getType());
    Nullability ArgStaticNullability =
        getNullabilityAnnotation(ArgExpr->getType());

    if (Filter.CheckNullPassedToNonnull && Nullness == NullConstraint::IsNull &&
        ArgStaticNullability != Nullability::Nonnull &&
        ParamNullability == Nullability::Nonnull) {
      ExplodedNode *N = C.generateSink(State);
      reportBugIfPreconditionHolds(ErrorKind::NilPassedToNonnull, N, nullptr, C,
                                   ArgExpr);
      return;
    }

    const MemRegion *Region = getTrackRegion(*ArgSVal);
    if (!Region)
      continue;

    const NullabilityState *TrackedNullability =
        State->get<NullabilityMap>(Region);

    if (TrackedNullability) {
      if (Nullness == NullConstraint::IsNotNull ||
          TrackedNullability->getValue() != Nullability::Nullable)
        continue;

      if (Filter.CheckNullablePassedToNonnull &&
          ParamNullability == Nullability::Nonnull) {
        ExplodedNode *N = C.addTransition(State);
        reportBugIfPreconditionHolds(ErrorKind::NullablePassedToNonnull, N,
                                     Region, C, ArgExpr, /*SuppressPath=*/true);
        return;
      }
      if (Filter.CheckNullableDereferenced &&
          Param->getType()->isReferenceType()) {
        ExplodedNode *N = C.addTransition(State);
        reportBugIfPreconditionHolds(ErrorKind::NullableDereferenced, N, Region,
                                     C, ArgExpr, /*SuppressPath=*/true);
        return;
      }
      continue;
    }
    // No tracked nullability yet.
    if (ArgStaticNullability != Nullability::Nullable)
      continue;
    State = State->set<NullabilityMap>(
        Region, NullabilityState(ArgStaticNullability, ArgExpr));
  }
  if (State != OrigState)
    C.addTransition(State);
}
Example #11
0
static void setFlag(ProgramStateRef state, SVal val, CheckerContext &C) {
  // We tag the symbol that the SVal wraps.
  if (SymbolRef sym = val.getAsSymbol())
    C.addTransition(state->set<T>(sym, true));
}
Example #12
0
/// This callback warns when a nullable pointer or a null value is passed to a
/// function that expects its argument to be nonnull.
void NullabilityChecker::checkPreCall(const CallEvent &Call,
                                      CheckerContext &C) const {
  if (!Call.getDecl())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  ProgramStateRef OrigState = State;

  unsigned Idx = 0;
  for (const ParmVarDecl *Param : Call.parameters()) {
    if (Param->isParameterPack())
      break;

    if (Idx >= Call.getNumArgs())
      break;

    const Expr *ArgExpr = Call.getArgExpr(Idx);
    auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
    if (!ArgSVal)
      continue;

    if (!Param->getType()->isAnyPointerType() &&
        !Param->getType()->isReferenceType())
      continue;

    NullConstraint Nullness = getNullConstraint(*ArgSVal, State);

    Nullability RequiredNullability =
        getNullabilityAnnotation(Param->getType());
    Nullability ArgExprTypeLevelNullability =
        getNullabilityAnnotation(ArgExpr->getType());

    unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;

    if (Filter.CheckNullPassedToNonnull && Nullness == NullConstraint::IsNull &&
        ArgExprTypeLevelNullability != Nullability::Nonnull &&
        RequiredNullability == Nullability::Nonnull &&
        isDiagnosableCall(Call)) {
      ExplodedNode *N = C.generateErrorNode(State);
      if (!N)
        return;

      SmallString<256> SBuf;
      llvm::raw_svector_ostream OS(SBuf);
      OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
      OS << " passed to a callee that requires a non-null " << ParamIdx
         << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
      reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull, N,
                                nullptr, C,
                                ArgExpr, /*SuppressPath=*/false);
      return;
    }

    const MemRegion *Region = getTrackRegion(*ArgSVal);
    if (!Region)
      continue;

    const NullabilityState *TrackedNullability =
        State->get<NullabilityMap>(Region);

    if (TrackedNullability) {
      if (Nullness == NullConstraint::IsNotNull ||
          TrackedNullability->getValue() != Nullability::Nullable)
        continue;

      if (Filter.CheckNullablePassedToNonnull &&
          RequiredNullability == Nullability::Nonnull &&
          isDiagnosableCall(Call)) {
        ExplodedNode *N = C.addTransition(State);
        SmallString<256> SBuf;
        llvm::raw_svector_ostream OS(SBuf);
        OS << "Nullable pointer is passed to a callee that requires a non-null "
           << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
        reportBugIfInvariantHolds(OS.str(),
                                  ErrorKind::NullablePassedToNonnull, N,
                                  Region, C, ArgExpr, /*SuppressPath=*/true);
        return;
      }
      if (Filter.CheckNullableDereferenced &&
          Param->getType()->isReferenceType()) {
        ExplodedNode *N = C.addTransition(State);
        reportBugIfInvariantHolds("Nullable pointer is dereferenced",
                                  ErrorKind::NullableDereferenced, N, Region,
                                  C, ArgExpr, /*SuppressPath=*/true);
        return;
      }
      continue;
    }
    // No tracked nullability yet.
    if (ArgExprTypeLevelNullability != Nullability::Nullable)
      continue;
    State = State->set<NullabilityMap>(
        Region, NullabilityState(ArgExprTypeLevelNullability, ArgExpr));
  }
  if (State != OrigState)
    C.addTransition(State);
}
Example #13
0
/// This method check when nullable pointer or null value is returned from a
/// function that has nonnull return type.
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
                                      CheckerContext &C) const {
  auto RetExpr = S->getRetValue();
  if (!RetExpr)
    return;

  if (!RetExpr->getType()->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
  if (!RetSVal)
    return;

  bool InSuppressedMethodFamily = false;

  QualType RequiredRetType;
  AnalysisDeclContext *DeclCtxt =
      C.getLocationContext()->getAnalysisDeclContext();
  const Decl *D = DeclCtxt->getDecl();
  if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
    // HACK: This is a big hammer to avoid warning when there are defensive
    // nil checks in -init and -copy methods. We should add more sophisticated
    // logic here to suppress on common defensive idioms but still
    // warn when there is a likely problem.
    ObjCMethodFamily Family = MD->getMethodFamily();
    if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
      InSuppressedMethodFamily = true;

    RequiredRetType = MD->getReturnType();
  } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
    RequiredRetType = FD->getReturnType();
  } else {
    return;
  }

  NullConstraint Nullness = getNullConstraint(*RetSVal, State);

  Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);

  // If the returned value is null but the type of the expression
  // generating it is nonnull then we will suppress the diagnostic.
  // This enables explicit suppression when returning a nil literal in a
  // function with a _Nonnull return type:
  //    return (NSString * _Nonnull)0;
  Nullability RetExprTypeLevelNullability =
        getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());

  bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
                                  Nullness == NullConstraint::IsNull);
  if (Filter.CheckNullReturnedFromNonnull &&
      NullReturnedFromNonNull &&
      RetExprTypeLevelNullability != Nullability::Nonnull &&
      !InSuppressedMethodFamily &&
      C.getLocationContext()->inTopFrame()) {
    static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
    ExplodedNode *N = C.generateErrorNode(State, &Tag);
    if (!N)
      return;

    SmallString<256> SBuf;
    llvm::raw_svector_ostream OS(SBuf);
    OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
    OS << " returned from a " << C.getDeclDescription(D) <<
          " that is expected to return a non-null value";
    reportBugIfInvariantHolds(OS.str(),
                              ErrorKind::NilReturnedToNonnull, N, nullptr, C,
                              RetExpr);
    return;
  }

  // If null was returned from a non-null function, mark the nullability
  // invariant as violated even if the diagnostic was suppressed.
  if (NullReturnedFromNonNull) {
    State = State->set<InvariantViolated>(true);
    C.addTransition(State);
    return;
  }

  const MemRegion *Region = getTrackRegion(*RetSVal);
  if (!Region)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);
  if (TrackedNullability) {
    Nullability TrackedNullabValue = TrackedNullability->getValue();
    if (Filter.CheckNullableReturnedFromNonnull &&
        Nullness != NullConstraint::IsNotNull &&
        TrackedNullabValue == Nullability::Nullable &&
        RequiredNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);

      SmallString<256> SBuf;
      llvm::raw_svector_ostream OS(SBuf);
      OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
            " that is expected to return a non-null value";

      reportBugIfInvariantHolds(OS.str(),
                                ErrorKind::NullableReturnedToNonnull, N,
                                Region, C);
    }
    return;
  }
  if (RequiredNullability == Nullability::Nullable) {
    State = State->set<NullabilityMap>(Region,
                                       NullabilityState(RequiredNullability,
                                                        S));
    C.addTransition(State);
  }
}
void PthreadLockChecker::AcquireLock(CheckerContext &C, const CallExpr *CE,
                                     SVal lock, bool isTryLock,
                                     enum LockingSemantics semantics) const {

  const MemRegion *lockR = lock.getAsRegion();
  if (!lockR)
    return;

  ProgramStateRef state = C.getState();
  const SymbolRef *sym = state->get<DestroyRetVal>(lockR);
  if (sym)
    state = resolvePossiblyDestroyedMutex(state, lockR, sym);

  SVal X = C.getSVal(CE);
  if (X.isUnknownOrUndef())
    return;

  DefinedSVal retVal = X.castAs<DefinedSVal>();

  if (const LockState *LState = state->get<LockMap>(lockR)) {
    if (LState->isLocked()) {
      if (!BT_doublelock)
        BT_doublelock.reset(new BugType(this, "Double locking",
                                        "Lock checker"));
      ExplodedNode *N = C.generateErrorNode();
      if (!N)
        return;
      auto report = llvm::make_unique<BugReport>(
          *BT_doublelock, "This lock has already been acquired", N);
      report->addRange(CE->getArg(0)->getSourceRange());
      C.emitReport(std::move(report));
      return;
    } else if (LState->isDestroyed()) {
      reportUseDestroyedBug(C, CE);
      return;
    }
  }

  ProgramStateRef lockSucc = state;
  if (isTryLock) {
    // Bifurcate the state, and allow a mode where the lock acquisition fails.
    ProgramStateRef lockFail;
    switch (semantics) {
    case PthreadSemantics:
      std::tie(lockFail, lockSucc) = state->assume(retVal);
      break;
    case XNUSemantics:
      std::tie(lockSucc, lockFail) = state->assume(retVal);
      break;
    default:
      llvm_unreachable("Unknown tryLock locking semantics");
    }
    assert(lockFail && lockSucc);
    C.addTransition(lockFail);

  } else if (semantics == PthreadSemantics) {
    // Assume that the return value was 0.
    lockSucc = state->assume(retVal, false);
    assert(lockSucc);

  } else {
    // XNU locking semantics return void on non-try locks
    assert((semantics == XNUSemantics) && "Unknown locking semantics");
    lockSucc = state;
  }

  // Record that the lock was acquired.
  lockSucc = lockSucc->add<LockSet>(lockR);
  lockSucc = lockSucc->set<LockMap>(lockR, LockState::getLocked());
  C.addTransition(lockSucc);
}
Example #15
0
/// Propagate the nullability information through binds and warn when nullable
/// pointer or null symbol is assigned to a pointer with a nonnull type.
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
                                   CheckerContext &C) const {
  const TypedValueRegion *TVR =
      dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
  if (!TVR)
    return;

  QualType LocType = TVR->getValueType();
  if (!LocType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<PreconditionViolated>())
    return;

  auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
  if (!ValDefOrUnknown)
    return;

  NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);

  Nullability ValNullability = Nullability::Unspecified;
  if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
    ValNullability = getNullabilityAnnotation(Sym->getType());

  Nullability LocNullability = getNullabilityAnnotation(LocType);
  if (Filter.CheckNullPassedToNonnull &&
      RhsNullness == NullConstraint::IsNull &&
      ValNullability != Nullability::Nonnull &&
      LocNullability == Nullability::Nonnull) {
    static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
    ExplodedNode *N = C.generateSink(State, C.getPredecessor(), &Tag);
    reportBugIfPreconditionHolds(ErrorKind::NilAssignedToNonnull, N, nullptr, C,
                                 S);
    return;
  }
  // Intentionally missing case: '0' is bound to a reference. It is handled by
  // the DereferenceChecker.

  const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
  if (!ValueRegion)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(ValueRegion);

  if (TrackedNullability) {
    if (RhsNullness == NullConstraint::IsNotNull ||
        TrackedNullability->getValue() != Nullability::Nullable)
      return;
    if (Filter.CheckNullablePassedToNonnull &&
        LocNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
      reportBugIfPreconditionHolds(ErrorKind::NullableAssignedToNonnull, N,
                                   ValueRegion, C);
    }
    return;
  }

  const auto *BinOp = dyn_cast<BinaryOperator>(S);

  if (ValNullability == Nullability::Nullable) {
    // Trust the static information of the value more than the static
    // information on the location.
    const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(ValNullability, NullabilitySource));
    C.addTransition(State);
    return;
  }

  if (LocNullability == Nullability::Nullable) {
    const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(LocNullability, NullabilitySource));
    C.addTransition(State);
  }
}
void NonNullParamChecker::checkPreCall(const CallEvent &Call,
                                       CheckerContext &C) const {
  if (!Call.getDecl())
    return;

  llvm::SmallBitVector AttrNonNull = getNonNullAttrs(Call);
  unsigned NumArgs = Call.getNumArgs();

  ProgramStateRef state = C.getState();
  ArrayRef<ParmVarDecl*> parms = Call.parameters();

  for (unsigned idx = 0; idx < NumArgs; ++idx) {
    // For vararg functions, a corresponding parameter decl may not exist.
    bool HasParam = idx < parms.size();

    // Check if the parameter is a reference. We want to report when reference
    // to a null pointer is passed as a parameter.
    bool haveRefTypeParam =
        HasParam ? parms[idx]->getType()->isReferenceType() : false;
    bool haveAttrNonNull = AttrNonNull[idx];

    // Check if the parameter is also marked 'nonnull'.
    if (!haveAttrNonNull && HasParam)
      haveAttrNonNull = parms[idx]->hasAttr<NonNullAttr>();

    if (!haveAttrNonNull && !haveRefTypeParam)
      continue;

    // If the value is unknown or undefined, we can't perform this check.
    const Expr *ArgE = Call.getArgExpr(idx);
    SVal V = Call.getArgSVal(idx);
    auto DV = V.getAs<DefinedSVal>();
    if (!DV)
      continue;

    assert(!haveRefTypeParam || DV->getAs<Loc>());

    // Process the case when the argument is not a location.
    if (haveAttrNonNull && !DV->getAs<Loc>()) {
      // If the argument is a union type, we want to handle a potential
      // transparent_union GCC extension.
      if (!ArgE)
        continue;

      QualType T = ArgE->getType();
      const RecordType *UT = T->getAsUnionType();
      if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
        continue;

      auto CSV = DV->getAs<nonloc::CompoundVal>();

      // FIXME: Handle LazyCompoundVals?
      if (!CSV)
        continue;

      V = *(CSV->begin());
      DV = V.getAs<DefinedSVal>();
      assert(++CSV->begin() == CSV->end());
      // FIXME: Handle (some_union){ some_other_union_val }, which turns into
      // a LazyCompoundVal inside a CompoundVal.
      if (!V.getAs<Loc>())
        continue;

      // Retrieve the corresponding expression.
      if (const auto *CE = dyn_cast<CompoundLiteralExpr>(ArgE))
        if (const auto *IE = dyn_cast<InitListExpr>(CE->getInitializer()))
          ArgE = dyn_cast<Expr>(*(IE->begin()));
    }

    ConstraintManager &CM = C.getConstraintManager();
    ProgramStateRef stateNotNull, stateNull;
    std::tie(stateNotNull, stateNull) = CM.assumeDual(state, *DV);

    // Generate an error node.  Check for a null node in case
    // we cache out.
    if (stateNull && !stateNotNull) {
      if (ExplodedNode *errorNode = C.generateErrorNode(stateNull)) {

        std::unique_ptr<BugReport> R;
        if (haveAttrNonNull)
          R = genReportNullAttrNonNull(errorNode, ArgE);
        else if (haveRefTypeParam)
          R = genReportReferenceToNullPointer(errorNode, ArgE);

        // Highlight the range of the argument that was null.
        R->addRange(Call.getArgSourceRange(idx));

        // Emit the bug report.
        C.emitReport(std::move(R));
      }

      // Always return.  Either we cached out or we just emitted an error.
      return;
    }

    if (stateNull) {
      if (ExplodedNode *N = C.generateSink(stateNull, C.getPredecessor())) {
        ImplicitNullDerefEvent event = {
          V, false, N, &C.getBugReporter(),
          /*IsDirectDereference=*/haveRefTypeParam};
        dispatchEvent(event);
      }
    }

    // If a pointer value passed the check we should assume that it is
    // indeed not null from this point forward.
    state = stateNotNull;
  }

  // If we reach here all of the arguments passed the nonnull check.
  // If 'state' has been updated generated a new node.
  C.addTransition(state);
}
void StackAddrEscapeChecker::checkEndPath(CheckerContext &Ctx) const {
  ProgramStateRef state = Ctx.getState();

  // Iterate over all bindings to global variables and see if it contains
  // a memory region in the stack space.
  class CallBack : public StoreManager::BindingsHandler {
  private:
    CheckerContext &Ctx;
    const StackFrameContext *CurSFC;
  public:
    SmallVector<std::pair<const MemRegion*, const MemRegion*>, 10> V;

    CallBack(CheckerContext &CC) :
      Ctx(CC),
      CurSFC(CC.getLocationContext()->getCurrentStackFrame())
    {}
    
    bool HandleBinding(StoreManager &SMgr, Store store,
                       const MemRegion *region, SVal val) {
      
      if (!isa<GlobalsSpaceRegion>(region->getMemorySpace()))
        return true;
      
      const MemRegion *vR = val.getAsRegion();
      if (!vR)
        return true;
        
      // Under automated retain release, it is okay to assign a block
      // directly to a global variable.
      if (Ctx.getASTContext().getLangOpts().ObjCAutoRefCount &&
          isa<BlockDataRegion>(vR))
        return true;

      if (const StackSpaceRegion *SSR = 
          dyn_cast<StackSpaceRegion>(vR->getMemorySpace())) {
        // If the global variable holds a location in the current stack frame,
        // record the binding to emit a warning.
        if (SSR->getStackFrame() == CurSFC)
          V.push_back(std::make_pair(region, vR));
      }
      
      return true;
    }
  };
    
  CallBack cb(Ctx);
  state->getStateManager().getStoreManager().iterBindings(state->getStore(),cb);

  if (cb.V.empty())
    return;

  // Generate an error node.
  ExplodedNode *N = Ctx.addTransition(state);
  if (!N)
    return;

  if (!BT_stackleak)
    BT_stackleak.reset(
      new BuiltinBug("Stack address stored into global variable",
                     "Stack address was saved into a global variable. "
                     "This is dangerous because the address will become "
                     "invalid after returning from the function"));
  
  for (unsigned i = 0, e = cb.V.size(); i != e; ++i) {
    // Generate a report for this bug.
    SmallString<512> buf;
    llvm::raw_svector_ostream os(buf);
    SourceRange range = GenName(os, cb.V[i].second,
                                Ctx.getSourceManager());
    os << " is still referred to by the global variable '";
    const VarRegion *VR = cast<VarRegion>(cb.V[i].first->getBaseRegion());
    os << *VR->getDecl()
       << "' upon returning to the caller.  This will be a dangling reference";
    BugReport *report = new BugReport(*BT_stackleak, os.str(), N);
    if (range.isValid())
      report->addRange(range);

    Ctx.EmitReport(report);
  }
}
void MacOSKeychainAPIChecker::checkPreStmt(const CallExpr *CE,
                                           CheckerContext &C) const {
  unsigned idx = InvalidIdx;
  ProgramStateRef State = C.getState();

  const FunctionDecl *FD = C.getCalleeDecl(CE);
  if (!FD || FD->getKind() != Decl::Function)
    return;
  
  StringRef funName = C.getCalleeName(FD);
  if (funName.empty())
    return;

  // If it is a call to an allocator function, it could be a double allocation.
  idx = getTrackedFunctionIndex(funName, true);
  if (idx != InvalidIdx) {
    unsigned paramIdx = FunctionsToTrack[idx].Param;
    if (CE->getNumArgs() <= paramIdx)
      return;

    const Expr *ArgExpr = CE->getArg(paramIdx);
    if (SymbolRef V = getAsPointeeSymbol(ArgExpr, C))
      if (const AllocationState *AS = State->get<AllocatedData>(V)) {
        if (!definitelyReturnedError(AS->Region, State, C.getSValBuilder())) {
          // Remove the value from the state. The new symbol will be added for
          // tracking when the second allocator is processed in checkPostStmt().
          State = State->remove<AllocatedData>(V);
          ExplodedNode *N = C.addTransition(State);
          if (!N)
            return;
          initBugType();
          SmallString<128> sbuf;
          llvm::raw_svector_ostream os(sbuf);
          unsigned int DIdx = FunctionsToTrack[AS->AllocatorIdx].DeallocatorIdx;
          os << "Allocated data should be released before another call to "
              << "the allocator: missing a call to '"
              << FunctionsToTrack[DIdx].Name
              << "'.";
          auto Report = llvm::make_unique<BugReport>(*BT, os.str(), N);
          Report->addVisitor(llvm::make_unique<SecKeychainBugVisitor>(V));
          Report->addRange(ArgExpr->getSourceRange());
          Report->markInteresting(AS->Region);
          C.emitReport(std::move(Report));
        }
      }
    return;
  }

  // Is it a call to one of deallocator functions?
  idx = getTrackedFunctionIndex(funName, false);
  if (idx == InvalidIdx)
    return;

  unsigned paramIdx = FunctionsToTrack[idx].Param;
  if (CE->getNumArgs() <= paramIdx)
    return;

  // Check the argument to the deallocator.
  const Expr *ArgExpr = CE->getArg(paramIdx);
  SVal ArgSVal = State->getSVal(ArgExpr, C.getLocationContext());

  // Undef is reported by another checker.
  if (ArgSVal.isUndef())
    return;

  SymbolRef ArgSM = ArgSVal.getAsLocSymbol();

  // If the argument is coming from the heap, globals, or unknown, do not
  // report it.
  bool RegionArgIsBad = false;
  if (!ArgSM) {
    if (!isBadDeallocationArgument(ArgSVal.getAsRegion()))
      return;
    RegionArgIsBad = true;
  }

  // Is the argument to the call being tracked?
  const AllocationState *AS = State->get<AllocatedData>(ArgSM);
  if (!AS && FunctionsToTrack[idx].Kind != ValidAPI) {
    return;
  }
  // If trying to free data which has not been allocated yet, report as a bug.
  // TODO: We might want a more precise diagnostic for double free
  // (that would involve tracking all the freed symbols in the checker state).
  if (!AS || RegionArgIsBad) {
    // It is possible that this is a false positive - the argument might
    // have entered as an enclosing function parameter.
    if (isEnclosingFunctionParam(ArgExpr))
      return;

    ExplodedNode *N = C.addTransition(State);
    if (!N)
      return;
    initBugType();
    auto Report = llvm::make_unique<BugReport>(
        *BT, "Trying to free data which has not been allocated.", N);
    Report->addRange(ArgExpr->getSourceRange());
    if (AS)
      Report->markInteresting(AS->Region);
    C.emitReport(std::move(Report));
    return;
  }

  // Process functions which might deallocate.
  if (FunctionsToTrack[idx].Kind == PossibleAPI) {

    if (funName == "CFStringCreateWithBytesNoCopy") {
      const Expr *DeallocatorExpr = CE->getArg(5)->IgnoreParenCasts();
      // NULL ~ default deallocator, so warn.
      if (DeallocatorExpr->isNullPointerConstant(C.getASTContext(),
          Expr::NPC_ValueDependentIsNotNull)) {
        const AllocationPair AP = std::make_pair(ArgSM, AS);
        generateDeallocatorMismatchReport(AP, ArgExpr, C);
        return;
      }
      // One of the default allocators, so warn.
      if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(DeallocatorExpr)) {
        StringRef DeallocatorName = DE->getFoundDecl()->getName();
        if (DeallocatorName == "kCFAllocatorDefault" ||
            DeallocatorName == "kCFAllocatorSystemDefault" ||
            DeallocatorName == "kCFAllocatorMalloc") {
          const AllocationPair AP = std::make_pair(ArgSM, AS);
          generateDeallocatorMismatchReport(AP, ArgExpr, C);
          return;
        }
        // If kCFAllocatorNull, which does not deallocate, we still have to
        // find the deallocator.
        if (DE->getFoundDecl()->getName() == "kCFAllocatorNull")
          return;
      }
      // In all other cases, assume the user supplied a correct deallocator
      // that will free memory so stop tracking.
      State = State->remove<AllocatedData>(ArgSM);
      C.addTransition(State);
      return;
    }

    llvm_unreachable("We know of no other possible APIs.");
  }

  // The call is deallocating a value we previously allocated, so remove it
  // from the next state.
  State = State->remove<AllocatedData>(ArgSM);

  // Check if the proper deallocator is used.
  unsigned int PDeallocIdx = FunctionsToTrack[AS->AllocatorIdx].DeallocatorIdx;
  if (PDeallocIdx != idx || (FunctionsToTrack[idx].Kind == ErrorAPI)) {
    const AllocationPair AP = std::make_pair(ArgSM, AS);
    generateDeallocatorMismatchReport(AP, ArgExpr, C);
    return;
  }

  // If the buffer can be null and the return status can be an error,
  // report a bad call to free.
  if (State->assume(ArgSVal.castAs<DefinedSVal>(), false) &&
      !definitelyDidnotReturnError(AS->Region, State, C.getSValBuilder())) {
    ExplodedNode *N = C.addTransition(State);
    if (!N)
      return;
    initBugType();
    auto Report = llvm::make_unique<BugReport>(
        *BT, "Only call free if a valid (non-NULL) buffer was returned.", N);
    Report->addVisitor(llvm::make_unique<SecKeychainBugVisitor>(ArgSM));
    Report->addRange(ArgExpr->getSourceRange());
    Report->markInteresting(AS->Region);
    C.emitReport(std::move(Report));
    return;
  }

  C.addTransition(State);
}
  void DanglingDelegateChecker::checkPostObjCMessage(const ObjCMethodCall &message, CheckerContext &context) const {
    // if the call was inlined, there is nothing else to do
    if (context.wasInlined) {
      return;
    }

    const ObjCMessageExpr *expr = message.getOriginExpr();
    if (!expr) {
      assert(false);
      return;
    }

    // want an instance message to a non-null receiver
    const Expr *receiver = expr->getInstanceReceiver();
    if (!receiver) {
      return;
    }
    if (isKnownToBeNil(message.getReceiverSVal(), context)) {
      // we are sure that the receiver is nil => abort mission
      return;
    }

    // retrieves the static facts on ivars
    const ObjCImplFacts *facts = getCurrentFacts(getCurrentTopClassInterface(context));
    if (!facts) {
      return;
    }

    // First we try to detect the setting of an interesting property of self
    if (isObjCSelfExpr(receiver)) {
      const ObjCPropertyDecl *propDecl = matchObjCMessageWithPropertySetter(*expr);
      if (propDecl) {
        // To mitigate false positives, we verify only setters that have an unknown body.
        // (Setters with a known body are unfortunately not always inlined.)
        RuntimeDefinition runtimeDefinition = message.getRuntimeDefinition();
        if (!runtimeDefinition.getDecl() || runtimeDefinition.getDecl()->isImplicit()) {
          verifyIvarDynamicStateAgainstStaticFacts(*expr, propDecl->getPropertyIvarDecl(), context);
        }

        // Next we deal with a possible assignment self.x = nil to prevent further warning
        const ObjCIvarDecl *ivarDecl = propDecl->getPropertyIvarDecl();
        if (ivarDecl && facts->_ivarFactsMap.find(ivarDecl) != facts->_ivarFactsMap.end()) {
          SVal value = message.getArgSVal(0);
          if (isKnownToBeNil(value, context)) {
            // mark the corresponding ivar as cleared
            ProgramStateRef state = context.getState();
            IvarDynamicState clearedStateForIvar(facts->_ivarFactsMap.at(ivarDecl));
            state = state->set<IvarMap>(ivarDecl, clearedStateForIvar);
            context.addTransition(state);
          }
        }

        return;
      }
    }

    // What follows detects when we correctly clear the references inside an ivar
    // This is dual to FactFinder::VisitObjCMessageExpr

    StringRef selectorStr = expr->getSelector().getAsString();
    // do we have a first argument equal to self?
    bool paramIsSelf = isObjCSelfExpr(getArgOfObjCMessageExpr(*expr, 0));

    // is the receiver an interesting ivar?
    const ObjCIvarDecl *ivarDecl = matchIvarLValueExpression(*receiver);
    if (ivarDecl && facts->_ivarFactsMap.find(ivarDecl) != facts->_ivarFactsMap.end()) {

      // is this a release?
      if (selectorStr == "release" || selectorStr == "autorelease") {
        assert(!paramIsSelf);
        verifyIvarDynamicStateAgainstStaticFacts(*expr, ivarDecl, context);
        return;
      }

      // Prepare a new state to modify, associated with the receiver
      ProgramStateRef state = context.getState();
      // Copy the previous state if present
      IvarDynamicState ivarState(state->get<IvarMap>(ivarDecl));

      // is this a setter of an assign property?
      const ObjCPropertyDecl *propDecl = matchObjCMessageWithPropertySetter(*expr);
      if (propDecl) {
        if (propDecl->getSetterKind() != ObjCPropertyDecl::Assign) {
          return;
        }
        std::string propName = propDecl->getNameAsString();
        if (!paramIsSelf) {
          // the property is now considered cleared
          ivarState._assignPropertyWasCleared.insert(propName);
        } else {
          // "unclear" the property since we just stored self again in it
          ivarState._assignPropertyWasCleared.erase(propName);
        }

      } else if (paramIsSelf && selectorStr.startswith("removeTarget:")) {
        ivarState._targetWasCleared = true;
      } else if (paramIsSelf && selectorStr.startswith("removeObserver:")) {
        ivarState._observerWasCleared = true;
      } else {
        // return to avoid transitioning to a new identical state
        return;
      }

      // write the new state
      state = state->set<IvarMap>(ivarDecl, ivarState);
      context.addTransition(state);
      return;
    }

    // TODO: is the receiver an interesting "observable singleton object"?
//    string receiverObjectName = matchObservableSingletonObject(receiver);
//    if (!receiverObjectName.empty()) {
//
//      if (paramIsSelf && selectorStr.startswith("addObserver:")) {
//        // TODO
//      }
//
//    }
  }
void CFRetainReleaseChecker::checkPreStmt(const CallExpr *CE,
        CheckerContext &C) const {
    // If the CallExpr doesn't have exactly 1 argument just give up checking.
    if (CE->getNumArgs() != 1)
        return;

    ProgramStateRef state = C.getState();
    const FunctionDecl *FD = C.getCalleeDecl(CE);
    if (!FD)
        return;

    if (!BT) {
        ASTContext &Ctx = C.getASTContext();
        Retain = &Ctx.Idents.get("CFRetain");
        Release = &Ctx.Idents.get("CFRelease");
        MakeCollectable = &Ctx.Idents.get("CFMakeCollectable");
        BT.reset(
            new APIMisuse("null passed to CFRetain/CFRelease/CFMakeCollectable"));
    }

    // Check if we called CFRetain/CFRelease/CFMakeCollectable.
    const IdentifierInfo *FuncII = FD->getIdentifier();
    if (!(FuncII == Retain || FuncII == Release || FuncII == MakeCollectable))
        return;

    // FIXME: The rest of this just checks that the argument is non-null.
    // It should probably be refactored and combined with NonNullParamChecker.

    // Get the argument's value.
    const Expr *Arg = CE->getArg(0);
    SVal ArgVal = state->getSVal(Arg, C.getLocationContext());
    Optional<DefinedSVal> DefArgVal = ArgVal.getAs<DefinedSVal>();
    if (!DefArgVal)
        return;

    // Get a NULL value.
    SValBuilder &svalBuilder = C.getSValBuilder();
    DefinedSVal zero =
        svalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();

    // Make an expression asserting that they're equal.
    DefinedOrUnknownSVal ArgIsNull = svalBuilder.evalEQ(state, zero, *DefArgVal);

    // Are they equal?
    ProgramStateRef stateTrue, stateFalse;
    llvm::tie(stateTrue, stateFalse) = state->assume(ArgIsNull);

    if (stateTrue && !stateFalse) {
        ExplodedNode *N = C.generateSink(stateTrue);
        if (!N)
            return;

        const char *description;
        if (FuncII == Retain)
            description = "Null pointer argument in call to CFRetain";
        else if (FuncII == Release)
            description = "Null pointer argument in call to CFRelease";
        else if (FuncII == MakeCollectable)
            description = "Null pointer argument in call to CFMakeCollectable";
        else
            llvm_unreachable("impossible case");

        BugReport *report = new BugReport(*BT, description, N);
        report->addRange(Arg->getSourceRange());
        bugreporter::trackNullOrUndefValue(N, Arg, *report);
        C.emitReport(report);
        return;
    }

    // From here on, we know the argument is non-null.
    C.addTransition(stateFalse);
}
void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
                                        const Stmt* LoadS,
                                        CheckerContext &checkerContext) const {

  // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
  // some new logic here that reasons directly about memory region extents.
  // Once that logic is more mature, we can bring it back to assumeInBound()
  // for all clients to use.
  //
  // The algorithm we are using here for bounds checking is to see if the
  // memory access is within the extent of the base region.  Since we
  // have some flexibility in defining the base region, we can achieve
  // various levels of conservatism in our buffer overflow checking.
  ProgramStateRef state = checkerContext.getState();  
  ProgramStateRef originalState = state;

  SValBuilder &svalBuilder = checkerContext.getSValBuilder();
  const RegionRawOffsetV2 &rawOffset = 
    RegionRawOffsetV2::computeOffset(state, svalBuilder, location);

  if (!rawOffset.getRegion())
    return;

  // CHECK LOWER BOUND: Is byteOffset < extent begin?  
  //  If so, we are doing a load/store
  //  before the first valid offset in the memory region.

  SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion());
  
  if (isa<NonLoc>(extentBegin)) {
    SVal lowerBound
      = svalBuilder.evalBinOpNN(state, BO_LT, rawOffset.getByteOffset(),
                                cast<NonLoc>(extentBegin),
                                svalBuilder.getConditionType());

    NonLoc *lowerBoundToCheck = dyn_cast<NonLoc>(&lowerBound);
    if (!lowerBoundToCheck)
      return;
    
    ProgramStateRef state_precedesLowerBound, state_withinLowerBound;
    llvm::tie(state_precedesLowerBound, state_withinLowerBound) =
      state->assume(*lowerBoundToCheck);

    // Are we constrained enough to definitely precede the lower bound?
    if (state_precedesLowerBound && !state_withinLowerBound) {
      reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
      return;
    }
  
    // Otherwise, assume the constraint of the lower bound.
    assert(state_withinLowerBound);
    state = state_withinLowerBound;
  }
  
  do {
    // CHECK UPPER BOUND: Is byteOffset >= extent(baseRegion)?  If so,
    // we are doing a load/store after the last valid offset.
    DefinedOrUnknownSVal extentVal =
      rawOffset.getRegion()->getExtent(svalBuilder);
    if (!isa<NonLoc>(extentVal))
      break;

    SVal upperbound
      = svalBuilder.evalBinOpNN(state, BO_GE, rawOffset.getByteOffset(),
                                cast<NonLoc>(extentVal),
                                svalBuilder.getConditionType());
  
    NonLoc *upperboundToCheck = dyn_cast<NonLoc>(&upperbound);
    if (!upperboundToCheck)
      break;
  
    ProgramStateRef state_exceedsUpperBound, state_withinUpperBound;
    llvm::tie(state_exceedsUpperBound, state_withinUpperBound) =
      state->assume(*upperboundToCheck);

    // If we are under constrained and the index variables are tainted, report.
    if (state_exceedsUpperBound && state_withinUpperBound) {
      if (state->isTainted(rawOffset.getByteOffset()))
        reportOOB(checkerContext, state_exceedsUpperBound, OOB_Tainted);
        return;
    }
  
    // If we are constrained enough to definitely exceed the upper bound, report.
    if (state_exceedsUpperBound) {
      assert(!state_withinUpperBound);
      reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
      return;
    }
  
    assert(state_withinUpperBound);
    state = state_withinUpperBound;
  }
  while (false);
  
  if (state != originalState)
    checkerContext.addTransition(state);
}
// Checking for SecItemAdd and SecItemUpdate, no particular reason for assigning it to PostCall
void iOSAppSecLeakingLogsChecker::checkPostCall(const CallEvent &Call,
                                        CheckerContext &C) const 
{
  do
  {
    if ( !m_pInsecureInstBugType )
    {
      MSEC_DEBUG( "redwud: ", "!m_pInsecureInstBugType" ) ;
      break ;
    }

    initIdentifierInfo( C.getASTContext() ) ;

    //redwud: Obviously it is what it is
    if ( !Call.isGlobalCFunction() )
    {
      MSEC_DEBUG( "redwud: ", "!Call.isGlobalCFunction" ) ;
      break ;
    }

    const IdentifierInfo *pCalleeIdent = Call.getCalleeIdentifier() ; 

    unsigned iNumArgs = Call.getNumArgs() ; 

    //We do away with array because it's only two of them and it
    //will break the while..passing pattern  
    if ( pCalleeIdent != m_piiNSLog )
    {  
      if ( (pCalleeIdent != m_piiNSLogv) )
      {
        break ;
      }
      //FIXME: Workaround to evade 2nd and onward parameters of NSLogv
      //  Idea: Use identifier for slot from s
      iNumArgs = 1 ;
    }

    CSensitiveInfo &rSenInfo = CSensitiveInfo::create() ;
    SymbolRef pSymToCheck = NULL ; 
   
    // Go through each parameter unless find some sensitive info in one of them
    for ( unsigned iCtr = 0; (iCtr < iNumArgs) && (!pSymToCheck); iCtr++ )
    {
      const Expr *pExpr = Call.getArgExpr( iCtr ) ;
      StringRef szString ;
      StringRef szVarName ;

      CMSecCommon::getStrFromExpr( szString, pExpr, &szVarName ) ; 

      if ( szString.empty() ) // Nil is supported here, so no need to check
      {
//        MSEC_DEBUG( "redwud: ", "Empty string" ) ;
        continue ;
      }

      if ( !rSenInfo.isSensitive( szString.str() ) && !rSenInfo.isSensitive( szVarName.str() ) )
      {
//        MSEC_DEBUG( "redwud: ", "!Sensitive :" << szString << "Var name: " << szVarName ) ;
        continue ; 
      }

      // Get the symbolic value corresponding to the target parameter.
      pSymToCheck = Call.getArgSVal( iCtr ).getAsSymbol() ;
     
      //Force the issue
      if ( !pSymToCheck )
      {
        pSymToCheck = CMSecCommon::conjureSymbolRef() ;
      }
    }

    if ( !pSymToCheck )
    {
      break ;
    }

    ProgramStateRef pProgState = C.getState() ; 

    //Report this instance
    CMSecCommon::reportInsecureInstance( pSymToCheck, C, C.addTransition( pProgState )
      , *m_pInsecureInstBugType, m_szReportDesc ) ;
  
  } while ( _PASSING_ ) ;

}
Example #23
0
static void addSelfFlag(ProgramStateRef state, SVal val,
                        SelfFlagEnum flag, CheckerContext &C) {
  // We tag the symbol that the SVal wraps.
  if (SymbolRef sym = val.getAsSymbol())
    C.addTransition(state->set<SelfFlag>(sym, getSelfFlags(val, C) | flag));
}